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Theoretical investigation of pulse-to-pulse instabilities
in synchronously pumped femtosecond optical
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Singly resonant synchronously pumped optical parametric oscillator (SPOPO) based on the experimental
set-up of K. Ivanauskienė et. al. (2019) [1] is studied theoretically. Stable, oscillatory and chaotic operation
modes of the SPOPO are investigated. The need of the self- and cross-phase modulation terms in the
theoretical model for the explanation of the instabilities is demonstrated. The theoretical values of the
wavelengths of the signal spectrum maxima are found. The evidence of chaos by the calculation of the
Lyapunov exponent is provided. The possibilities to avoid the instabilities are discussed.
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1. INTRODUCTION

Optical parametric oscillator (OPO) is a versatile tool providing
light in near- and mid-infrared frequencies. At high pulse rep-
etition rate and relatively low pulse energies, synchronously
pumped OPOs are utilised [2] and the signal generated by
SPOPO acquires high intensity. Recently, the oscillations and
instabilities in singly resonant SPOPO were studied in [1]. The
chaos in OPO operation has been discovered [3] and the os-
cillatory solutions were numerically obtained for SPOPOs [4].
However, accurate theoretical description of chaotic and oscil-
latory SPOPO behavior remains a challenge. As we will see in
this study, the inclusion of the third-order nonlinear terms into
the model is necessary.

The models of SPOPO including third order nonlinearities
have been presented in [5], [6], [7]. In [5], the sech-type soliton
solutions were found and the pulse broadening [6] as well as
asymmetry [7] due to the self- and cross-phase modulations were
observed. However, oscillatory behaviour was not observed in
these studies. We note, that at some circumstances, the complex
Ginzburg-Landau equation (CGLE) from the singly resonant
SPOPO model can be derived [5]. The chaotic dissipative soliton
solutions of CGLE were presented in [8].

In this paper, we study theoretically the stable as well as
oscillatory and chaotic operations of singly resonant SPOPO
based on BBO nonlinear crystal. In most practical situations,
chaotic operation of SPOPO is undesirable. Therefore, this study

should reveal the conditions at which the instabilities can be
avoided. The model and its parameters are based on the recently
described experimental implementation [1].

The rest of the paper includes Section 2, where the model
equations of the SPOPO are described. In Section 3, we consider
the stable operation of SPOPO and find the solutions for the
wavelengths of the signal spectrum maxima. In Section 4, unsta-
ble operation is described and the evidence of the presence of
chaos is provided. Conclusions are drawn in Section 5.

2. MODEL OF THE SINGLY RESONANT SPOPO

Fig. 1. (Color online) Schematic depiction of the singly reso-
nant SPOPO.

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article Journal of the Optical Society of America B 2

We consider the three-wave interaction in the nonlinear type
I BBO crystal that is placed inside the resonator, Fig. 1. The
equations for the Fourier transforms Sj(Ω, z) of the electric fields
Ej(t, z) of the signal (index j = 1), idler (2) and pump (3) waves
are given by [9]:

∂S1
∂z

= ik′1S1 + σ1P̂(2)
1 + iγ1P̂(3)

1 , (1a)

∂S2
∂z

= ik′2S2 + σ2P̂(2)
2 + iγ2P̂(3)

2 , (1b)

∂S3
∂z

= ik′3S3 − σ3P̂(2)
3 + iγ3P̂(3)

3 , (1c)

where z ∈ [0 L] is the longitudinal coordinate, L is the crystal
length. In Ej(t, z), t is the time variable. The three terms at the
right hand side of Eqs. (1) describe dispersion, second- and
third- order nonlinearities. Next, we discuss each of them.

Fig. 2. Dependence of the conversion efficiency to the signal
wave on the round-trip number. Stable operation. E30 = 4 nJ,
G0 = −400 fs2, l = 0. Three different noise realizations.

1. Dispersion. In the time domain, the disper-
sion is described by the first order time derivative – the
time walk-off – as well as by the second order time
derivative – the group velocity dispersion – and the
higher order derivatives [10]. The Fourier transform of
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S(Ω, z) = ik(ω0 + Ω)S(Ω, z),

where k is the wavelength-dependent wavenumber, ω0 =
2πc/λ0 is the central angular frequency, c is speed of light, λ0
is the central wavelength. For the j-th wave, k′j = kj −Ω/u10,
kj = 2πnj(λj)/λj, where nj is the refractive index found by the
use of the Sellmeier’s equations [11] and u10 is defined below.
The phase matching conditions for the type I interaction are
taken into account:

k1(ω10) + k2(ω20) = k3(ω30), (2a)

ω10 + ω20 = ω30. (2b)

By the use of Eqs. (2) we find the phase-matching angle. The
term Ω/u10 is subtracted from the wavenumber where u10 =(

∂k1
∂ω |ω=ω10

)−1
is the group velocity of the signal wave. The

propagation is described in the reference frame of the signal
wave.

2. Second order nonlinearity. In Eqs. (1), the terms P̂(2)
j de-

scribe the three wave interaction. They are given by the inverse
Fourier transforms of E3E∗2 , E3E∗1 and E1E2 for the signal, idler
and pump waves, respectively. The nonlinear coupling coeffi-
cient is given by σj =

2πdeff
nj0λj0

, where de f f is the effective nonlinear
coefficient.

3. Third order nonlinearity. P̂(3)
j is the Fourier transform

of the nonlinear Kerr and XPM terms, e.g. in the time domain,

P(3)
1 = |E1|2E1 + 2|E2|2E1 + 2|E3|2E1. As we will see in Section

4, these terms influence the appearance of the oscillating and
chaotic behaviour. The nonlinear coupling coefficient is given

by γj = n(I)
2

2π
λj0

I30
|a3|2 , where n(I)

2 is the nonlinear refractive index,
I30 is the input pump intensity and a3 is the pump amplitude
that will be introduced in Eq. (3c).

Fig. 3. (Color online) Dependence of the output signal spectra
profiles on the time delay parameter l. Stable operation. E30 =
4 nJ, N = 1000. G0 = −400 fs2 (Gs = G0 + Gc < 0) (a) and
G0 = −200 fs2 (Gs > 0) (b). Dashed lines: Ω = 0 and Ω = Ω0,
Eq. (7).

Fig. 4. (Color online) Dependence of the signal (a,b) and pump
(c,d) spectrum (a,c) and temporal (b,d) profiles on the round-
trip number. The intensity is normalized to the intensity of the
input pump pulse. z = L, inside the resonator. E30 = 6 nJ,
l = 0, G0 = −400 fs2.

At first round-trip N = 1 and z = 0 the boundary conditions
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read

E1(t, 0) = a0ξ1(t), (3a)

E2(t, 0) = 0, (3b)

E3(t, 0) = a3 exp
(
−2 ln(2)

t2

τ2

)
. (3c)

The field ξ1 is the random field of normal distribution with
zero mean and variance that equals to unity. a0 and a3 are the
amplitudes and τ is the pump pulse duration at FWHM. The
input signal is the noise field and the pump wave is the Gaussian
pulse.

At the end of the crystal, the transformations are applied:

S1(Ω, 0)|N+1 = R1/2S1(Ω, L)|N exp(iϕ(Ω)), (4a)

S2(Ω, 0)|N+1 = 0, (4b)

S3(Ω, 0)|N+1 = S3(Ω, 0)|N=1, (4c)

where R is the reflectivity of the output mirror. Phase ϕ(Ω) is
given by

ϕ(Ω) = δΩ +
G0
2

Ω2, (5)

where the time delay δ = lλ10/(2c), l is the nondimensional
number [12], G0 is the group delay dispersion (GDD) predefined
by the additional dispersive element inside the resonator, Fig. 1.
The signal pulse is reflected by the output mirror, the idler leaves
the resonator and the pump pulse is synchronously repeated at
each round-trip.

Eqs. (1) were simulated by the use of the Fourier split-step
method [13] for N round-trips. The crystal length was divided
into 25 steps and the time window [−10τ, 10τ) was divided into
256 steps. At each longitudinal step, Runge-Kutta method for
the nonlinear part as well as fast Fourier transform for the linear
part was applied. The parameters used in the simulation are the
following: τ = 100 fs, L = 3 mm, R = 1− 0.08, a0/a3 = 0.001.
As in the experimental work [1], pump wavelength λ30 = 513
nm and the crystal was phase-matched at λ10 = 700 nm. At
these conditions, the crystal GDD Gc = 275 fs2 and it is positive.
The pump intensity I30 was calculated at various pump energies
E30 assuming Gaussian beam with the beam radius of d = 50
µm.

3. STABLE OPERATION OF THE SPOPO

The typical dependence of the conversion efficiency to the signal
wave η = E1/E30 is depicted in Fig. 2. Three different noise
realizations of the input signal wave (Eq. (3a)) were applied. In
the logarithmic scale, one can see the difference at the transient
stage. At sufficiently large round-trip number N, all three curves
saturate at the same value. Here, the net resonator GDD is
negative: Gs = (G0 + Gc) < 0. In Fig. 3, we compare the output
signal spectrum profiles at the negative (Fig. 3a) and positive
(Fig. 3b) net GDDs. At l < 0, the spectrum is shifted either to
larger or smaller wavelengths. The shift can be found by the use
of the following equation:

∂∆ϕ

∂Ω
= 0, (6)

where ∆ϕ = δΩ + 1
2 (G0 + Gc)Ω2 + h

6 Ω3 is the net phase shift of

the signal wave and h = ∂3k1
∂ω3

10
L. From Eq. (6) we find

Ω0 = (−Gs + sign(Gs)[|Gs|2 − 2hδ]1/2)/h. (7)

Fig. 5. Dependence of the conversion efficiency to the signal
wave on the round-trip number. G0 = −400 fs2. (a): E30 = 6 nJ,
l = 0, (b): E30 = 8 nJ, l = 0, (c): E30 = 10.5 nJ, l = −3.

Fig. 6. (Color online) Poincaré map. Crosses: stable solutions,
circles: maxima of oscillations. Dashed line: solutions of Eqs.
(1) without self- and cross-phase modulation terms (only sta-
ble solutions). G0 = −400 fs2, l = 0.

This solution as well as Ω = 0 are presented by the dashed line
in Fig. 3.

At h ≈ 0, Ω0 ≈ −δ/Gs. We see that the wavelength shift
depends on the sign of Gs. Solution (7) can be explained by the
fact that at Ω ≈ Ω0, the phase shift ∆ϕ becomes parabolic and
there is no time walk-off. Another solution, Ω = 0, corresponds
to the condition ∆ϕ = 0 that was considered in [12] where the
singly resonant SPOPO was studied.

4. OSCILLATIONS AND CHAOS IN THE SPOPO

The oscillatory behaviour of the SPOPO was observed in the ex-
perimental work [1]. Typical one-period oscillations in spectrum
as well as temporal profiles of the signal and pump pulses are
visible from Fig. 4. By ’one-period’ we mean that there is only
one maximum value of the oscillating conversion efficiency η,
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Fig. 7. (a) Dependence of the conversion efficiency on the
round-trip number and (b) calculation of the Lyapunov ex-
ponent of the given data set by the use of the algorithm of
[14]. Lag is equal to 1 and the embedded dimension m (from
bottom to upper line): 1, 5, 50, 100, 200. d is the distance be-
tween the j-th pair of nearest neighbours after i discrete ’time’
steps and brackets 〈...〉 denote the averaging over all j [14].
E30 = 10.5 nJ, G0 = −400 fs2, l = 0.

see Fig. 5a. When the pump energy increases, the period dou-
bling takes place and there are two maxima in Fig. 5b. We note
that the oscillation period may change when the parameters are
varied. For example, in Fig. 5c the period is twice smaller than
the period in Fig. 5a. Here, the pump energy and parameter l
values are different.

Dependence of maximum values ηm on pump energy E30
gives us the so called Poincaré map, Fig. 6. Here, the stable
solutions (crosses) transform to the oscillating solutions (circles)
at about 4.5 nJ. Increasing the energy the period doubling takes
place. This is the well known Feigenbaum-type route to chaos.
The evidence of chaos is a positive Lyapunov exponent. In
the case of the chaotic sequence of Fig. 7a, we calculated the
Lyapunov exponent by the use of the algorithm of Rosenstein
et. al. [14]. This method is devoted to calculate the maximum
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Fig. 8. Poincaré maps. Crosses: stable solutions, circles: max-
ima of oscillations. Dashed line in the (a): Gs = G0 + Gc = 0.
(a): l = 0, (b): G0 = −400 fs2. E30 = 10.5 nJ.

Lyapunov exponent from the available experimental time series.
The Lyapunov exponent is given by the tangent of the dashed
line in Fig. 7b. At sufficiently high value of the embedded
dimension m, the tangent does not depend on m and it is positive.
So, the positive Lyapunov exponent is an evidence of the chaos.

We note that the route to chaos can be obtained only with in-
clusion of the self- and cross-phase modulation terms in Eqs. (1).
We repeated the simulations without these terms and obtained
only stable solutions that are presented in Fig. 6 by the dashed
line. We note that the oscillatory solutions are possible without
inclusion of the χ(3) term [4], but the chaotic behaviour does not
occur.

In Fig. 8, two other Poincaré maps are depicted. At fixed
l, the oscillatory and chaotic modes are obtained only at the
vicinity of zero net GDD, Gs = G0 + Gc = 0, dashed line in
Fig. 8a. Large conversion efficiency and stable solutions are
obtained at sufficiently large negative GDD. At fixed GDD, the
stable solutions with large conversion efficiency were obtained at
positive detuning parameter l, Fig. 8b. At fixed l = 0, the results
are summarized in Fig. 9 where the two-parameter bifurcation
diagram is shown. The diagram elucidates that the oscillatory
and unstable modes are observed at larger pump energies at the
vicinity of zero net GDD. The larger the energy the broader the
range of GDDs.

In the recent experimental paper [15], the oscillatory as well
as chaotic SPOPO operation was discovered. Additional non-
linear fiber-feedback was implemented that obviously provided
large influence of the third order nonlinearity.

We note, that the influence of the χ(2) nonlinearity in the dy-
namic equation for signal intensity I1 ∝ |E1|2 is proportional to
I1 I3, where I3 ∝ |E3|2 (e.g. (dI1/dz)|χ(2) ∝ E∗1 E∗2 E3 ∝ |E1|2|E3|2,
since roughly E2 ∝ E∗1 E3). On the other hand, the influence of
χ(3) nonlinearity is proportional to I2

1 . We may state that the χ(2)

term is roughly linear with respect to I1 since the pump intensity
I3 is refreshed at each round-trip. The χ(3) term is nonlinear and
this is crucial for the onset of chaos.

5. CONCLUSIONS

We have searched for stable operation areas of the SPOPO. From
the Poincaré maps it can be seen that stable solutions are ob-
tained either at lower pump energy or at net GDD that differs
considerably from 0. The Lyapunov exponent at an unstable
operation was calculated and its positive value provides an ev-
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Fig. 9. (Color online) Two-parameter bifurcation diagram at
l = 0. Crosses: stable solutions; open circles: one-period oscil-
lations; filled circles: two-, three- and four-period oscillations;
red rectangles: more than four-period oscillations and chaos.

idence of the chaos. The chaotic operation mode could not be
obtained when neglecting the third-order nonlinear terms in the
model equations. Without those terms, only stable solutions
were obtained. At stable operation mode, the signal spectrum
maximum can be shifted by varying either the resonator detun-
ing or resonator GDD.
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