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We investigate the general two Higgs doublet model imposing both the unitarity conditions and

the bounded-from-below conditions. Both types of conditions restrict the ranges of the parame-

ters of the scalar potential. We study the model in the Higgs basis, i.e. in the basis for the scalar

doublets where only one doublet has vacuum expectation value. We use the experimental bounds

on the oblique parameter T , to produce scalar particles with masses and cubic and quartic cou-

plings of the Higgs in agreement with the phenomenology. The numerical calculations show that

the cubic coupling may be up to 1.6 times larger than in the Standard Model, but it may also be

zero or even negative. The quartic coupling is always positive and may be up to four times larger

than in the Standard Model.
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1. The model

The Standard Model (SM) predicts a boson h1 which is a scalar and it predicts its cubic and

quartic couplings g3 and g4, which we define through

L = · · ·−g3 (h1)
3 −g4 (h1)

4
, (1.1)

to be gSM
3 ≈ 32 GeV and gSM

4 ≈ 0.032, respectively. But Nature could be more complicated than

the SM and then g3 and g4 might have different values. In this paper we analyse the cubic g3 and

quartic g4 couplings of the model with two scalar gauge-SU(2) doublets φ1 and φ2 having the same

weak hypercharge. This is usually known as 2HDM. The most general scalar potential is

V = µ1φ†
1 φ1 +µ2φ†

2 φ2 +
(

µ3φ†
1 φ2 +H.c.

)

+
λ1

2

(

φ†
1 φ1

)2

+
λ2

2

(

φ†
2 φ2

)2

+λ3 φ†
1 φ1 φ†

2 φ2 +λ4 φ†
1 φ2 φ†

2 φ1

+

[

λ5

2

(

φ†
1 φ2

)2

+λ6 φ†
1 φ1 φ†

1 φ2 +λ7 φ†
2 φ2 φ†

1 φ2 +H.c.

]

, (1.2)

where µ1,2 and λ1,2,3,4 are real.

We use the Higgs basis for the scalar doublets where only φ0
1 has VEV

φ1 =

(

G+

v+
(

H + iG0
)

/√
2

)

, φ2 =

(

C+

(σ1 + iσ2)
/√

2

)

. (1.3)

Here v is the VEV, which is real and positive, and G+ and G0 are (unphysical) Goldstone bosons. In

the second equation, σ1 and σ2 are real fields and C+ is the physical charged scalar of the 2HDM.

The unitarity constraints lead to upper bounds on the parameters of the potential. The idea of

these constraints is that the scalar–scalar scattering amplitudes at tree-level must respect unitarity.

For the 2HDM there are five two-particle scattering channels having different values of the electric

charge Q and of the third component of weak isospin T3. In order to derive the unitarity conditions

one must write the scattering matrices for pairs of one incoming state and one outgoing state with

the same Q and T3. In order to satisfy those conditions, the eigenvalues of all the scattering matrices

should be smaller, in modulus, than 4π . These conditions were first derived in ref. [1] and the

expressions of matrices for our model are presented in ref. [2].

The potential (1.2) must be positive in all the field-space directions for large values of the

fields; this means that the scalar potential has to be bounded from below (BFB), which provides

stability for the potential. Necessary and sufficient conditions for the scalar potential of the 2HDM

to be BFB were derived in ref. [3, 4], which we have implemented in our numerical calculations [2].

Also we apply conditions [5], which guarantee that the vacuum state has a lower value of the

potential than all the other possible stability points of the potential.

We emphasize that both the unitarity conditions and the bounded-from-below conditions for

the 2HDM are invariant under a change of the basis used for the two doublets. Therefore, one may

implement those conditions directly in the Higgs basis.

The mass terms of the scalars are

V = · · ·+ 1

2

(

H σ1 σ2

)

M
(

H σ1 σ2

)T

, (1.4)
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with mass matrix

M =







2λ1v2 2v2 ℜλ6 −2v2 ℑλ6

2v2 ℜλ6 MC +(λ4 +ℜλ5)v2 −v2 ℑλ5

−2v2 ℑλ6 −v2 ℑλ5 MC +(λ4 −ℜλ5)v2






(1.5a)

= RT ×diag(M1, M2, M3)×R, (1.5b)

where R is a 3×3 orthogonal matrix that may be parameterized as

R = R̄23(ϑ2)× R̄12(−ϑ1)× R̄23(−ϑ3), (1.6)

by using rotation matrices R̄12 and R̄23. The squared mass M1 = (125GeV)2
and M2 < M3. We do

not impose any lower limit on M2,3; we allow them to be lower than M1.

According to equation (1.2) the three-Higgs vertex is given by

g3 =
v√
2

[

λ1x3
1 +(λ3 +λ4)x1

(

1− x2
1

)

+ x1

(

x2
2 − x2

3

)

ℜλ5 −2x1x2x3 ℑλ5

+3x2
1 (x2 ℜλ6 − x3 ℑλ6)+

(

1− x2
1

)

(x2 ℜλ7 − x3 ℑλ7)
]

, (1.7)

and the four-Higgs vertex is given by

g4 =
1

8

[

λ1x4
1 +λ2

(

1− x2
1

)2
+2(λ3 +λ4)x2

1

(

1− x2
1

)

+2x2
1

(

x2
2 − x2

3

)

ℜλ5

−4x2
1x2x3 ℑλ5 +4x3

1 (x2 ℜλ6 − x3 ℑλ6)+4x1

(

1− x2
1

)

(x2 ℜλ7 − x3 ℑλ7)
]

, (1.8)

where xk = R1k for k = 1,2,3 and R is the matrix in equation (1.6).

2. Numerical analysis

The potential (1.2) of the 2HDM, in the Higgs basis, has 11 real parameters: v, λ1, λ2, λ3, λ4,

|λ5|, |λ6|, |λ7|, arg
(

λ ∗
6 λ7

)

, arg
(

λ ∗
5 λ6λ7

)

, and µ2. The other three real parameters of the potential

depend on these: µ1 = λ1v2 and µ3 = λ6v2 (µ3 is complex, therefore it represents two real param-

eters). By putting these 11 parameters into the mass matrix (1.5a) we can compute its eigenvalues

M2,3, diagonalizing matrix R, and the Higgs couplings g3 and g4. A detailed description of this

calculation method is presented in ref. [2]. It turns out that this method prefers to produce largish

values of the masses and misses lower masses.

In order to have control on the values of the masses, in our numerical work we can use as input

different quantities. Besides v = 174 GeV and M1 = (125GeV)2
, we input M2, M3, MC, ϑ1, ϑ2, λ2,

λ3, ℜ(λ6λ ∗
7 ), and ℜ

(

λ ∗
5 λ6λ7

)

. The angle ϑ1 is in either the first quadrant or the fourth quadrant,

with a requirement that c1 ≡ cosϑ1 > 0.9 so that the h1W
+W− coupling is within 10% of its SM

value. The angle ϑ2 is in the first quadrant, corresponding to a choice of the signs of the fields of

the new scalars h2 and h3.

We compute the oblique parameter T [2, 6] and check that it is in its experimentally allowed

domain [7] −0.04 < T < 0.20. From eq. (1.5) we then compute parameters λ1, λ4, λ5, λ6, and

λ7. Now we have all the parameters of the model and we require them to satisfy both the unitarity

conditions and the BFB conditions. Numerically diagonalizing the mass matrix (1.5a), we find the
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Figure 1: The three-Higgs coupling g3 (left panel) and of the four-Higgs coupling g4 (right panel)versus√
MC in the 2HDM for various values of c1. The dashed lines mark the values of the couplings in the SM.

diagonalization matrix R and we choose the overall sign of R such that R11 ≡ c1 > 0. Having matrix

elements R11, R12, and R13 we compute the cubic (1.7) and quartic (1.8) Higgs couplings.

In our numerical work we have found that for c1 . 0.99, the masses of the new scalar particles
(√

MC ,
√

M2, and
√

M3

)

of the 2HDM can be no larger than ∼ 700 GeV. For c1 . 0.95, they can

be no larger than ∼ 550 GeV. When c1 becomes close to 1, the masses of all three new scalars may

grow strongly to the order of TeV and in that case they become almost identical.

In figure 1 we have plotted the three- and four-Higgs couplings g3 and g4 against the mass of

the charged scalar
√

MC. One sees that g3 may be up to 1.6 times larger than in the SM, but it may

also be zero or even negative. On the other hand, g4 is always positive because of the boundedness

from below of the potential and may be up to four times larger than in the SM. For the masses of the

new scalars up to 125 GeV, g3 has values in the range 0.3 . g3

/

gSM
3 . 1.6 while g4 has values in

the range 0. g4

/

gSM
4 . 3. For the masses up to 500 GeV the couplings reach their maximal values

but when the masses of the new scalars grow beyond 1 TeV the couplings g3 and g4 approach their

SM values.

For a more detailed description of this model and for a comparison of the couplings g3 and

g4 in the 2HDM with couplings calculated in other extensions of the SM (Standart Model with the

addition of one real singlet, SM with two real singlets, and 2HDM with the addition of one real

singlet), we suggest a look at ref. [2].
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