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Abstract. We present a functional data analysis approach to modeling and analyzing daily
tax revenues. The main features of daily tax revenue we need to extract are some patterns
within calendar months which can be used for prediction. As standard seasonal time series
techniques cannot be used due to varying number of banking days per calendar month and
presence of seasonality between and within months we interpret monthly tax revenues as
curves obtained from daily data. Standard smoothing techniques and registration taking
into account time variability are used for data preparation.

Keywords: functional data analysis, data smoothing, registration, prediction. 1�

1 Introduction

The State Tax Inspectorate under the Ministry of Finance of the Republic of Lithuania
(hereinafter referred to as STI) makes forecasts of daily tax revenues for State budget
according to historical data trends, which are based on expert experience. It is a
difficult task to predict and assess daily changes in revenue collection, which depend
not only on the tax calendar, but also on tax payer behavior, especially in cases where
the payment date of the obligation coincides with the weekend or holiday.

The main goal of this research is to test some statistical methodologies that could
improve tax revenue forecasts.

As far as we know only few papers are devoted to time-series models of daily tax
revenues. Koopman and Ooms [1] provides a detailed discussion of this problem and
suggests to use a two-way mapping to transform irregular data to regular ones. They
use a state space model to forecast daily tax revenues. The later articles by Koopman
and Ooms [2, 3, 4] are the improved versions of the analysis of daily tax revenues.

In this paper we illustrate daily time series features using a series for Lithuanian
aggregate tax revenues using functional data analysis tools. Functional data are
often characterized by both shape and phase variability. Tax revenue is a typical
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example where these two sources of variation are clearly identified and interpreted.
An overall pattern is observed that tax revenue accelerates around two fixed days. In
this setting, phase variability is identified as variation in the calendar timing. Explicit
consideration of phase variability is necessary in order to obtain consistent estimation
of typical tax revenues patterns. This paper will focus on fitting a structural model
and using it to forecast a tax revenues monthly patterns. By structural model we
mean a model estimated from registered data. The main issue is to find appropriate
wrapping functions. After accommodating prediction techniques to tax revenue data
the most accurate predictions are considered to be derived from functional principal
component regression and exponential smoothing.

In Section 2 we present preliminary analysis of daily series for Lithuanian tax
revenues including smoothing and registration of data. In Section 3 we discuss some
prediction tools.

2 Preliminary analysis

We use a daily series for Lithuanian tax revenues, i.e. taxes, fees and other payments
paid by the tax payers that are paid to STI’s budget revenue collection accounts. For
the analysis data are taken from the period January 2011 to February 2019. The data
have the form:

yk,j , j = 1, . . . , Nk, k = 1, . . . , n,

where k corresponds to regular time (months in our case) and index j = 1, . . . , Nk

corresponds to a time grid within period k.

2.1 Smoothing

We interpret the date as observations of random curves:

yk(s), s ∈ [0, 1], k = 1, . . . , n.

Moreover we assume that the sample curves are observed at discrete instants of time
with some noise, so that

yk,j = yk(j/Nk) + εk,j , j = 1, . . . , Nk.

Figure 1(a) represents monthly patterns of accumulated tax revenue data, which are
observed at a discrete time (see dots in Fig. 1(a) and for the visualization purposes
the interpolated lines helps to recognize the trends within one month). Clearly, the
number of bank days in a month is specific for each month as well as the calendar
day at which the discrete data point is observed.

We reconstruct each function (yk(s), s ∈ [0, 1]) by smoothing techniques thus
obtaining functional sample

ŷk(s), s ∈ [0, 1]; k = 1, . . . , n

which we interpret as observations of random functions

Y1 =
(
Y1(s), s ∈ [0, 1]

)
, . . . , Yn =

(
Yn(s), s ∈ [0, 1]

)
,

http://www.journals.vu.lt/LMR
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(a) Discrete observations (b) Smoothed functions

Fig. 1. Accumulated tax revenue data. Source: created by the authors.

with values in the classical Hilbert space L2(0, 1). In order to have increasing and
differentiable functions we need to choose appropriate smoothing technique.

Since the process behind the raw accumulated tax revenue data is always increas-
ing, monotone transformation will be used to smooth the data. Suppose W (t) is a
conventional functional data object, and that is unconstrained in any way except for
W (t0) = 0 where t0 is the lower boundary over which we are smoothing.

Given that there are two clearly visible peaks in the middle and end of the month
(see Fig. 1(a)), by examining various smoothing techniques it was found that splines
can track such features with satisfactory accuracy.

In order to define monotone smoothing, a B-spline basis will be used, and the
constraint W (t0) = 0 can easily be achieved by fixing the first coefficient to be zero.
Then each smoothed function takes the following form:

ŷ(t) = β0 + β1

∫ t

t0

eW (u)du+ ǫ(t) = β0 + β1

∫ t

t0

eφ(u)
′

cdu+ ǫ(t),

where φ denotes a vector containing the B-spline basis functions and the parameter c
is a vector containing the coefficients of the B-spline expansion. Coefficients c are
estimated by minimizing the sum of squared errors. Figure 1(b) shows in this way
smoothed accumulated tax revenue data.

For k = 1, . . . , n, let xk be the derivative of the function ŷk. We interpret the
sample

x1 =
(
x1(s), s ∈ [0, 1]

)
, . . . , xn =

(
xn(s), s ∈ [0, 1]

)

as observations of random curves

X1 =
(
X1(s), s ∈ [0, 1]

)
, . . . , Xn =

(
Xn(s), s ∈ [0, 1]

)

again as random elements in the sample space L2(0, 1). Figure 2(a) shows the deriva-
tive of smoothed accumulated tax revenue data. Clear peaks are visible around the
15th and 25th days of the month since the most important tax sources has to be
paid on these days or the next business day if a due date falls on a Saturday, Sunday
or legal holiday. The peak at the end of the month as well as the beginning of the
month is due to the smoothing algorithm, since the assumptions that are necessary
to calculate smoothing parameters are insufficient.

Liet. matem. rink. Proc. LMS, Ser. A, 60:7–14, 2019

https://doi.org/10.15388/LMR.A.2019.14948
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(a) Original curves (b) Registrated curves

Fig. 2. Derivative of accumulated tax revenue data and the mean functions (black solid line).
Source: created by the authors.

2.2 Registration

We assume that for each k = 1, . . . , n, there exists (probably a random) time trans-
formation vk : [0, 1] → [0, 1], such that

Xk(s) = µ(vk(s)) + ηk(vk(s)) + εk(vk(s)), s ∈ [0, 1], (1)

where the non-random function µ(s), s ∈ [0, 1] can be interpreted as a structural
mean, ηk(s), s ∈ [0, 1] accounts a structural individual variation from µ, εk is an error
process. We assume that ηk and εk are independent. Moreover, we assume that (εk)
is a strong white noise.

The function wk = v−1
k is called warping function and the random curve

X∗

k(s) = Xk

(
wk(s)

)
, s ∈ [0, 1]

is a registered or aligned version of Xk. The random sample X∗

1 , . . . , X
∗

n is a structural
sample corresponding to X1, . . . , Xn and is the main object of analysis within this
paper. Clearly we have under the model (1)

X∗

k (s) = µ(s) + ηk(s) + εk(s), s ∈ [0, 1]. (2)

Hence, techniques developed so far in functional data analysis, can be applied for the
statistical analysis of the structural sample.

There exists several constructions of warping functions proposed in the literature
(see, e.g., Ramsay et al. [5, 6] and references therein). The first one we apply is the so-
called landmark method which seems to be easiest. The method involves identifying
the timings of specific features of the curves (deadlines for payments as defined by
law in the tax revenue example), and then aligning the curves so that all these events
occur at the same time for each curve.

Consider the situation with two landmarks per curve (that corresponds to the first
and second obligations in the tax revenue calendar of i’s month), say, τi1 and τi2, on
the interval [0, 1]. Let

τ01 =
1

n

n∑

i=1

τi1, τ02 =
1

n

n∑

i=1

τi2

be the average landmarks.
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Functional approach to analysis of daily tax revenues 11

The simplest landmark registration method defines the warping functions such
that wi(0) = 0, wi(τ01) = τi1, wi(τ02) = τi2, wi(1) = 1, and linearly interpolates in
between. Then, the warping functions and their inverse functions have explicit forms:

wi(t) = t+ (τi1 − τ01)
t

τ01
1[0,τ01](t)

+

[
(τi1 − τ01)

τ02 − t

τ02 − τ01
+ (τi2 − τ02)

t− τ01
τ02 − τ01

]
1[τ01,τ02](t)

+ (τi2 − τ02)
1− t

1− τ02
1[τ02,1](t).

and its inverse is

vi(s) = s+ (τ01 − τi1)
s

τi1
1[0,τi1](s)

+

[
(τ01 − τi1)

τi2 − s

τi2 − τi1
+ (τ02 − τi2)

s− τi1
τi2 − τi1

]
1[τi1,τi2](s)

+ (τ02 − τi2)
1− s

1 − τi2
1[τi2,1](s). (3)

If we assume that the horizontal variation of the sample curves occurs randomly
(due to some unexpected events), then it is reasonable to apply another time trans-
formations, probably data driven ones.

3 Prediction

In this section we consider prediction of the tax revenue curve (Xn+h(s), s ∈ [0, 1])
by using aligned functions (X∗

k(s), s ∈ [0, 1]), k = 1, . . . , n. The relation between the
two predictions is defined by

X̂n+h(s) = X̂∗

n+h(vn+h(s)), s ∈ [0, 1],

where the function vi is defined by (3). Generally speaking, one distinguishes two
classes of prediction methods: empirical and model based. Actually the distinction
is imprecise, as empirical methods often contain an underlying model for which the
predictions are optimal. One step out-of-sample forecast procedure will be used to
compare the accuracy of predictions, where validation sample is from 2011 January
to 2019 January and prediction horizon is h = 1.

3.1 Empirical methods of prediction

3.1.1 The empirical mean

Assuming that the time transformation vn+h is know, one defines

X̂∗

n+h(s) = µ̂(s), s ∈ [0, 1].

This predictor has good properties for a model of the form:

X∗

k = µ+ εk, t ∈ N,

Liet. matem. rink. Proc. LMS, Ser. A, 60:7–14, 2019
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Fig. 3. Forecasting results (blue line) and it’s 95% prediction interval (blue ribbon) with true
function (black line) for February 2019. Source: created by the authors.

where µ ∈ L2(0, 1) and (εt) is a (strong) white noise. In this case E(Xn+h(s)|Fn) =
µ(vn+h(s)). See Fig. 3(a) of mean prediction for the derivative of accumulated tax
revenues. The 95% prediction interval is quite wide and the peaks of forecasts around
the due dates are underestimated. On other days the tendency is grasped except in
the end of the month, where true intensity of the accumulated tax revenue where
observed before the last day, but the prediction shows that intensity is growing the
few days before the end of the month and spikes at the last day.

3.1.2 Exponential smoothing

This method, which is widely used in practice, consists of assigning weights to the
observations that tend to 0 at an exponential rate:

X̂∗

n+h = c
(
X∗

n + qX∗

n−1 + · · ·+ qn−1X∗

1

)
,

where 0 < q < 1 and c is a normalization constant. Usually, we choose c = 1 − q
and 0.7 6 q 6 0.95. After careful consideration c = 0.1 was chosen and Fig. 3(b)
represents exponential smoothing prediction for the analyzed period. For the due
date around 25th day the prediction is very accurate and for the second largest peak
the prediction is underestimated, but is more accurate than by mean prediction. On
other days the tendency is quite similar to the real curve except in the end of the
month.
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3.1.3 Naive predictors

These predictors are defined by:

X̂∗

n+h = X∗

n

and for initial time series gives

X̂n+h(s) = X∗

n

(
vn+h(s)

)
= Xn

(
wn(vn+h(s))

)
, s ∈ [0, 1].

These are good predictors when the observed phenomenon varies a little, or rarely.
In fact, X∗

n is the best predictor if and only if (X∗

t , t ≥ 1) is a martingale. Since of an
analyzed period previous month is 2019 January thus naive prediction is illustrated
in Fig. 3(c). The biggest peak is overestimated whereas the second largest peak is
underestimated and the reduction of the intensity is predicted to be faster than it
actually happened. Moreover, the tendency of intensity on other days is not captured
precisely as on actual curve.

3.1.4 Prediction by scores

Consider

X∗

k(s) = µ(s) +

J∑

j=1

λ∗kjψ
∗

j (s) + εk(s),

where λ∗kj are principal component scores and ψ∗

j are structural eigenfunctions. Uni-
variate ARIMA models are fitted for (λ∗kj , k = 1, . . . , n) time series for each j =
1, . . . , J . Then h-step-ahead forecasts are derived from

X̂∗

n+h(s) = µ(s) +

J∑

j=1

λ̂∗n+h,jψ
∗

j (s),

where λ̂∗n+h,j denotes the h-step-ahead forecasts of λ∗n+h,j using a univariate time
series. After performing functional principal component analysis, it has shown that to
account for 87% of variation 8 harmonics are needed, so J = 8 was chosen and Fig. 3(d)
represents h = 1 prediction using functional principal component regression (FPCR).
The peak around 25th day is predicted very precisely and the peak around 15th
day underestimated slightly. This model’s prediction is very similar to exponential
smoothing prediction, except for the tendency at the end of the month.

Since the biggest attention is given to the due dates of paying taxes because
around those days the largest amount of money is collected to STI revenue collection
accounts, therefore it is very important to account for the considerable prediction
error. The accurate prognosis is needed in order to forecast the flows of the state’s
cash resources that are needed not only to monitor the execution of the state budget
task within a given month, but also to ensure the repayment for the taxpayers from
the same revenue collection accounts. As the main focus is around the due dates
that are 15th and 25th of the month, the predictions from exponential smoothing and
functional principal component regression are the most accurate at these peaks.

Liet. matem. rink. Proc. LMS, Ser. A, 60:7–14, 2019
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4 Conclusions

In this paper we have investigated several modelling strategies for daily time series
in the functional data analysis context, with the objective of short term forecasting.
Since most of parametric models are not able to model irregularly spaced data or at
least they need to be transformed, functional data analysis technique is introduced to
overcome challenges linked to daily time series such as a changing number of observa-
tions per month or year. The empirical results were based on a series of Lithuanian
daily tax revenues, which embodied three modelling stages. First, the choice of suit-
able basis function, which transforms data from discrete –to functional observations.
Second, alignment of monthly curves since they might have the same shape, but in-
dividual curves have been deformed due to tax calendar. And lastly, comparison
of several modelling techniques using one step out-of-sample forecast procedure. It
is shown that all of strategies exponential smoothing and functional principal com-
ponent regression are the most accurate at the peaks of 15th and 25th days of the
month when taxes are most collected. Although predictions in other periods can be
improved. This work was intended as an attempt to motivate public sector to improve
daily tax revenue predictions with the tendencies using functional data analysis.
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REZIUMĖ

Dieninių mokestinių pajamų analizė funkciniu metodu
J. Gudan, A. Račkauskas

Šiame straipsnyje yra pateikiami funkcinių duomenų analizės metodai analizuojant ir modeliuojant
dienines mokestines pajamas. Pagrindiniai bruožai, nusakantys dienines mokestines pajamas, yra
kalendorinių mėnesių struktūros, kurių pagalba yra prognozuojami duomenys. Mėnesinės mokestinės
pajamos yra interpretuojamos kaip funkcijos, kurios yra gautos iš dieninių duomenų, kadangi stan-
dartiniai sezoniniai laiko eilučių modeliai negali būti pritaikyti dėl skirtingų darbo dienų skaičiaus
kalendoriniame mėnesyje ir dėl sezoniškumo tarp mėnesių ir mėnesio viduje. Duomenų paruošimui
taikomi standartiniai glodinimo ir duomenų registracijos metodai.

Raktiniai žodžiai: funkcinė duomenų analizė, duomenų glodinimas, registracija, prognozavimas.
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