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Abstract. It is well known that the Riemann zeta-function is universal in the
Voronin sense, i.e., its shifts ζ(s + iτ), τ ∈ R, approximate a wide class of analytic
functions. The universality of ζ(s) is called discrete if τ take values from a certain
discrete set. In the paper, we obtain a weighted discrete universality theorem for ζ(s)
when τ takes values from the arithmetic progression {kh : k ∈ N} with arbitrary fixed
h > 0. For this, two types of h are considered.
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1 Introduction

The Riemann zeta-function ζ(s), s = σ + it,

ζ(s) =

∞∑
m=1

1

ms
, σ > 1,

since Riemann’s and even Euler’s times surprises mathematicians by the ex-
tensive field of applications and denseness of the set of its values. It is well

�
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known the role of ζ(s) in the theory of distribution of prime numbers and in
other problems of arithmetic, however, we, in this paper, prefer the denseness
properties of ζ(s).

In the second decade of the last century, H. Bohr discovered [4] that the
function ζ(s) takes every non-zero value infinitely many times in the strip
{s ∈ C : 1 < σ < 1 + δ} with any δ > 0. H. Bohr and R. Courant proved [5]
that, for fixed σ, 1

2 < σ 6 1, the set

{ζ(σ + it) : t ∈ R} (1.1)

is dense in C. S.M. Voronin significantly generalized the above results. He
obtained [25] that the set

{(ζ(s1 + iτ), . . . , ζ(sn + iτ)) : τ ∈ R}

with any fixed numbers s1, . . . , sn, 1
2 < Resk < 1, 1 6 k 6 n, and sk 6= sm for

k 6= m, and the set{(
ζ(s+ iτ), ζ ′(s+ iτ), . . . , ζ(n−1)(s+ iτ)

)
: τ ∈ R

}
with every fixed s, 1

2 < σ < 1, are dense in Cn. However, a much more
important merit of Voronin is his so-called universality theorem for the function
ζ(s) [26]. This theorem asserts that a wide class of analytic functions can
be approximated by shifts ζ(s + iτ), τ ∈ R. For a modern version of the
Voronin universality theorem, it is convenient to use the following notation.
Let D =

{
s ∈ C : 1

2 < σ < 1
}

. Denote by K the class of compact subsets of
the strip D with connected complements, and by H0(K), K ∈ K, the class of
continuous non-vanishing functions on K that are analytic in the interior of K.
Then the following theorem is true.

Theorem 1. Let K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

Here measA denotes the Lebesgue measure of a measurable set A ⊂ R. By
Theorem 1, the set of shifts ζ(s + iτ) approximating a given function from
H0(K) has a positive lower density, thus, it is infinite. Also, Theorem 1 can be
considered as an infinite-dimensional version of the Bohr-Courant theorem on
denseness of the set (1.1). The proof of Theorem 1 is given in [1] (in slightly
different form), and in [9], [11], [24].

Theorem 1 is of continuous type: τ in ζ(s + iτ) can take arbitrary real
values. Also, a discrete version of Theorem 1 is known when τ takes values
from a certain discrete set. Let h > 0 be a fixed number.

Theorem 2. Let K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
N→∞

1

N
#

{
1 6 k 6 N : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε

}
> 0.
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Here #A denotes the cardinality of the set A. The proof of Theorem 2
can be found in [22] and [1]. For shifts ζ(s + ikαh) with fixed α, 0 < α < 1,
Theorem 2 is given in [6]. In [15, 21] and [7, 8, 13, 16], more general shifts of
Dirichlet L-functions and Riemann zeta-function, respectively, were considered.
We note that discrete universality theorems for zeta-functions sometimes are
more convenient for practical applications, an example of this is the paper [3].

In [10], a weighted version of Theorem 1 was proposed. Let w(t) be a
function of bounded variation on [T0,∞) with some T0 > 0 such that the
variation Vb

aw on [a, b] satisfies the inequality Vb
aw 6 cw(a) with a certain

constant c > 0 for any subinterval [a, b] ⊂ [T0,∞). Let

UT = U(T,w) =

∫ T

T0

w(t)dt,

and let limT→∞ U(T,w) = +∞. Moreover, let IA denote the indicator function
of the set A. Then we have the following generalization of Theorem 1.

Theorem 3. Suppose that the function w(t) satisfies the above hypotheses. Let
K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

UT

∫ T

T0

w(τ)I{
τ : sup
s∈K
|ζ(s+iτ)−f(s)|<ε

}(τ)dτ > 0.

To be precise, in [10], Theorem 3 was proved under a certain additional
hypothesis on the function w(t) which is a weighted version of the classical
Birkhoff-Khintchine ergodic theorem. In [18], this technical hypothesis was
removed. A generalization of Theorem 3 for Matsumoto zeta-functions was
given in [12]. In [17], a weighted discrete universality theorem with the sequence
{kαh}, 0 < α < 1, for the periodic zeta-function was obtained.

The aim of this paper is a weighted discrete universality theorem for the
Riemann zeta-function. Let w(t) be a real non-negative function having a
continuous derivative on [ 12 ,∞) such that

lim
N→∞

VN = +∞, VN =

N∑
k=1

w(k),

∫ N

1

u|w′(u)|du� VN , N →∞.

Denote by W the class of functions w(t) satisfying the above hypotheses. Sup-
pose that h is a fixed positive number.

Theorem 4. Suppose that w(t) ∈ W . Let K ∈ K and f(s) ∈ H0(K). Then,
for every ε > 0,

lim inf
N→∞

1

VN

N∑
k=1

w(k)I{
k: sup
s∈K
|ζ(s+ikh)−f(s)|<ε

}(k) > 0.

For example, the function w(t) = sin(log t)+1
t is not monotonically decreasing

and w(t) ∈W .
Theorem 4 has the following modification.

Math. Model. Anal., 25(1):21–36, 2020.
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Theorem 5. Suppose that w(t) ∈ W . Let K ∈ K and f(s) ∈ H0(K). Then
the limit

lim
N→∞

1

VN

N∑
k=1

w(k)I{
k: sup
s∈K
|ζ(s+ikh)−f(s)|<ε

}(k) > 0

exists for all but at most countably many ε > 0.

For proving of the above universality theorems, we will apply the proba-
bilistic approach.

2 Limit theorems

We remind that D =
{
s ∈ C : 1

2 < σ < 1
}

, and by H(D) denote the space of
analytic functions on D endowed with the topology of uniform convergence on
compacta. The space H(D) is metrisable. There exists a sequence of compact

subsets {Kl : l ∈ N} ⊂ D such that D =
∞⋃
l=1

Kl, Kl ⊂ Kl+1 for all l ∈ N, and

if K ⊂ D is a compact set, then K ⊂ Kl for some l ∈ N. For g1, g2 ∈ H(D),
define

ρ(g1, g2) =

∞∑
l=1

2−l
sups∈K |g1(s)− g2(s)|

1 + sups∈K |g1(s)− g2(s)|
.

Then ρ is a metric on H(D) which induces its topology of uniform convergence
on compacta.

Denote by B(X) the Borel σ-field of the space X, and, for A ∈ B(H(D)),
define

PN (A) = PN,w,h(A) =
1

VN

N∑
k=1

w(k)I{k:ζ(s+ikh)∈A}(k).

In this section, we will consider the weak convergence of PN,w,h as N → ∞.
We say that h > 0 is of type 1 if exp

{
2πm
h

}
is an irrational number for all

m ∈ Z \ {0}, and h > 0 is of type 2 if h is not of type 1. We will examine
separately the cases of types 1 and 2.

As usual, we start with one topological structure. Let γ = {s ∈ C : |s| = 1}
and Ω =

∏
p γp, where γp = γ for all primes p. By the Tikhonov theorem, the

torus Ω with the product topology and pointwise multiplication is a compact
topological Abelian group. Therefore, on (Ω,B(Ω)), the probability Haar mea-
sure mH can be defined, and this gives the probability space (Ω,B(Ω),mH).
Let P be the set of all prime numbers, and let ω(p) denote the projection of
ω ∈ Ω to the circle γp, p ∈ P. For A ∈ B(Ω), define

QN (A) =
1

VN

N∑
k=1

w(k)I{k:(p−ikh:p∈P)∈A}(k).

Lemma 1. Suppose that w(t) ∈ W and h is of type 1. Then QN converges
weakly to the Haar measure mH as N →∞.
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Proof. We apply the Fourier transform method. Let gN (k), k = (kp : kp ∈
Z, p ∈ P), be the Fourier transform of QN . Then we have that

gN (k) =

∫
Ω

∏
p

∗
ωkp(p)dQN ,

where the sign “ ∗ ” means that only a finite number of integers kp are distinct
from zero. Thus, by the definition of QN ,

gN (k) =
1

VN

N∑
k=1

w(k)
∏
p

∗
p−ikkph =

1

VN

N∑
k=1

w(k) exp
{
− ikh

∑
p

∗
kp log p

}
.

(2.1)

Obviously,
gN (0) = 1. (2.2)

If k 6= 0, then ∑
p

∗
kp log p 6= 0,

since the logarithms of prime numbers are linearly independent over the field
of rational numbers. Thus,

exp

{
−ih

∑
p

∗
kp log p

}
6= 1. (2.3)

Indeed, if inequality (2.3) is not true, then∑
p

∗
kp log p =

2πr

h
,
∏
p

∗
p−kp = exp

{
2πr

h

}
with some r ∈ Z\{0}. However, the left-hand side of this equality is a rational
number, and we arrive to the contradiction that h is of type 1. Thus, (2.3) is
true, and we find that, for u > 1,

∑
k6u

exp

{
−ikh

∑
p

∗
kp log p

}

=
exp

{
−ih

∑∗
p kp log p

}
− exp

{
i([u] + 1)h

∑∗
p kp log p

}
1− exp

{
−ih

∑∗
p kp log p

} def
= Σ(u).

Hence, in view of (2.1), for k 6= 0,

gN (k) =
w(N)Σ(N)

VN
− 1

VN

∫ N

1

Σ(u)w′(u)du.

Since the function Σ(u) is bounded by a constant not depending of u, we find
that, for k 6= 0,

lim
N→∞

gN (k) = 0.

Math. Model. Anal., 25(1):21–36, 2020.
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This together with (2.2) proves the lemma. ut

Lemma 1 implies a weighted discrete universality theorem for absolutely
convergent Dirichlet series. Let θ > 1

2 be a fixed number, and

vn(m) = exp

{
−
(m
n

)θ}
, m, n ∈ N,

ζn(s) =

∞∑
m=1

vn(m)

ms
, ζn(s, ω) =

∞∑
m=1

ω(m)vn(m)

ms
,

where
ω(m) =

∏
pα|m
pα+1-m

ωα(p), m ∈ N.

Then the series for ζn(s) and ζn(s, ω) are absolutely convergent for σ > 1
2 [11].

From this, it follows that the function un : Ω → H(D), un(ω) = ζn(s, ω), is
continuous. Let Rn = mHu

−1
n , where

Rn(A) = mHu
−1
n (A) = mH(u−1n A), A ∈ B(H(D)).

Moreover, let

PN,n(A) =
1

VN

N∑
k=1

w(k)I{k:ζn(s+ikh)∈A}(k), A ∈ B(H(D)).

It is not difficult to see that PN,n = QNu
−1
n . This, the continuity of un and

Lemma 1 lead to

Lemma 2. Suppose that w(t) ∈ W and h is of type 1. Then PN,n converges
weakly to Rn as N →∞.

The weak convergence of PN,n is a starting point for proving the weak
convergence for PN as N → ∞. The investigation of PN also requires an
approximation of ζ(s) by ζn(s). Let ln(s) = s

θΓ
(
s
θ

)
ns, where Γ (s) is the Euler

gamma-function. Then [11], for σ > 1
2 , the integral representation

ζn(s) =
1

2πi

∫ θ+i∞

θ−i∞
ζ(s+ z)ln(z)

dz

z
(2.4)

is true. Using the well-known estimates∫ T

1/2

|ζ(σ + it)|2dt� T,

∫ T

1/2

|ζ ′(σ + it)|2dt� T,

we find that, for 1
2 < σ < 1 and τ ∈ R,∫ T

1/2

|ζ(σ + it+ iτ)|2 dt� T (1 + |τ |)
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and ∫ T

1/2

|ζ ′(σ + it+ iτ)|2 dt� T (1 + |τ |).

These estimates together with Gallagher lemma, see, for example, [20, Lem-
ma 1.4], give, for 1

2 < σ < 1 and τ ∈ R, the bound

N∑
k=1

|ζ(σ + ikh+ iτ)|2 �
∫ (N+1/2)h

1/2

|ζ(σ + it+ iτ)|2dt

+

(∫ (N+1/2)h

1/2

|ζ(σ+it+iτ |2dt

∫ (N+1/2)h

1/2

|ζ ′(σ+it+iτ)|2dt

)1/2

� N(1+|τ |).

Hence, for the same σ and τ ,

N∑
k=1

w(k)|ζ(σ + ikh+ iτ)|2 � w(N)

N∑
k=1

|ζ(σ + ikh+ iτ)|2 + (1 + |τ |)

×
∫ N

1

u|w′(u)|du� Nw(N)(1 + |τ |) + VN (1 + |τ |)� VN (1 + |τ |), (2.5)

because

Nw(N) =

N∑
k=1

w(k) +

∫ N

1

∑
k6u

1

w′(u)du� VN .

Let K ⊂ D be a compact set. Then (2.4), (2.5), the residue theorem and
Cauchy integral formula imply the equality

lim
n→∞

lim sup
N→∞

1

VN

N∑
k=1

w(k) sup
s∈K
|ζ(s+ ikh)− ζn(s+ ikh)| = 0. (2.6)

Now, (2.6) together with the definition of the metric ρ yields the following
lemma.

Lemma 3. Suppose that w(t) ∈W . Then the equality

lim
n→∞

lim sup
N→∞

1

VN

N∑
k=1

w(k)ρ (ζ(s+ ikh), ζn(s+ ikh)) = 0

is true for every fixed h > 0.

Now, we are in position to prove a weighted discrete limit theorem for the
function ζ(s). On the probability space (Ω,B(Ω),mH), define the H(D)-valued
random element ζ(s, ω) by the Euler product

ζ(s, ω) =
∏
p

(
1− ω(p)

ps

)−1
.

Math. Model. Anal., 25(1):21–36, 2020.
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The latter product, for almost all ω ∈ Ω, is uniformly convergent on compact
subsets of the strip D [11]. Denote by Pζ the distribution of the random element
ζ(s, ω), i.e.,

Pζ(A) = mH(ω ∈ Ω : ζ(s, ω) ∈ A), A ∈ B(H(D)).

Theorem 6. Suppose that w(t) ∈ W and h > 0 is of the type 1. Then PN
converges weakly to Pζ as N → ∞. Moreover, the support of Pζ is the set
S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Proof. We will prove that Rn, as n → ∞, converges weakly to a certain
probability measure P , and that PN , as N →∞, also converges weakly to P .

Let θN be a random variable defined on a certain probability space with
probability measure µ and having the distribution

µ(θN = kh) =
w(k)

VN
, k = 1, . . . , N.

Moreover, let YN,n = YN,n(s) be an H(D)-valued random element defined by

YN,n(s) = ζn(s+ iθN ),

and let Yn = Yn(s) be an H(D)-valued random element with the distribution
Rn. Then, by Lemma 2,

YN,n
D−−−−→

N→∞
Yn. (2.7)

Using the absolute convergence of the series for ζn(s), it can be proved by a
method of [11] that the family of probability measures {Rn : n ∈ N} is tight,
i.e., for every ε > 0, there exists a compact set K = K(ε) ⊂ H(D) such that

Rn(K) > 1− ε

for all n ∈ N. Hence, by the Prokhorov theorem [2], this family is relatively com-
pact. Therefore, each sequence of {Rn} contains a subsequence {Rnr} weakly
convergent, as r →∞, to a certain probability measure P on (H(D),B(H(D))).
In other words,

Ynr
D−−−→

r→∞
P. (2.8)

Define one more H(D)-valued random element

XN = XN (s) = ζ(s+ iθN ).

Then the application of Lemma 3 gives, for ε > 0,

lim
n→∞

lim sup
N→∞

µ (ρ(XN (s), YN,n(s)) > ε)

= lim
n→∞

lim sup
N→∞

1

VN

N∑
k=1

w(k)I{k:ρ(ζ(s+ikh),ζn(s+ikh))>ε}(k)

6 lim
n→∞

lim sup
N→∞

1

εVN

N∑
k=1

w(k)ρ(ζ(s+ ikh), ζn(s+ ikh)) = 0.
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This equality, (2.7) and (2.8) show that all hypotheses of Theorem 4.2 of [2]
are satisfied, therefore,

XN
D−−−−→

N→∞
P, (2.9)

or PN converges weakly to P as N →∞. Moreover, in virtue of (2.9), the mea-
sure P is independent of the sequence Ynr . Since the family {Rn} is relatively
compact, from this, we obtain that Rn converges weakly to P as n→∞. Thus,
PN , as N → ∞, converges weakly to the limit measure P of Rn as n → ∞.
However, by the proof of a limit theorem for

1

T
meas {τ ∈ [0, T ] : ζ(s+ iτ) ∈ A} , A ∈ B(H(D)),

it is known [11] that Rn, as n → ∞, converges weakly to Pζ , and the support
of Pζ is the set S. Therefore, the same statement is also true for PN , and the
theorem is proved. ut

The case of h of type 2 is a more complicated. We must construct a new
probability space different from (Ω,B(Ω),mH). We will index by h the notation
related to h of type 2.

Now suppose that h > 0 is of type 2. Then there exists the smallest m0 ∈ N
such the number exp

{
2πm0

h

}
is rational. We put

exp

{
2πm0

h

}
=
a

b
, a, b ∈ N, (a, b) = 1.

Define the set
P0 =

{
p ∈ P :

a

b
=
∏
p∈P

pαp with αp 6= 0
}
.

Denote by Ωh the closed subgroup of Ω generated by the element
{
p−ih : p∈P

}
.

By Lemma 1 of [14], if h is of type 2, then

Ωh = {ω ∈ Ω : ω(a) = ω(b)}.

On (Ωh,B(Ωh)), the probability Haar measure mh
H exists, and we obtain the

probability space (Ωh,B(Ωh),mh
H). By (3.1) of [14], we have that the characters

χ of the group Ωh are of the form

χ(ω) =
∏∗

p∈P\P0

ωkp(p)
∏
p∈P0

ωkp+lαp(p), l ∈ Z. (2.10)

Now, we are ready to prove an analogue of Lemma 1 for h of type 2. For
A ∈ B(Ωh), define

QN,h(A) =
1

VN

N∑
k=1

w(k)I{k:(p−ikh:p∈P)∈A}(k).

Lemma 4. Suppose that h is of type 2. Then QN,h converges weakly the Haar
measure mh

H as N →∞.

Math. Model. Anal., 25(1):21–36, 2020.
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Proof. In view of (2.10), we have that the Fourier transform gN,h(k), k =
(kp : kp ∈ Z, p ∈ P), of QN,h is of the form

gN,h(k) =

∫
Ωh

χ(ω)dQN,h

=
1

VN

N∑
k=1

w(k)
∏∗

p∈P\P0

p−ikkph
∏
p∈P0

p−ikh(kp+lαp), l ∈ Z. (2.11)

If kp = 0 for all p ∈ P\P0 and kp = rαp for all p ∈ P0 with some r ∈ Z (case 1),
then

gN,h(k) = 1, (2.12)

because
∏
p∈P0

ωdαp(p) = 1 with d ∈ Z.
Now, suppose that kp 6= 0 for some p ∈ P \P0, or there does not exist r ∈ Z

such that kp = rαp for all p ∈ P0 (case 2). In [14], it was obtained that

exp {−ihAp(kp, lαp)} 6= 1,

where

Ap(kp, lαp) =
∑∗

p∈P\P0

kp log p+
∑
p∈P0

(kp + lαp) log p, l ∈ Z.

Hence, we find that, for u > 1,∑
k6u

exp {−ikhAp(kp, lαp)}

=
exp {−ihAp(kp, lαp)} − exp {−ih([u] + 1)Ap(kp, lαp)}

1− exp {−ihAp(kp, lαp)}
def
= Σh(u).

Therefore, in view of (2.11),

gN,h(k) =
w(N)Σh(N)

VN
− 1

VN

∫ N

1

Σh(u)w′(u)du.

Using the properties of the function w, hence we find that

gN,h(k) = 0.

This together with (2.12) shows that

lim
N→∞

gN,h(k) =

{
1, in the case 1,
0, in the case 2.

Since the right-hand side of the equality is the Fourier transform of the Haar
measure mh

H , the lemma follows by a continuity theorem for probability mea-
sures on compact groups. ut

Now, together with PN,n,h, consider

P̂N,n,h(A) =
1

VN

N∑
k=1

w(k)I{k:ζn,h(s+ikh,ω)∈A}(k), A ∈ B(H(D)),

with ω ∈ Ωh.
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Lemma 5. Suppose that w(t) ∈W and h is of type 2. Then PN,n,h and P̂N,n,h
both converge weakly to the measure mh

Hu
−1
n,h as N → ∞, where un,h : Ωh →

H(D) is given by un,h(ω) = ζn,h(s, ω), ω ∈ Ωh.

Proof. By proving Lemma 2, in view of Lemma 4, we have that PN,n,h con-
verges weakly to mh

Hu
−1
n,h as N → ∞. Similarly, we obtain that if ûn,h(ω̂) :

Ωh → H(D) is given by

ûn,h(ω̂) = ζn(s, ωω̂), ω̂ ∈ Ωh,

then P̂N,n,h converges weakly to mh
H û
−1
n,h. However, ûn,h = un,h(u), where

u : Ωh → Ωh is given by u(ω̂) = ωω̂. This and the invariance of the Haar
measure mh

H show that mh
H û
−1
n,h = mh

Hu
−1
n,h. ut

For further considerations, we need some elements of the ergodic theory. Let
ah = (p−ih : p ∈ P). Then ah is an element of Ωh. Define the transformation
ϕh(ω) of Ωh by

ϕh(ω) = ahω, ω ∈ Ωh.

Then we have that ϕh is a measurable measure preserving transformation on
the probability space (Ωh,B(Ωh), mh

H). We recall that a set A ∈ B(Ωh) is
called invariant with respect to ϕh if the sets A and ϕh(A) can differ from each
other at most by a set of mh

H -measure zero. The transformation ϕh is called
ergodic if the σ-field of invariant sets of Ωh consists only of the sets having
mh
H -measure 1 or 0.

Lemma 6. Suppose that h is of type 2. Then the transformation ϕh is ergodic.

Proof of the lemma is given in [14, Lemma 3].
Let, for ω ∈ Ωh,

ζh(s, ω) =
∏
p

(
1− ω(p)

ps

)−1
.

The first application of Lemma 6 is devoted to the discrete mean square of
ζh(s, ω).

Lemma 7. Suppose that w(t) ∈ W , h > 0 is of type 2, σ, 1
2 < σ < 1, is fixed

and t ∈ R. Then, for almost all ω ∈ Ωh,

N∑
k=1

w(k)|ζh(σ + it+ ikh, ω)|2 � VN (1 + |t|).

Proof. We have that ζh(s, ω) coincides with the restriction of the random el-
ement ζ(s, ω) to the space (Ωh,B(Ωh), mh

H). First we consider the expectation
E|ζh(σ + it, ω)|2. We write ζh(s, ω) in the form

ζh(σ + it, ω) =
∏
p∈P0

(
1− ω(p)

pσ+it

)−1 ∏
p∈P\P0

(
1− ω(p)

pσ+it

)−1
def
= X1X2. (2.13)
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The random elements X1 and X2 are independent, moreover, for almost all
ω ∈ Ωh,

X2 =
∑
m

′ ω(m)

mσ+it
,

where the sign ′ means that the summing runs over m = 1 and m ∈ N with
the canonical representation consisting only of primes p ∈ P \ P0. In the series
for X2, the random variables are orthogonal, therefore,

E|X2|2 =
∑
m

′ 1

m2σ
<∞.

Clearly, E|X1|2 is bounded by a constant. Therefore, there exists a finite con-
stant c > 0 such that, for 1

2 < σ < 1 and t ∈ R,

E|ζh(σ + it, ω)|2 = E|X1|2E|X2|2 6 c.

Then (2.13), Lemma 6, the Birkhoff-Khintchine ergodic theorem, see, for exam-
ple, [23], and the definition of the transformation ϕh show that, for 1

2 < σ < 1
and |t0| 6 h,

N∑
k=1

|ζh(σ + it0 + ikh, ω)|2 =

N∑
k=1

|ζh(σ + it0, ϕ
k
h(ω))|2

= NE|ζh(σ + it0, ω)|2(1 + o(1))� N

for almost all ω ∈ Ωh as N → ∞. Hence, denoting by [u] the integer part of
u ∈ R, for 1

2 < σ < 1 and t ∈ R, we find that

N∑
k=1

|ζh(σ + it+ ikh, ω)|2 =

N+[t/h]∑
k=1+[t/h]

|ζh(σ + it0 + ikh, ω)|2 � N(1 + |t|)

for almost all ω ∈ Ωh. From this, summing by parts, we obtain the estimate of
the lemma. ut

Similarly to the proof of Lemma 3, we arrive, by using Lemma 7, to

Lemma 8. Suppose that w(t) ∈ W and h > 0 is of type 2. Then, for almost
all ω ∈ Ωh,

lim
n→∞

lim sup
N→∞

1

VN

N∑
k=1

w(k)ρ (ζh(s+ ikh, ω), ζn,h(s+ ikh, ω)) = 0.

For ω ∈ Ωh, additionally to the measure PN,h, define

P̂N,h(A) =
1

VN

N∑
k=1

w(k)I{k:ζh(s+ikh,ω)∈A}(k), A ∈ B(H(D)).

Then, using Lemmas 3, 5 and 8, and repeating the first part of the proof of
Theorem 6, we obtain
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Lemma 9. Suppose that w(t) ∈ W and h > 0 is of type 2. Then, on (H(D),
B(H(D))), there exists a probability measure Ph such that PN,h and P̂N,h both
converges weakly to Ph as N →∞.

Denote by Pζ,h the distribution of the random element ζh(s, ω), ω ∈ Ωh.
Then we have the following analogue of Theorem 6.

Theorem 7. Suppose that w(t) ∈ W and h > 0 is of type 2. Then PN,h
converges weakly Pζ,h as N → ∞. Moreover, the support of the measure Pζ,h
is the set S.

Proof. In virtue of Lemma 9, it suffices to identify the measure P in that
lemma, and to find the support of the limit measure. For the first problem,
we will apply Lemma 6, and the Birkhoff-Khintchine theorem. Let A be a
continuity set of P . On the probability space (Ωh,B(Ωh),mh

H), define the
random variable ξ by the formula

ξ(ω) =

{
1, if ζh(s, ω) ∈ A,
0, otherwise.

Then we have that

Eξ =

∫
Ωh

ξ(ω)dmh
H = Pζ,h(A). (2.14)

Moreover, by Lemma 9,

lim
N→∞

P̂N (A) = Ph(A). (2.15)

In view of Lemma 6 and the Birkhoff-Khintchine theorem, for almost all ω ∈
Ωh,

lim
N→∞

1

N

N∑
k=1

ξ(ϕkh(ω)) = Eξ.

Since w ∈W , from this it follows that, for almost all ω ∈ Ωh,

lim
N→∞

1

VN

N∑
k=1

w(k)ξ(ϕkh(ω)) = Eξ. (2.16)

However, by the definition of ϕh,

1

VN

N∑
k=1

w(k)ξ(ϕkh(ω)) =
1

VN

N∑
k=1

w(k)I{k:ζh(s+ikh,ω)∈A}(k) = P̂N,h(A).

Therefore, by (2.14) and (2.16),

lim
N→∞

P̂N,h(A) = Pζ,h(A).

This and (2.15) show that Ph = Pζ,h.
For finding the support of Pζ,h, we use the representation (2.13). For p ∈

P \ P0, the random variables ω(p) are independent. Thus, by the proof of
Lemma 6.5.5 from [11], we find that the support of the random element X2 is
the set S. Since the random elements X1 and X2 are independent and X1 is
not degenerate at zero, we obtain that the support of X1X2 is the set S, i.e.,
the support of the measure Pζ,h is the set S. The theorem is proved. ut
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3 Proof of universality theorems

Theorems 4 and 5 follow from the limit theorems (Theorems 6 and 7), for ζ(s)
as well as from the Mergelyan theorem [19] on the approximation of analytic
functions by polynomials.

Proof. (Of Theorem 4). By the Mergelyan theorem, there exists a polynomial
p(s) such that

sup
s∈K

∣∣∣f(s)− ep(s)
∣∣∣ < ε

2
. (3.1)

For brevity, denote the limit measure in Theorems 6 and 7 by P̂ζ , i.e.,

P̂ζ =

{
Pζ , if h is of type 1,
Pζ,h, if h is of type 2,

P̂N =

{
PN , if h is of type 1,
PN,h, if h is of type 2.

Then we have that P̂N converges weakly to P̂ζ as N →∞. Define the set

Gε =

{
g ∈ H(D) : sup

s∈K

∣∣∣g(s)− ep(s)
∣∣∣ < ε

2

}
.

Since ep(s) 6= 0, and, in view of Theorems 6 and 7, the support of the measure
P̂ζ is the set S, the set Gε is an open neighbourhood of an element of the
support, therefore,

P̂ζ(Gε) > 0. (3.2)

Moreover, by the first parts of Theorems 6 and 7, and the equivalent of weak
convergence of probability measures in terms of open sets [2, Theorem 2.1], we
have that

lim inf
N→∞

P̂N (Gε) > P̂ζ(Gε).

This, (3.2) and the definitions of P̂N and Gε show that

lim inf
N→∞

1

VN

N∑
k=1

w(k)I{
k: sup
s∈K
|ζ(s+ikh)−ep(s)|< ε

2

}(k) > 0. (3.3)

It remains to replace ep(s) by f(s) in the latter inequality. Suppose that k
satisfies the inequality

sup
s∈K

∣∣∣ζ(s+ ikh)− ep(s)
∣∣∣ < ε

2
.

Then, in virtue of (3.1), the same k satisfies the inequality

sup
s∈K
|ζ(s+ ikh)− f(s)| < ε.

Therefore,{
k : sup

s∈K

∣∣∣ζ(s+ ikh)− ep(s)
∣∣∣ < ε

2

}
⊂
{
k : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε

}
.
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This inclusion together with (3.3) proves the theorem. ut

Proof. (Of Theorem 5). Define the set

Ĝε =
{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Then ∂Ĝε =
{
g ∈ H(D) : sups∈K |g(s)− f(s)| = ε

}
is the boundary of Ĝε.

Hence, ∂Ĝε1 ∩ ∂Ĝε2 = ∅ if ε1 6= ε2, ε1 > 0, ε2 > 0. Therefore, the set ∂Ĝε can
have a positive P̂ζ-measure for at most countably many ε > 0. This means that

the set Ĝε is a continuity set of the measure P̂ζ for all but at most countably
many ε > 0. Using Theorems 6 and 7, and the equivalent of weak convergence
of probability measures in terms of continuity sets [2, Theorem 2.1], we have
that

lim
N→∞

P̂N (Ĝε) = P̂ζ(Ĝε) (3.4)

for all but at most countably many ε > 0. Moreover, (3.1) shows that Gε ⊂ Ĝε.
Therefore, by (3.2), P̂ζ(Ĝε) > 0. This, (3.4) and the definition of the set Ĝε
prove the theorem. ut
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[14] A. Laurinčikas, K. Matsumoto and J. Steuding. Discrete universality
of L-functions of new forms. II. Lith. Math. J., 56(2):207–218, 2016.
https://doi.org/10.1007/s10986-016-9314-3.
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