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Interpretation of the conductivity of metals, of superconductors in the normal state
and of semiconductors with highly degenerate electron gas remains a significant is-
sue if consideration is based on the classical statistics. This study is addressed to
the characterization of the effective density of randomly moving electrons and to the
evaluation of carrier diffusion coefficient, mobility, and other parameters by gener-
alization of the widely published experimental results. The generalized expressions
have been derived for various kinetic parameters attributed to the non-degenerate and
degenerate electron gas, by analyzing a random motion of the single type carriers
in homogeneous materials. The values of the most important kinetic parameters for
different metals are also systematized and discussed. It has been proved that Ein-
stein’s relation between the diffusion coefficient and the drift mobility of electrons is
held for any level of degeneracy if the effective density of randomly moving carriers
is properly taken into account. C© 2014 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4871757]

I. INTRODUCTION

The experimental results on the heat capacity of electrons in the metals now are traditionally
explained1–8 on the basis of Fermi-Dirac statistics. It had been established that electrons with energy
well below the Fermi level can not change their energy E (either through scattering or due to external
fields) as all the upper states are occupied, – the Fermi distribution function leads to f(E) = 1. Thus,
only a small part of electrons, which energy is close to the Fermi level, are able to move randomly.
However, the total density of electrons in the conduction band n is traditionally employed1–8 for
evaluation of the electrical conductivity σ of the metals and of the superconductors in the normal
state9–13 by using expression σ = e2nτ /m∗. Here, e is the electrical charge of electron, τ is the
averaged relaxation time of electron, m∗ is the effective mass of electron. Such an expression of the
electrical conductivity is doubtful if a rigorous consideration is performed by using Fermi statistics.
Usage of the total density n instead of the effective density of the randomly moving carriers leads to
a quantity eτ /m∗, which could not be ascribed as the drift mobility of carriers. On the other hand, it
is well established that the thermal noise, which appears due to the random motion of electrons, is
adequately described by the real part of the conductance, using the Nyquist’s formula.14, 15 The widely
published1–8 results on the electron heat capacity and on the thermal noise of metals unambiguously
show that only a part of free electrons, those with energy close to the Fermi level, determines the
parameters of the kinetic phenomena, – because only these electrons are able to change their energy
under scattering and due to an influence of the external fields. Thus, the adequate evaluation of the
effective density neff of the randomly moving electrons should be performed. Additionally, the proper
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estimation of the parameters of the diffusion coefficient D, of the drift mobility μdrift of randomly
moving charge carriers, of Fermi energy EF, and of electron velocity vF at Fermi level is inevitable.
The mentioned problems are very important in solid state physics for relevant understanding and
description of kinetic phenomena.

This study is addressed to characterization of the effective density of randomly moving electrons
and to the evaluation of their diffusion coefficient, mobility, and other parameters by generalization
of the widely published experimental results. The generalized expressions have been derived for
various kinetic parameters attributed to the both non-degenerate and degenerate electron gas, by
analyzing a random motion of a single type carriers in homogeneous materials. The values of the
most important kinetic parameters for different metals are also systematized and discussed. It has
been proved that Einstein relation between the diffusion coefficient and the drift mobility of electrons
is held for any level of degeneracy if the effective density of randomly moving carriers is properly
taken into account.

II. THE EFFECTIVE DENSITY OF RANDOMLY MOVING ELECTRONS

The Fermi distribution function for electrons routinely is expressed as

f (E) = 1

1 + exp(E − η)/kT
. (1)

It specifies a probability that a level with the energy E is occupied by an electron. Here, E is the
electron energy, η is the chemical potential, k is he Boltzmann’s constant, and T is the absolute
temperature. The total density of electrons n in the conduction band is then represented by an
integral over the density g(E) of states in the conduction band as

n =
∞∫

0

g(E) f (E)dE . (2)

It can be directly deduced from the Fermi-Dirac statistics that the effective density of electrons neff

is exceptionally determined by the electrons participating in random motion. Thus, the electrical
conductivity depends not only on the density of electrons g(E) and the Fermi distribution function
f(E), but it also depends on the probability f1(E) = 1 − f(E) that any electron with the definite energy
E at a given temperature T can be scattered, and, thereby, it can leave the definite energy level.16–18

The effective density of randomly moving electrons can then be rewritten as

neff =
∞∫

0

g(E) f (E) · [1− f (E)]dE = kT

∞∫
0

g(E)

(
−∂ f (E)

∂ E

)
dE . (3)

The term (–∂f(E)/∂E) in the latter expression (Eq. (3)) can be understood as the probability density
of the randomly moving electrons in metals and other materials with highly degenerate electron gas.
Such a definition of the probability density, expressed as

p(E) = −∂ f (E)

∂ E
= f (E)[1 − f (E)]/kT, (4)

meets the requirements of the probability theory.18 It should be emphasized that for metals the total
density of electrons n is the integral parameter – the fixed quantity, while the effective density of
randomly moving electrons neff is a stochastic variable. Thus, there are two parameters to characterize
the free electron gas in metals and other materials with highly degenerate materials, namely, the
total density of the free electron in conduction band and the density of randomly moving electrons.

For the materials with a non-degenerate electron gas, a value of the probability function f1(E)
= 1 − f(E) ≈ 1, because of f(E) � 1. Therefore, all the electrons in the conduction band of density
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FIG. 1. Relation between the effective density neff of the randomly moving electrons and the total density n of electrons
for different metals. The values of the total density of electrons for different metals and of the electron heat capacity for
calculation of neff are taken from literature.5, 6

n participate within the random motion and determine the electrical conductivity, i.e.:

neff = n =
∞∫

0

g(E) f (E)dE ; (5)

σ = eneffμdrift = enμdrift = e2nτ

m0
, (6)

Here, μdrift is the drift mobility of the randomly moving electrons. In such a case, the classical
statistics is applicable.

In the case of a high degree of degeneracy, a dependence of the product function f(E)[1 – f(E)]
on the energy has a sharp maximum at the energy E value which represents the chemical potential
η. Then, Eq. (3) can be expressed as:

neff = g(η)kT ≈ g(EF )kT � n. (7)

Here, g(EF) denotes the density of states at E = EF, and neff is proportional to the temperature T.
The density of states at the Fermi energy g(EF) can separately be obtained from the experimental

results on the electronic heat capacity for metals:5–7

cV = γ T = π2

3
g(EF)k2T = π2

3
kneff, (8)

A comparison of the calculated at T = 295 K values of an effective density neff of randomly
moving electrons with those of the total density n of electrons for different metals is presented in
Fig. 1. It can be inferred from Fig. 1 that no clear tendency between the density of randomly moving
electrons and the total their density can be resolved for different metals. It can also be deduced from
Fig. 1 that a part of neff within a total density n of electrons comprises less than a few percents of
the n value.
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FIG. 2. The experimental data of the electrical conductivity dependence on the total density of electrons for different
metals. The dash line represents the conductivity values calculated by using Drude’s theory. The values of the experimentally
measured electrical conductivity are taken from Ref. 6.

III. ELECTRICAL CONDUCTIVITY AND RELATED PARAMETERS

According to the Drude’s model,1–8 the electrical conductivity of the metals is described by
Eq. (6), where n is the total density of valence electrons. Evaluation of the electrical conductivity
for the alkali and noble metals, performed using Drude’s model, leads to conductivity values which
are close to experimental data (Fig. 2). But, it can be seen from Fig. 1 that the effective density of
randomly moving electrons is considerably less (by about two orders of magnitude) than the total
carrier density. Complementarily, values of the drift mobility of electrons (it will be shown later)
exceed (again by about two orders of magnitude) those values calculated by using the classical
expression μdrift = eτ /m0. Thus, the conductivity values, estimated using Drude’s model (Eq. (6)),
fit rather well the experimental data (Fig. 2), especially for several alkali and noble metals, due to
mutual compensation (within a product nμdrift) of the errors in the inconsistent evaluations of n
and μdrift. However, evaluations of the electrical conductivity for the multivalent metals (Fig. 2) by
using Drude’s model (Eq. (6)) lead to the unacceptable inconsistency between the calculated and
experimental results (Fig. 2).

The electric conductivity σ of the material and the diffusion coefficient D of carriers are
commonly related by a generalized expression:19, 20

σ = e2 D

(
∂n

∂η

)
T

. (9)

Further, the electric conductivity σ can be expressed and related to D by calculating of the
derivative ∂n/∂η (respective to the chemical potential η) as follows:18

σ = e2 D

∞∫
0

g(E)
∂{[1 + exp(E − η)/kT ]−1}

∂η
d E = e2 D

kT

∞∫
0

g(E) f (E)[1 − f (E)]dE = e2 D

kT
neff .

(10)
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Here, neff is the effective density of randomly moving charge carriers (see Eq. (3)). This expression
is valid for all materials with a single type of charge carriers at any degeneracy degree. This equation
(Eq. (10)) unambiguously shows that the electric conductivity for all metals is determined by the
effective density of randomly moving charge carriers, – not by the total free electron density in the
conduction band. The total density of the conduction band electrons in determination of electrical
conductivity can be employed only for materials with a non-degenerate electron gas. The electrical
conductivity can alternatively be represented as

σ = eneffμdrift = e2 D

kT
neff . (11)

Here, μdrift is the drift mobility of randomly moving charge carriers in homogeneous materials with
a single type of charge carriers (electrons or holes). From the generalized relation (Eq. (11)), the
Einstein’s relation is consequently obtained

D

μdrift
= kT

e
. (12)

This expression is valid for both the degenerate and non-degenerate electron gas in homogeneous
materials with the single type carriers (either electrons or holes), which are able to randomly move.

The diffusion coefficient of the randomly moving carriers in materials with highly degenerate
electron gas can be expressed (by using equations (Eq. (7)) and (Eq. (11))) as

D = σ/(e2g(EF)). (13)

Thus, the diffusion coefficient D and drift mobility μdrift ((Eq. (12)), for randomly moving carriers)
can be related by combining of the independently obtained experimental results on the conductivity
and the electron heat capacity measurements in materials with highly degenerate electron gas.

The diffusion coefficient can also be expressed through a product of the average of the square
of carrier velocity and of the average of the carrier relaxation time:

D = 1

3
〈v2〉〈τ 〉. (14)

This relation for the highly degenerate electron gas is represented as18

D = 1

3

∫ ∞
0 g(E)v2τ f (E)[1 − f (E)]dE∫ ∞

0 g(E) f (E)[1 − f (E)]dE
= 1

3
v2

FτF, (15)

i.e. the diffusion coefficient is determined by velocity (its square function) and free pass time of
randomly moving charge carriers at the Fermi level. It can be obtained, using Eqs. (7), (11) and (15),
the alternative expression for conductivity

σ = 1

3
e2g(EF)v2

FτF. (16)

This expression is well-known for metals, and it is commonly obtained by solving of the kinetic
equation.2, 3

The drift mobility can be expressed (by combining Eqs. (12) and (14)) as

μdrift = e〈v2〉〈τ 〉
3kT

. (17)

The expression for the drift mobility can be represented (by including the effective mass m∗ of
charge carriers into Eq. (17)) in the generalized form as:

μdrift = e〈τ 〉
m∗ · (1/2)m∗〈v2〉

(3/2)kT
= e〈τ 〉

m∗ · 〈E〉
(3/2)kT

= αε

e〈τ 〉
m∗ . (18)

Here, 〈E〉 = (1/2)m∗〈v2〉 is the average kinetic energy of the randomly moving carriers. Thus, this
equation (Eq. (18)) represents the expression for the drift mobility of randomly moving charge
carriers in homogeneous materials, containing the single type of the charge carriers (either electrons
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or holes). This fundamental expression Eq. (18) is applicable for materials with both non-degenerate
and degenerate carrier gas, including metals. The energy ratio factor (within Eq. (18))

αε = 〈E〉
(3/2)kT

, (19)

shows a ratio between the average kinetic energy 〈E〉 of the randomly moving carriers and the
classical thermal energy (3/2)kT. For the materials with a non-degenerate electron gas, the value of
this factor equals a unity αε = 1. Then, an expression for the drift mobility is transformed to

μdrift = e〈τ 〉
m∗ . (20)

The latter expression corresponds to a classical case. However, the energy ratio factor evaluated for
the highly de semiconductors, metals and superconductors in the normal state, leads to values

αε = 2

3

EF

kT
� 1. (21)

Thereby, the drift mobility values of the randomly moving carriers at room temperature are hundred
times larger than those estimated by using the classical expression (Eq. (20)) for metals.

The generalized expression for the conductivity is expressed, using Eqs. (11) and (18), as follows:

σ = eneffμdrift = eneff
e〈τ 〉
m∗ · 〈E〉

(3/2)kT
. (22)

This Eq. (22) transforms to Eq. (6) for the non-degenerate material (classical case) with αε

= 1 and neff = n. However, the specified expression, Eq. (16), should be applied for the highly
degenerate semiconductors and metals using neff = g(EF)kT). Surprisingly, it can be inferred from
Eqs. (18) and (22) that the drift mobility of randomly moving electrons and the conductivity of metals
do not depend on the effective mass of the electrons.

According to the results of the investigations on the proportionality of a resistivity to temper-
ature T, the relaxation time ascribed to randomly moving carriers at Fermi level (for a mentioned
temperature range) is expressed as21

τF = �/(kT ). (23)

Here h̄ = h/2π is the Plank’s constant. This expression is valid and generalized for all the homoge-
neous metals and the highly degenerate semiconductors. The inherent value of τF ≈ 2.59 10−14 s is
then obtained at T = 295 K.

The velocity of electrons at the Fermi level vF and the Fermi energy EF (assuming that an
effective mass of an electron is equal to a mass m0 of free electron, i. e. EF = m0v2

F/2) can be
evaluated by employing Eqs. (13), (15) and (23). The simulated values of EF for different metals are
presented in Fig. 3. A spherical (Sommerfeld’s free electron theory)5, 15 Fermi surface approach is
usually exploited in the traditional evaluations of the Fermi energy. This leads to the expression:5, 15

EF = (
�

2/2m∗) (3π2n)2/3. (24)

A profile of the Fermi surface can be rather complicated9, 22 for many metals and superconductors
in normal state. Thereby, no simple function (an analytical approximation) can be obtained to
definitely relate the total density of charge carriers n and the Fermi energy EF (see Fig. 3).

IV. EVALUATION OF CONDUCTIVITY COMPONENTS

The drift mobility and the diffusion coefficient for the randomly moving electrons at any degree
of degeneracy can be represented as:

μdrift = σ/(eneff) = 1/(eρneff); (25)

D = σkT

e2neff
= kT

e2ρneff
. (26)

Here, the parameter neff is defined by Eq. (3).
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FIG. 3. Relation between the Fermi energy and the total density of the conduction band electrons for different metals. The
dash line represents the simulated (using Eq. (24)) Fermi energy dependence on the total density of the conduction band
electrons predicted by the Sommerfeld’s free electron theory (Eq. (24)).5

It is possible to evaluate the electron diffusion coefficient (Eq. (13)) in highly degenerate
materials by combining of the experimental results of the conductivity and the electron heat capacity.
The relationships between the drift mobility, the Fermi energy and the diffusion coefficient of
randomly moving electrons for different metals are presented in Fig. 4. It can be deduced from
this figure (Fig. 4) that the changes of these parameters for different metals are strongly correlated.
The rather precise linear fit has simultaneously been obtained for the both μdrift – D and the EF – D
sets. The linearity of the μdrift – D set proves validity of the Einstein’s relation, Eq. (12). The linear
D – EF set represents the relation:

EF

D
= 3

2

m0

�
kT . (27)

The significant relation among the set of parameters μdrift – D – EF can be obtained from
Eqs. (12) and (27). It is expressed as

μdrift

D
· EF

D
= 3

2

em0

�
≈ 2.07 · 10−15

[
kg

Vs

]
, (28)

and this is valid within a temperature range, where resistivity of metals has a linear dependence on
temperature.

The Einstein’s relation Eq. (12) can alternatively be obtained by using a Nyquist’s theorem
for the thermal noise. The spectral density of the current fluctuations Si0 for low frequencies
f ( f �1/(2πτ ), here τ is the relaxation time of carriers) can be presented as14, 18, 23

Si0 = 4kT
1

R
= 4kT σ

A

L
= 4e2neff D

A

L
. (29)

Here R is the resistance of the sample of material under test; A is the area of the sample cross-section,
and L is the length of a sample, respectively. This relation is applicable for all the homogeneous
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FIG. 4. Relations between the drift mobility, the Fermi energy and the diffusion coefficient of randomly moving electrons
for different metals at T = 295 K. Solid dots are used for μdrift, and open dots – for EF. Short vertical lines only show the
dependence of dots for definite metal.

materials in equilibrium. Both equalities in Eq. (29) can also be obtained from the general Kubo’s
formula for conductivity:15, 18

σx = 1

kT

∫ ∞

0
〈 jx (t + τ1) · jx (t)〉dτ1, (30)

The conductivity in Kubo’s formula (Eq. (30)) is defined by the autocorrelation function kjx(τ 1)
= 〈jx(t + τ 1) · jx(t)〉 of the current density jx(t) fluctuations on time t. For the steady-state processes,
the autocorrelation function depends only on time difference τ 1.

To conclude the discussion, a set of the main expressions can be summarized as:
μdrift

D
= e

kT
; (12′)

σ = e2 Dg(EF); (13′)

τF ≈ �/kT ; (23′)

EF

D
= 3

2

m0

�
kT ; (27′)

μdrift

D
· EF

D
= 3

2

em0

�
≈ 2.07 · 10−15

[
kg

Vs

]
. (28′)

These expressions are valid and applicable for metals in the temperature range, where the resistivity
exhibits a linear dependence on temperature. The presented analysis unambiguously shows that the
Einstein’s relation ascribed to a single type of charge carriers within a homogeneous material is
always held under equilibrium conditions and for weak electric fields. This result is independent
neither of non-parabolicity of conduction band nor of the mechanisms of electron scattering. Such
the conclusion is relevant because the Eq. (29) is always valid.
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V. SUMMARY

This study has been addressed to improvement of the interpretation of the charge transport
properties in metals and degenerate semiconductors. It has been shown that the erroneous values
of parameters might be extracted if classical statistics is applied for the evaluation of transport
characteristics for such materials. The generalized expressions have been derived for electrical
conductivity (Eq. (22)), for drift mobility (Eq. (18)) of the randomly moving carriers in materials
containing a single type of charge carriers (either electrons or holes). These derivations have been
obtained on the ground of the detail analysis of the effective density of randomly moving carriers
(Eq. (3)) in homogeneous materials. It has been shown that the derived expressions are valid for any
degree of degeneracy of the electron gas. The obtained expressions are applicable for extraction of
the transport parameters in various experimental situations, – for non-degenerate semiconductors,
degenerate semiconductors, metals and superconductors in normal state. The fundamental relations
generalized over parameter sets for various metals (Eqs. (27) and (28)) have been obtained. It has been
shown that Einstein’s relation between the diffusion coefficient and the drift mobility of randomly
moving carriers is valid also for materials containing highly degenerate electron gas, including
metals.
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