

Home Search Collections Journals About Contact us My IOPscience

Multiconfiguration Dirac-Hartree-Fock calculations of EDM for Ra, Hg, Yb

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 J. Phys.: Conf. Ser. 488 122001 (http://iopscience.iop.org/1742-6596/488/12/122001) View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 158.129.154.116 This content was downloaded on 09/08/2016 at 09:34

Please note that terms and conditions apply.

Multiconfiguration Dirac-Hartree-Fock calculations of EDM for Ra, Hg, Yb

Gediminas Gaigalas,^{†1} Jacek Bieroń,^{*} Laima Radžiūtė[†]

[†] Vilnius University, Institute of Theoretical Physics and Astronomy, A. Goštauto 12, Vilnius, Lithuania * Uniwersytet Jagielloński, Instytut Fizyki imienia Mariana Smoluchowskiego, Kraków, Poland

Synopsis Using multiconfiguration Dirac-Hartree-Fock (MCDHF) method, we calculated the atomic electric dipole moment (EDM) for Ra, Hg, Yb, arising from nuclear Schiff moment, (P,T)-odd electron-nucleon interactions, and interaction of electron EDM with nuclear electromagnetic field.

Atomic EDM for Ra, Hg, Yb were calculated using recently developed program in the framework of GRASP2K [1]. EDM may be induced by tensor-pseudotensor, scalar-pseudoscalar e-N (P,T)-odd interactions, nuclear Schiff moment, and the electron EDM. All three elements are diamagnetic with closed outer s shell (Ra $6p^67s^2$, Hg $5d^{10}6s^2$, Yb $4f^{14}6s^2$). As an example we present the Schiff moment of ¹⁹⁹Hg. This interaction is the dominant nuclear contribution to the EDM of diamagnetic atoms. Table 1 presents results calculated with theoretical as well as experimental values of transition energies [2], and compared with d_{at}^{SM} values calculated with other methods: DHF and RPA.

Table 1. The values d_{at}^{SM} for ¹⁹⁹Hg in units $\{10^{-17}[S/(|e|\,\mathrm{fm}^3)]|e|\,\mathrm{cm}\}.$

Virtual	Theoretical	Experimental	
space	energy	energy	
6	-2.86	-2.46	
7	-1.64	-1.94	
8	-1.63	-2.23	
9	-0.37	-2.33	
DHF $[3]$	-1.2		
RPA [3]	-3.0		

The matrix elements of all interactions were calculated between ground state of ¹⁹⁹Hg, and excited states np with opposite parity. The multiconfiguration expansions for ¹⁹⁹Hg atom were generated by single and restricted double substitutions from valence and core orbitals to four sets of virtual orbitals, limited by the principal quantum number (up to n=9). Table 2 presents percentage contributions of the lowest excited levels in four different multiconfiguration approximations (for each level the first line with theoretical energy, and the second line with experimental energy [2]). As can be seen, the largest contribution to d_{at}^{SM} arises from the lowest singlet ¹P and triplet ${}^{3}P$ states.

 Table 2.
 Percentage contribution of excited levels
to d_{at}^{SM} for ¹⁹⁹Hg.

	Virtual space				
Levels	6	7	8	9	
$6p \ ^{3}P$	12.7%	14.3%	16.3%	13.1%	
	11.2%	14.7%	17.1%	16.4%	
$6p \ ^1P$	87.3%	85.2%	82.1%	88.3%	
	88.8%	84.6%	80.0%	84.9%	
$7 p {}^{3}P$		0.9%	-0.6%	-1.4%	
		1.5%	-1.1%	-1.4%	
$7 p^{-1} P$		-0.5%	0.3%	0.0%	
		-0.8%	0.5%	0.0%	
$8 p \ ^{3}P$			2.6%		
			4.6%		
$8 p \ ^1P$			-0.6%	0.0%	
			-1.1%	0.0%	
$9 p^{-3} P$				0.0%	
				0.0%	

In all mechanisms which induce atomic EDM the dominant contribution arises from the lowest levels of the opposite parity. Higher levels (7p ${}^{3}P$, 7p ${}^{1}P$, and still higher levels of 199 Hg) have significantly weaker influence on atomic EDM. We will present the details of the calculations of EDM of Ra, Hg, Yb, together with a comparison with the data obtained by Dzuba et al [3].

References

- [1] Jönsson P, Gaigalas G, Bieroń J, Froese Fischer C and Grant I P 2013 Comput. Phys. Commun. in press
- [2] Ralchenko Yu, Kramida A E, Reader J and NIST ASD Team 2012 NIST Atomic Spectra Database (ver. 5.0), [Online]. Available: http://physics.nist.gov/asd [2013, February 11]. National Institute of Standards and Technology, Gaithersburg, MD
- [3] Dzuba V A, Flambaum V V and Porsev S G 2009 Phys. Rev. A 80, 032120

¹E-mail: gediminas.gaigalas@tfai.vu.lt