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Abstract. In the paper, joint discrete universality theorems on the simultaneous approximation of
a collection of analytic functions by a collection of discrete shifts of zeta-functions attached to
normalized Hecke-eigen cusp forms are obtained. These shifts are defined by means of nonlinear
differentiable functions that satisfy certain growth conditions, and their combination on positive
integers is uniformly distributed modulo 1.
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1 Introduction

It is known that some of zeta and L-functions are universal in the sense that their shifts
approximate wide classes of analytic functions. This interesting phenomenon was discov-
ered by S.M. Voronin. In [22], he proved the universality of the Riemann zeta-function
ζ(s), s = σ + it. More precisely, the Voronin theorem says that if f(s) is a continuous
nonvanishing function on the disc |s| 6 r, 0 < r < 1/4, and analytic in the interior of
that disc, then, for every ε > 0, there exists τ = τ(ε) ∈ R such that

max
|s|6r

∣∣∣∣ζ(s+
3

4
+ iτ

)
− f(s)

∣∣∣∣ < ε.

Later, various authors improved the Voronin theorem and generalized it for other zeta-
functions. One of universal classes contains the zeta-functions attached to certain cusp
forms.
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Let

SL(2,Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
be the full modular group. The function F (z) analytic in the half-plane Im z > 0 is called
a cusp form of weight κ ∈ 2N (κ is even because if κ is odd, then F is identically zero)
for the full modular group if, for all

(
a b
c d

)
∈ SL(2,Z), it satisfies the functional equation

F

(
az + b

cz + d

)
= (cz + d)κF (z)

and, at infinity, has the following Fourier series expansion:

F (z) =

∞∑
m=1

c(m)e2πimz.

Then the zeta-function ζ(s, F ) of the cusp form F (z) is defined for σ > (κ+ 1)/2 by the
Dirichlet series

ζ(s, F ) =

∞∑
m=1

c(m)

ms

and is analytically continued to an entire function. It is convenient to require additionally
that F (z) would be the Hecke-eigen cusp form, i.e., that F (z) would be the eigenfunction
of all Hecke operators

TmF (z) = mκ−1
∑
a,d>0
ad=m

1

dκ

∑
b (mod d)

F

(
az + b

d

)
, m ∈ N.

In this case, the form can be normalized, and the function ζ(s, F ) has Euler’s product
representation over primes

ζ(s, F ) =
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1
,

where α(p) and β(p) are conjugate complex numbers such that α(p) + β(p) = c(p). The
classical theory of cusp forms and related zeta-functions can be found, for example, in [1].

Denote D = Dκ = {s ∈ C: κ/2 < σ < (κ + 1)/2}. Let K = Kκ be the class of
compact subsets of the strip Dκ with connected complements, and H0(K) = H0κ(K)
with K ∈ Kκ be the class of continuous nonvanishing functions on K that are analytic in
the interior of K. Then, in [10], the following universality theorem has been obtained.

Theorem 1. Suppose that F (z) is a normalized Hecke-eigen cusp form of weight κ. Let
K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣ζ(s+ iτ, F )− f(s)
∣∣ < ε

}
> 0.

Here measA denotes the Lebesgue measure of a measurable set A ⊂ R.
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In [20], Theorem 1 was generalized for approximation of analytic functions by the
shifts ζ(s + iϕ(τ), F ), where ϕ(τ) is a real differentiable function for τ > τ0 such that
the derivative ϕ′(τ) is positive, monotonic, 1/ϕ′(τ) = o(τ) and

ϕ(2τ) max
τ6t62τ

1

ϕ′(t)
� τ

as τ →∞.
In shifts ζ(s + iτ, F ), τ can take arbitrary real values, therefore Theorem 1 is of

continuous type. Also, a discrete version of Theorem 1 is known, see [12]. Denote by
#A the cardinality of the set A.

Theorem 2. Suppose that F (z) is a normalized Hecke-eigen cusp form of weight κ. Let
K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0 and h > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
s∈K

∣∣ζ(s+ ikh, F )− f(s)
∣∣ < ε

}
> 0.

In [13], Theorem 2 was generalized for more general than {kh} nonlinear sets {ϕ(k):
k ∈ N}.

Some collections of zeta and L-functions have a joint universality property. In this
case, a collection of analytic functions is simultaneously approximated by a collection
consisting of shifts of zeta or L-functions. The first joint universality theorem also was
obtained by Voronin. In [21], he proved a joint universality theorem for Dirichlet L-func-
tions L(s, χ1), . . . , L(s, χr) with nonequivalent Dirichlet characters, see also [2, 4, 7].
A discrete version of the joint universality theorem by using the linear set {kh} was
proposed by Bagchi [2]. Later, many results on the joint universality of zeta and L-func-
tions were obtained, see, for example, [6, 9, 11] and a survey paper [15].

In joint universality theorems, the zeta-functions approximating a collection of an-
alytic functions must be independent in a certain sense. For example, in the case of
Dirichlet L-functions, this independence is described by nonequivalence of characters.
In the case of periodic zeta-functions, some rank conditions are applied. However, if the
coefficients of Dirichlet series defining zeta-functions are nonperiodic, then the problem
of joint universality for those zeta-functions becomes very complicated. This remark also
concerns the zeta-functions of cusp forms. The first result for a pair of zeta-functions of
cusp forms belongs to Mishou [17]. Let F1 and F2 be two different normalized Hecke-
eigen cusp forms for the full modular group of weight κ1 and κ2 and Fourier coefficients
c1(m) and c2(m), respectively,

ĉj(m) = cj(m)m−(κj−1)/2, j = 1, 2,

and

ζ̂(s, Fj) =

∞∑
m=1

ĉj(m)

ms
, σ > 1, j = 1, 2.

Let D̂ = {s ∈ C: 1/2 < σ < 1}. Then the Mishou theorem is the following statement.
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Theorem 3. For j = 1, 2, let Kj be a compact subset of D̂ with connected complement,
and fj(s) be a continuous nonvanishing functions on Kj , that is, analytic in the interior
of Kj . Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: sup

16j62
sup
s∈Kj

∣∣ζ̂(s+ iτ, Fj)− fj(s)
∣∣ < ε

}
> 0.

Theorem 3 remains valid [17] also for pairs consisting of the Riemann zeta-function,
Rankin–Selberg L-functions and symmetric square L-functions.

Lee, Nakamura and Pańkowski proved in [14] the joint universality theorem for arbi-
trary number of automorphic zeta-functions.

In [8], joint discrete universality theorems for zeta-functions of cusp forms were ob-
tained. Let F1, . . . , Fr be different normalized Hecke-eigen cusp forms of weight κ1, . . . ,
κr with Fourier coefficients c1(m), . . . , cr(m), respectively, and let

ζ(s, Fj) =

∞∑
m=1

cj(m)

ms
, σ >

κj + 1

2
, j = 1, . . . , r,

be the corresponding zeta-functions. For positive numbers hj , j = 1, . . . , r, define

L(P;h1, . . . , hr;π) =
{

(h1 log p: p ∈ P), . . . , (hr log p: p ∈ P), 2π
}
,

where P is the set of all prime numbers. Let Dj = {s ∈ C: κj/2 < σ < (κj + 1)/2},
Kj be the class of compact subset of the strip Dj with connected complements, and let
H0(Kj), Kj ∈ Kj , denote the class of continuous nonvanishing functions on Kj that are
analytic in the interior of Kj , j = 1, . . . , r. The set L(P;h1, . . . , hr;π) is used for the
definition of a certain independence of the functions ζ(s, F1), . . . , ζ(s, Fr). The following
theorem is proved in [8].

Theorem 4. Suppose that the set L(P;h1, . . . , hr;π) is linearly independent over the
field of rational numbers Q. For j = 1, . . . , r, let Kj ∈ Kj and fj(s) ∈ H0(Kj). Then,
for every ε > 0,

lim inf
N→∞

1

N + 1
#
{

0 6 k 6 N : sup
16j6r

sup
s∈Kj

∣∣ζ(s+ ikhj , Fj)− fj(s)
∣∣ < ε

}
> 0.

In shifts ζ(s+ ikhj , Fj) of Theorem 4, the linear sets {khj}, j = 1, . . . , r, are used.
The aim of this paper is to obtain a version of Theorem 4 by using more complicated
nonlinear sets in place of {khj}. We remind that a sequence {xk: k ∈ N} ⊂ R is called
uniformly distributed modulo 1 if, for every interval [a, b) ⊂ [0, 1),

lim
n→∞

1

n

n∑
k=1

χ[a,b)

(
{xk}

)
= b− a,

where χ[a,b) is the indicator function of [a, b), and {xk} denotes the fractional part of xk.
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Suppose that k0 ∈ N, and ϕ1(t), . . . , ϕr(t) are continuously differentiable functions
on [k0 − 1/2, ∞) such that their derivatives ϕ′j(t) satisfy the estimate

ϕj(2t)

(
max
t6u62t

1

ϕ′j(u)
+ max
t6u62t

ϕ′j(u)

)
� t, (1)

and the sequence {ϕ1(k)a1 + · · ·+ϕr(k)ar: k > k0} is uniformly distributed modulo 1
with real numbers a1, . . . , ar not all zeros. Denote the class of the above functions by
Ur(k0). Then the following theorem is true. The forms F1, . . . , Fr are not necessarily
different.

Theorem 5. Suppose that (ϕ1, . . . , ϕr) ∈ Ur(k0). For j = 1, . . . , r, let Kj ∈ Kj and
fj(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
N→∞

1

N − k0 + 1
#
{
k0 6 k 6 N :

sup
16j6r

sup
s∈Kj

∣∣ζ(s+ iϕj(k), Fj)− fj(s)
∣∣ < ε

}
> 0.

Theorem 5 has the following modification.

Theorem 6. Suppose that (ϕ1, . . . , ϕr) ∈ Ur(k0). For j = 1, . . . , r, let Kj ∈ Kj and
fj(s) ∈ H0(Kj). Then the limit

lim
N→∞

1

N − k0 + 1
#
{
k0 6 k 6 N :

sup
16j6r

sup
s∈Kj

∣∣ζ(s+ iϕj(k), Fj)− fj(s)
∣∣ < ε

}
> 0

exists for all but at most countably many ε > 0.

We give an example of the functions ϕj . Let α > 0, and let g(x) be a nonconstant
linear combination of arbitrary real powers of x. Then the sequence {kαg(log k): k > 2}
is uniformly distributed modulo 1, see [5], Exercise 3.15. Therefore, we can take, for
example, ϕj(t) = tα logj t with 0 < α < 1 and t > 2. Then estimate (1) is satisfied, and
the sequence {ϕ1(k)a1 + · · · + ϕr(k)ar: k > k0} with real numbers a1, . . . , ar not all
zeros is uniformly distributed modulo 1.

Theorems 5 and 6 in a certain sense are joint generalizations of the corresponding
one-dimensional theorems of [13].

Involving the uniform distribution modulo 1 makes the probabilistic method very
convenient for the proof of universality theorems.

2 Probabilistic model

Denote by B(X) the Borel σ-field of the space X. Let Pn, n ∈ N, and P be probability
measures on (X,B(X)). We recall that Pn converges weakly to P as n→∞ if, for every

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


On joint approximation of analytic functions 113

real continuous bounded function g on X,

lim
n→∞

∫
X

g dPn =

∫
X

g dP.

Let γ be the unit circle on the complex plane, and

Ω =
∏
p∈P

γp,

where γp = γ for all primes p. The torus Ω, with the product topology and pointwise
multiplication, is a compact topological Abelian group. Define

Ω = Ω1 × · · · ×Ωr,

where Ωj = Ω for j = 1, . . . , r. Then again, Ω is a compact topological Abelian group.
Therefore, on (Ω,B(Ω)), the probability Haar measure mH exists, and we obtain the
probability space (Ω,B(Ω),mH). Denote the elements of Ω by ω = (ω1, . . . , ωr),
where ωj ∈ Ωj , j = 1, . . . , r. We start with a limit theorem for probability measures
on (Ω,B(Ω)). For A ∈ B(Ω), define

QN (A) =
1

N − k0 + 1
#
{
k0 6 k 6 N :

(
p−iϕ1(k): p ∈ P

)
, . . . ,(

p−iϕr(k): p ∈ P
)
∈ A

}
.

For the proof of weak convergence for QN , we will use the Weyl criterion.

Lemma 1. The sequence {xk: k ∈ N} ⊂ R is uniformly distributed modulo 1 if and only
if, for all m ∈ Z \ {0},

lim
n→∞

1

n

n∑
k=1

e2πimxk = 0.

Proof of the lemma is given, for example, in [5].

Lemma 2. Suppose that the sequence {ϕ1(k)a1 + · · ·+ϕr(k)ar: k > k0} is distributed
modulo 1, where a1, . . . , ar are real numbers not all zeros. Then QN converges weakly
to the Haar measure mH as N →∞.

Proof. We apply the uniform distribution modulo 1 for the investigation of the Fourier
transform gN (k1, . . . , kr), kj = (kjp: kjp ∈ Z, p ∈ P), j = 1, . . . , r. We have that the
dual group of Ω is isomorphic to

r⊕
j=1

⊕
p∈P

Zjp,

where Zjp = Z for all p ∈ P and j = 1, . . . , r. Therefore,

gN (k1, . . . , kr) =

∫
Ω

(
r∏
j=1

∏′

p∈P
ω
kjp
j (p)

)
dQN ,
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where “ ′ ” means that only a finite number of integers kjp are distinct from zero. Thus,
by the definition of QN ,

gN (k1, . . . , kr) =
1

N − k0 + 1

N∑
k=k0

r∏
j=1

∏′

p∈P
p−ikjpϕj(k)

=
1

N − k0 + 1

N∑
k=k0

exp

{
−i

r∑
j=1

ϕj(k)
∑′

p∈P
kjp log p

}
. (2)

If (k1, . . . , kr) = (0, . . . , 0), then, clearly,

gN (k1, . . . , kr) = 1. (3)

Since the set {log p: p ∈ P} is linearly independent over the field of rational numbers,∑′

p∈P
kjp log p 6= 0 for k 6= 0, j = 1, . . . , r.

Therefore, by hypothesis of the lemma, Lemma 1 and (2),

lim
N→∞

gN (k1, . . . , kr) = 0

for (k1, . . . , kr) 6= (0, . . . , 0). This and (3) give

lim
N→∞

gN (k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),

0 if (k1, . . . , kr) 6= (0, . . . , 0),

and the assertion of the lemma follows by the continuity theorem for probability measures
on compact groups.

Lemma 2 implies a limit theorem for probability measures on the space of analytic
functions defined by means of absolutely convergent Dirichlet series. This theorem is
quite standard but plays an important role in the sequel. Denote by H(Dj) the space of
analytic functions on Dj endowed with the topology of uniform convergence on com-
pacta, j = 1, . . . , r, and letH(D1, . . . , Dr) = H(D1)×· · ·×H(Dr). For fixed θ > 1/2
and m,n ∈ N, we set

vn(m) = exp

{
−
(
m

n

)θ}
and define

ζn(s, Fj) =

∞∑
m=1

cj(m)vn(m)

ms
, j = 1, . . . , r,

and

ζn(s, ωj , Fj) =

∞∑
m=1

cj(m)ωj(m)vn(m)

ms
, j = 1, . . . , r,

http://www.journals.vu.lt/nonlinear-analysis
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where
ωj(m) =

∏
pl|m
pl+1-m

ωlj(p), m ∈ N.

Then the latter series are absolutely convergent for σ > κj/2 (see [10]). For brevity, let
s = (s1, . . . , sr), F = (F1, . . . , Fr), ϕ(k) = (ϕ1(k), . . . , ϕr(k)), and

ζ
n
(s+ iϕ(k), F ) =

(
ζn
(
s1 + iϕ1(k), F1

)
, . . . , ζn

(
sr + iϕr(k), Fr

))
and

ζ
n
(s, ω, F ) =

(
ζn(s1, ω1, F1), . . . , ζn(sr, ωr, Fr)

)
.

Now, for A ∈ B(H(D1, . . . , Dr)), define

PN,n(A) =
1

N − k0 + 1
#
{
k0 6 k 6 N : ζ

n
(s+ iϕ(k), F ) ∈ A

}
.

Lemma 3. Suppose that the sequence {ϕ1(k)a1 + · · ·+ϕr(k)ar: k > k0} is distributed
modulo 1, where a1, . . . , ar are real numbers not all zeros. Then, on (H(D1, . . . , Dr),
B(H(D1, . . . , Dr))), there exists a probability measure P̂n such that PN,n converges
weakly to P̂n as N →∞.

Proof. Define the function un : Ω → H(D1, . . . , Dr) by the formula

un(ω) = ζ
n
(s, ω, F ).

Since the series ζn(sj , ωj , Fj) are absolutely convergent for σj > κj/2, j = 1, . . . , r, the
function un is continuous. Moreover, for A ∈ B(H(D1, . . . , Dr)),

PN,n(A) =
1

N − k0 + 1
#
{
k0 6 k 6 N :

((
p−iϕ1(k): p ∈ P

)
, . . . ,(

p−iϕr(k): p ∈ P
))
∈ u−1n A

}
= QN (u−1n A)

because

un
((
p−iϕ1(k): p ∈ P

)
, . . . ,

(
p−iϕr(k): p ∈ P

))
= ζ

n

(
s+ iϕ(k), ω, F

)
.

Thus, we have that PN,n = QNu
−1
n , where

QNu
−1
n (A) = QN

(
u−1n A

)
, A ∈ B

(
H(D1, . . . , Dr)

)
.

This equality, Lemma 2, the continuity of un and Theorem 5.1 of [3] imply the weak
convergence of PN,n to P̂n = mHu

−1
n as N →∞.

Nonlinear Anal. Model. Control, 25(1):108–125

https://doi.org/10.15388/namc.2020.25.15734


116 A. Laurinčikas et al.

For further consideration, we recall the metric in H(D1, . . . , Dr). For j = 1, . . . , r
and g1, g2 ∈ H(Dj), let

ρj(g1, g2) =

∞∑
l=1

2−l
sups∈Kjl

|g1(s)− g2(s)|
1 + sups∈Kjl

|g1(s)− g2(s)|
,

where {Kjl: l ∈ N} is a sequence of compact subsets of Dj such that

∞⋃
l=1

Kjl = Dj ,

Kjl ⊂ Kj(l+1), and if K ⊂ Dj is a compact set, then K ⊂ Kjl with some l ∈ N. Then
ρj is a metric in H(Dj), j = 1, . . . , r, inducing its topology of uniform convergence on
compacta. Putting, for g

1
= (g11, . . . , g1r), g2(g21, . . . , g2r) ∈ H(D1, . . . , Dr),

ρ(g
1
, g

2
) = max

16j6r
ρj(g1j , g2j)

gives the metric in the space H(D1, . . . , Dr) that induces the product topology.
Now, we are able to approximate the collection

ζ
(
s+ iϕ(k), F

)
=
(
ζ
(
s1 + iϕ1(k), F1

)
, . . . , ζ

(
sr + iϕr(k), Fr

))
by ζ

n
(s + iϕ(k), F ). For this, the Gallagher lemma that connects the continuous and

discrete mean squares of certain functions is useful.

Lemma 4. Suppose that T0, T > δ > 0 are real numbers, and T 6= ∅ is a finite set in the
interval [T0 + δ/2, T0 + T − δ/2]. Define

Nδ(x) =
∑
t∈T
|t−x|<δ

1.

Let S(x) be a complex-valued continuous function on [T0, T + T0] having a continuous
derivative on (T0, T + T0). Then∑

t∈T
N−1δ (t)

∣∣S(t)
∣∣2

6
1

δ

T0+T∫
T0

∣∣S(x)
∣∣2 dx+

( T0+T∫
T0

∣∣S(x)
∣∣2 dx

T0+T∫
T0

∣∣S′(x)
∣∣2 dx

)1/2

.

Proof of the lemma can be found in [18, Lemma 1.4].

Lemma 5. We have

lim
n→∞

lim sup
N→∞

1

N − k0 + 1

N∑
k=k0

ρ
(
ζ
(
s+ iϕ(k), F

)
, ζ

n

(
s+ iϕ(k), F

))
= 0.

http://www.journals.vu.lt/nonlinear-analysis
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Proof. From the definition of the metrics ρj and ρ it follows that it suffices to prove that,
for every compact sets Kj ⊂ Dj ,

lim
n→∞

lim sup
N→∞

1

N − k0 + 1

N∑
k=k0

sup
s∈Kj

∣∣ζ(s+ iϕj(k), Fj)− ζn
(
s+ iϕj(k), Fj

)∣∣ = 0,

j = 1, . . . , r. Thus, let F be a normalized Hecke-eigen cusp form of weight κ, ζ(s, F )
the corresponding zeta-function, and let ϕ(t) have properties of the class Ur(k0).

It is well known that, for fixed σ, κ/2 < σ < (κ+ 1)/2,

T∫
0

∣∣ζ(σ + it, F )
∣∣2 dt�σ T. (4)

Hence, for τ ∈ R,
|τ |+ϕ(t)∫

0

∣∣ζ(σ + iu, F )
∣∣2 du�σ

(
|τ |+ ϕ(t)

)
.

Therefore, for X > 0,

2X∫
X

∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 dt

=

2X∫
X

1

ϕ′(t)

∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 dϕ(t)

� max
X6t62X

1

ϕ′(t)

2X∫
X

d

(τ+ϕ(t)∫
0

∣∣ζ(σ + iu, F )
∣∣2 du

)

�σ

(
|τ |+ ϕ(2X)

)
max

X6t62X

1

ϕ′(t)
�σ X

(
1 + |τ |

)
.

Thus, taking X = 2k−1T and summing over k give the estimate

T∫
k0−1/2

∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 dt�σ T

(
1 + |τ |

)
(5)

for all real τ and κ/2 < σ < (κ+ 1)/2.
Estimate (4) and the Cauchy integral formula imply, for fixed σ, κ/2 < σ < (κ+1)/2,

the bound
T∫

0

∣∣ζ ′(σ + it, F
)∣∣2 dt�σ T.
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Therefore, similarly as above, we obtain

2X∫
X

(
ϕ′(t)

)2∣∣ζ ′(σ + iτ + iϕ(t), F
)∣∣2 dt

=

2X∫
X

ϕ′(t)
∣∣ζ ′(σ + iτ + iϕ(t), F

)∣∣2 dϕ(t)

� max
X6t62X

ϕ′(t)

2X∫
X

d

( τ+ϕ(t)∫
0

∣∣ζ(σ + iu, F )
∣∣2 du

)

�σ

(
|τ |+ ϕ(2X)

)
max

X6t62X
ϕ′(t)�σ X

(
1 + |τ |

)
.

Thus, we have that, for all real τ and κ/2 < σ < (κ+ 1)/2,

T∫
k0−1/2

(
ϕ′(t)

)2∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 dt�σ T

(
1 + |τ |

)
. (6)

Now, we apply Lemma 4 with T = {k: k ∈ N, k0 6 k 6 N}, T0 = k0 − 1/2,
T = N − k0 + 1, δ = 1, and S(x) = ζ(σ + iτ + iϕ(x), F ). This, together with (5)
and (6), gives

N∑
k=k0

∣∣ζ(σ + iτ + iϕ(k), F
)∣∣2

�
N+1/2∫
k0−1/2

∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 dt+

( N+1/2∫
k0−1/2

∣∣ζ(σ + iτ + iϕ(t), F
)∣∣2 dt

×
N+1/2∫
k0−1/2

(
ϕ′(t)

)2∣∣ζ ′(σ + iτ + iϕ(t), F
)∣∣2 dt

)1/2

�σ N
(
1 + |τ |

)
(7)

for all real τ and κ/2 < σ < (κ+ 1)/2.
Let θ be the same as definition of vn(m), and Γ(s) denote the Euler gamma-function.

Then it is known [10] that, for σ > κ/2,

ζn(s, F ) =
1

2πi

θ+i∞∫
θ−i∞

ζ(s+ z, F )ln(z)
dz

z
, (8)
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where

ln(s) =
s

θ
Γ

(
s

θ

)
ns.

Now, let K be an arbitrary fixed compact set of the strip κ/2 < σ < (κ+ 1)/2. We take
ε > 0 such that κ/2 + 2ε 6 σ 6 (κ+ 1)/2− ε for point s ∈ K. Replace θ in (8) by −θ̂,
where θ̂ > 0. This gives

ζn(s, F )− ζ(s, F ) =
1

2πi

−θ̂+i∞∫
−θ̂−i∞

ζ(s+ z, F )ln(z)
dz

z
. (9)

Denote points of the set K by s = σ + iv and take

θ̂ = σ − ε− κ

2
, θ =

1

2
+ ε.

Then, in view of (9),∣∣ζn(s+ iϕ(k), F
)
− ζ
(
s+ iϕ(k), F

)∣∣
6

1

2π

∞∫
−∞

ζ
(
s+ iϕ(k)− θ̂ + it, F

) |ln(−θ̂ + it)|
| − θ̂ + it|

dt.

Hence, the shift t+ v → t implies∣∣ζn(s+ iϕ(k), F
)
− ζ
(
s+ iϕ(k), F

)∣∣
6

1

2π

∞∫
−∞

ζ

(
κ

2
+ ε+ i

(
t+ ϕ(k)

)
, F

) |ln(κ2 + ε− s+ it)|
|κ2 + ε− s+ it|

dt.

Therefore,

1

N − k0 + 1

N∑
k=k0

sup
s∈K

∣∣ζ(s+ iϕ(k), F
)
− ζn

(
s+ iϕ(k), F

)∣∣
6

1

2π(N − k0 + 1)

∞∫
−∞

(
N∑

k=k0

∣∣∣∣ζ(κ2 + ε+ i
(
t+ ϕ(k)

)
, F

)∣∣∣∣
)

× sup
s∈K

|ln(κ2 + ε− s+ it)|
|κ2 + ε− s+ it|

dt

def
= J. (10)

Using the well-known estimate

Γ(σ + it)� exp
{
−c|t|

}
, c > 0,
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which is uniform for σ1 6 σ 6 σ2, we find by the definition of ln(s) that

ln(κ2 + ε− s+ it)
κ
2 + ε− s+ it

� nκ/2+ε−σ

θ
exp

{
− c
θ
|t− v|

}
�K n−ε exp

{
−c|t|

}
.

Thus, in view of (7),

J �K n−ε
∞∫
−∞

(
1 + |t|

)1/2
exp
{
−c|t|

}
dt�K n−ε.

This and (10) show that

lim
n→∞

lim sup
N→∞

1

N − k0 + 1

N∑
k=k0

sup
s∈K

∣∣ζ(s+ iϕ(k), F
)
− ζn

(
s+ iϕ(k), F

)∣∣ = 0,

and the lemma is proved.

Now we are in position to prove a discrete limit theorem for the collection ζ(s +
iϕ(k), F ). For A ∈ B(H(D1, . . . , Dr)), define

PN (A) =
1

N − k0 + 1
#
{
k0 6 k 6 N : ζ

(
s+ iϕ(k), F

)
∈ A

}
.

Moreover, on the probability space (Ω,B(Ω),mH), define the H(D1, . . . , Dr)-valued
random element

ζ(s, ω, F ) =
(
ζ(s1, ω1, F1), . . . , ζ(sr, ωr, Fr)

)
,

where

ζ(sj , ωj , Fj) =

∞∑
m=1

cj(m)ωj(m)

ms
, j = 1, . . . , r,

and denote by Pζ its distribution, i.e.,

Pζ(A) = mH

{
ω ∈ Ω: ζ(s, ω, F ) ∈ A

}
, A ∈ B

(
H(D1, . . . , Dr)

)
.

Theorem 7. Suppose that (ϕ1, . . . , ϕr) ∈ Ur(k0). Then PN converges weakly to Pζ as
N →∞. Moreover, the support of the measure Pζ is the set S = S1 × · · · × Sr, where

Sj =
{
g ∈ H(Dj): g(s) 6= 0 or g(s) ≡ 0

}
, j = 1, . . . , r.

Proof. Let P̂n, as above, be the limit measure in Lemma 3. We observe that the sequence
{P̂n: n ∈ N} is tight, i.e., for every ε > 0, there exists a compact set K = K(ε) ⊂
H(D1, . . . , Dr) such that

P̂n(K) > 1− ε
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for all n ∈ N. Actually, let P̂nj , j = 1, . . . , r, be the marginal measures of P̂n. Then it is
well known that the sequences {P̂nj : n ∈ N} are tight, j = 1, . . . , r, see, for example, the
proof of Lemma 4.11 from [19] for more general functions. This is also used in [10, 12].
Therefore, for every ε > 0, there exists a compact set Kj ⊂ H(Dj) such that

P̂nj(Kj) > 1− ε

r
, j = 1, . . . , r, (11)

for all n ∈ N. The set K = K1 × · · · ×Kr is compact in the space H(D1, . . . , Dr), and,
by (11),

P̂n
(
H(D1, . . . , Dr) \K

)
6

r∑
j=1

P̂nj
(
H(Dj) \Kj

)
< ε

for all n ∈ N. Thus, the sequence {P̂n: n ∈ N} is tight.
The Prokhorov theorem [3, Thm. 6.1] implies the relative compactness of {P̂n}. Thus,

there exists a subsequence {P̂nl
} weakly convergent to a certain probability measure P

on H(D1, . . . , Dr), B(H(D1, . . . , Dr)) as l→∞.
In what follows, we will use the convergence in distribution D→. Denote by X̂n =

X̂n(s) the H(D1, . . . , Dr)-valued random element with the distribution P̂n. Then the
weak convergence of P̂nl

can be written as

X̂nl

D−→
l→∞

P. (12)

On a certain probability space with a measure µ, define a discrete random variable θN by

µ
(
θN = ϕ(k)

)
=

1

N − k0 + 1
, k = k0, . . . , N,

and define the H(D1, . . . , Dr)-valued random element

XN,n = XN,n(s) = ζ
n
(s+ iθN , F ).

Then the assertion of Lemma 3 can be written in the form

XN,n
D−→

N→∞
X̂n. (13)

Moreover, let
XN = XN (s) = ζ(s+ iθN , F ).

The application of Lemma 5 shows that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ
(
ρ
(
XN (s), XN,n(s)

)
> ε
)

6 lim
n→∞

lim sup
N→∞

1

(N − k0 + 1)ε

N∑
k=k0

ρ
(
ζ
(
s+ iϕ(k), F

)
, ζ

n

(
s+ iϕ(k), F

))
= 0.
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This equality together with relations (12) and (13) shows that all hypotheses of Theo-
rem 4.2 from [3] are fulfilled. Thus,

XN
D−→

N→∞
P, (14)

or PN converges weakly to the limit measure P as N →∞. Moreover, by (14), we have
that the measure P is independent of the choice of the subsequence of {P̂nl

}. Since the
sequence {P̂n} is relatively compact, this implies the relation

X̂n
D−→

n→∞
P.

This means that PN converges weakly to the limit measure P of P̂n. In [8], it was obtained
that P coincides with Pζ . Moreover, the support of Pζ is the set S. For the proof of this,
in [8], simple observations that B(H(D1, . . . , Dr)) = B(H(D1)) × · · · × B(H(Dr)),
and that the Haar measure mH is the product of the Haar measures on (Ωj ,B(Ωj)),
j = 1, . . . , r, are applied.

3 Proof of universality theorems

We recall the Mergelyan theorem on the approximation of analytic functions by polyno-
mials.

Lemma 6. Suppose that K ⊂ C is a compact set with connected complement, and f(s)
is a continuous function on K and analytic in the interior of K. Then, for every ε > 0,
there exists a polynomial p(s) such that

sup
s∈K

∣∣f(s)− p(s)
∣∣ < ε.

Proof of the lemma can be found in [16], see also [23].
We also recall two equivalents of weak convergence of probability measures.

Lemma 7. Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Then the
following statements are equivalent:

(i) Pn converges weakly to P as n→∞;
(ii) For every open set G ⊂ X,

lim inf
n→∞

Pn(G) > P (G);

(iii) For every continuity set A of the measure P (A is a continuity set of P if
P (∂A) = 0, where ∂A is the boundary of A),

lim
n→∞

Pn(A) = P (A).

The lemma is a part of Theorem 2.1 of [3].
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Proof of Theorem 5. Lemma 6 implies the existence of polynomials p1(s), . . . , pr(s) such
that

sup
16j6r

sup
s∈Kj

∣∣fj(s)− epj(s)
∣∣ < ε

2
. (15)

Let

Gε =

{
(g1, . . . , gr) ∈ H(D1, . . . , Dr): sup

16j6r
sup
s∈Kj

∣∣gj(s)− epj(s)
∣∣ < ε

2

}
.

By the second assertion of Theorem 7, the collection (ep1(s), . . . , epr(s)) is an element of
the support of the measure Pζ . Thus, the set Gε is an open neighbourhood of an element
of the support of Pζ . Hence,

Pζ(Gε) > 0. (16)

This and the first assertion of Theorem 7, together with Lemma 7(ii) give the inequality

lim inf
N→∞

PN (Gε) > 0,

or, by the definitions of PN and Gε,

lim inf
N→∞

1

N − k0 + 1
#

{
k0 6 k 6 N :

sup
16j6r

sup
s∈Kj

∣∣ζ(sj + iϕj(k), Fj
)
− epj(s)

∣∣ < ε

2

}
> 0.

The latter inequality together with (15) proves the theorem.

Proof of Theorem 6. Let

Ĝε =
{

(g1, . . . , gr) ∈ H(D1, . . . , Dr): sup
16j6r

sup
s∈Kj

∣∣gj(s)− fj(s)∣∣ < ε
}
.

Since the boundary ∂Ĝε lies in the set{
(g1, . . . , gr) ∈ H(D1, . . . , Dr): sup

16j6r
sup
s∈Kj

∣∣gj(s)− fj(s)∣∣ = ε
}

we have that the boundaries ∂Ĝε1 and ∂Ĝε2 do not intersect for different positive ε1 and
ε2. Hence, the set Ĝε is a continuity set of the measure Pζ for all but at most countably
many ε > 0. Therefore, Theorem 7 and Lemma 7(iii) show that

lim
N→∞

Pn(Ĝε) = Pζ(Ĝε) (17)

for all but at most countably many ε > 0. On the other hand, the definitions of Gε and
Ĝε, together with inequality (15), imply the inclusion Gε ⊂ Ĝε. Thus, in view of (16),
we obtain that Pζ(Ĝε) > 0, and (17) proves the theorem.

Acknowledgment. The authors thank the referees for remarks and useful comments.

Nonlinear Anal. Model. Control, 25(1):108–125

https://doi.org/10.15388/namc.2020.25.15734


124 A. Laurinčikas et al.
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