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Abstract 
The general expressions, based on the Fermi distribution of the free electrons, are applied for 
calculation of the kinetic coefficients in donor-doped silicon at arbitrary degree of the degeneracy 
of electron gas under equilibrium conditions. The classical statistics lead to large errors in estima- 
tion of the transport parameters for the materials where Fermi level is located high above the 
conduction band edge unless the effective density of randomly moving electrons is introduced. 
The obtained results for the diffusion coefficient and drift mobility are discussed together with 
practical approximations applicable for non-degenerate electron gas and materials with arbitrary 
degree of degeneracy. In particular, the drift mobility of randomly moving electrons is found to 
depend on the degree of degeneracy and can exceed the Hall mobility considerably. When the ef- 
fective density is introduced, the traditional Einstein relation between the diffusion coefficient 
and the drift mobility of randomly moving electrons is conserved at any level of degeneracy. The 
main conclusions and formulae can be applicable for holes in acceptor-doped silicon as well. 
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1. Introduction 
Silicon is the main material for electronics during the last fifty years. Its basic parameters have been intensively 
treated theoretically and experimentally [1]-[18]. Diffusion coefficient and drift mobility are necessary for 
characterization of material quality and electronic transport properties. In spite of the importance of these 
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quantities for device applications, such as bipolar transistors, the results on heavily doped regions are quite 
limited, while accurate values of electron mobility and diffusion coefficient are essential for advanced engi- 
neering. The theoretic problem for silicon and gallium arsenide usually has been treated through the Monte 
Carlo simulation [2]-[4]. The ratio of the classical value of the diffusion coefficient over the mobility for the 
majority- and minority-carriers satisfies the Einstein relation and equals kT e  where k  is the Boltzmann 
constant, T  is the absolute temperature, and e  is the elementary charge [5]-[11]. Most published papers 
assume this relation to hold only for non-degenerate materials. Therefore, at thermal equilibrium, the diffusion 
coefficient D  of charge carriers in a degenerate semiconductor is often related to the mobility µ  through the 
modified relation [2] [3] [5]-[8]: 

1
d d F

nD
e n E

µ= ,                                   (1) 

where n  is the total density of free electrons in the conduction band and FE  is the Fermi energy. Similar 
relation is used for holes. Equation (1) can be transformed into: 

2 d
d F

ne D en
E

µ=                                    (2) 

where both sides mean the conductivity. But as it will be shown later the quantity d d Fn E  in Equation (2) left 
side is proportional to the effective density of randomly moving electrons, while the expression enµ  contains 
the total electron density n ; this is wrong for degenerate silicon because the main contribution comes from 
the randomly moving electrons, located near the Fermi energy, while the contribution due to the electrons 
located deep below the Fermi level is next to zero because of limitations induced by the Pauli principle 
[19]-[21]. The randomly moving electrons not only determine the electric conduction and electron diffusion, 
but also electron heat capacity, electron thermal noise, electron heat conduction and other dissipative phe- 
nomena [22]. 

The electron Hall factor determined as the ratio of the Hall mobility over the drift mobility for non-degenerate 
semiconductors yields the values above unity [12] [13]. In some cases, the Hall factor of holes varies from 0.882  
to 0.714 at 300 K over the acceptor density range 14 1810 3 10AN≤ ≤ ×  cm−3 [14]. The factor tends to unity  
when the degenerate case is approached since the averaging of relaxation time τ  over energy yields the value 
at the Fermi energy. In spite of huge amount of investigations, there are some unsolved problems of drift 
mobility and diffusion coefficient in silicon with high level of degeneracy of electron gas. We are going to 
illustrate that Equations (1) and (2) are not applicable for degenerate electron gas in silicon. Section 2 deals with 
the basic expressions. Section 3 presents and discusses the results of calculations for donor-doped silicon at any 
degree of degeneracy of electron gas.  

2. Basic Expressions of Electrical Conductivity Characteristics for Homogeneous  
Materials with One Type of Free Carriers at Any Degree of Degeneracy of  
Electron Gas 

The total density of the free electrons in the conduction-band is  

( ) ( )
0

d ,n g E f E E
∞

= ∫                                   (3) 

where E  is the electron energy above the conduction band edge, ( )g E  is the density of states (DOS) at the 
given energy, and ( )f E  is the Fermi distribution function for electrons  

( ) ( )
1 ,

1 exp
f E

E kTη
=

+ −
                                  (4) 

and η  is the chemical potential. 
From the Fermi-Dirac statistics directly follows that the effective density of electrons effn  taking part in the 

random motion and, thus, in all kinetic processes depends not only on the DOS ( )g E  of electrons and Fermi  
distribution function ( )f E , but it depends also on the probability ( ) ( )1 1f E f E= −  that any of such electron  
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can leave the occupied energy level at a given temperature [19]-[21]: 

( ) ( ) ( )
0

1 deffn g E f E f E E
∞

= −  ∫                                (5) 

or 

( ) ( )
0

deff

f E
n kT g E E

E

∞ ∂ 
= − 

∂ 
∫ ,                               (6) 

because  

( ) ( ) ( )
1

f E
f E f E kT

E
∂

⋅ − = −   ∂
.                              (7) 

The term ( )( )f E E−∂ ∂  represents the probability density of the randomly moving electrons: 

( ) ( ) ( ) ( )1
f E

p E f E f E kT
E

∂
= − = −  ∂

,                          (8) 

and meets all requirements of the probability theory. Here it should be pointed that for materials with degenerate 
electron gas the total density of electrons n  is the fixed quantity, while the effective density of randomly 
moving electrons effn  is the stochastic variable. So, there are two parameters to characterize the free electron 
gas in metals and other materials with highly degenerate electron gas: the total density of the free electrons n  
in conduction band and the effective density of randomly moving electrons effn . 

Comparison of functions ( )f E  and ( ) ( )1f E f E−    for different normalized chemical potentials are  

shown in Figure 1. From this figure it seen that ( ) ( ) ( )1f E f E f E≈ −   , when ( ) 2kTη η∗ = < − . In this  

case the classical statistics is applicable, and effn n≈ . 
An approval of Equation (5) also follows from the general relation between the electrical conductivity σ and 

the diffusion coefficient D  of electrons [22] [23]: 

2

T

ne Dσ
η

 ∂
=  ∂ 

.                                    (9) 

After simple calculation of the derivative one obtains: 

( ) ( ) ( ) ( ) ( )
2 2

2

0 0

d 1 d  ,

  

eff

f E e D e De D g E E g E f E f E E n
kT kT

σ
η

∞ ∞∂
= = − =  ∂∫ ∫                    (10) 

where expression 

( ) ( ) ( )
0

1 deffn g E f E f E E
∞

= −  ∫  

is the same Equation (5) for the effective density of randomly moving electrons. Equation (10) unambiguously 
shows that the conductivity in all cases is determined by the effective density of randomly moving charge 
carriers determined through Equation (5) rather than the total free electron density in the conduction band. The 
total density n  can be used for determination of conductivity only for materials with non-degenerate electron 
gas. 

Thus, the conductivity (Equation (10)) also can be presented as 
2

eff eff drift
e D n en
kT

σ µ= = ,                                   (11) 

where driftµ  is the drift mobility of randomly moving charge carriers in the homogeneous materials with one 
type of the charge carriers (either electrons or holes). From this general relationship, which is applicable in all 
cases, one immediately gets the Einstein relation 
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Figure 1. Comparison of functions ( ) f E  and ( ) ( )1f E f E −    for different normalized 

chemical potentials kTη η∗ = . Solid lines are for ( ) f E , and dashed lines—for 

( ) ( )1f E f E −   . The area under the curve ( ) f E  is proportional to the total density of free 

electrons in conduction band, and the area under the curve ( ) ( )1f E f E −   —to the effective 
density of randomly moving electrons.                                               

 

drift

D kT
eµ

= .                                        (12) 

In [20], accounting the concept of randomly moving charge carriers there were derived the following general 
relations, which are valid at any degree of degeneracy of electron gas in isotropic materials with one type of 
charge carriers:  

For drift mobility: 
2

3drift

e v

kT

τ
µ = .                                    (13) 

or 

( )3 2drift

e E e
kTm m ε

τ τ
µ α∗ ∗= ⋅ = ;                              (14) 

for electrical conductivity: 
2

eff

effeff drift

e D n e
en en

kT m ε

τ
σ µ α∗= = = ⋅ ;                            (15) 

for diffusion coefficient: 

2
2

1
3 eff

kTD v
e n

στ= ⋅ =                                 (16) 

for drift velocity: 

drift drift

e
v E E

m ε

τ
µ α∗= = ;                                (17) 

where factor  

( )3 2
E

kTεα =                                       (18) 
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shows, how many times the mean kinetic energy E  of randomly moving charge carrier is larger than 
( )3 2 kT . The average kinetic energy of randomly moving electron E  is defined by 

( ) ( )

( ) ( )
0

0

d

d

Eg E p E E
E

g E p E E

∞

∞=
∫

∫
.                                   (19) 

3. Applications of the Basic Relations to Transport Features of Donor-Doped  
Silicon 

According to the above presented relations, one can evaluate the characteristics of donor-doped silicon with 
shallow donors (completely ionized at room temperature, 300T =  K). Illustrations of Equations (3) and (5) for 
donor-doped silicon are presented in Figure 2. The effective density of randomly moving electrons effn  
(shaded area) for highly degenerate material ( )10FE kT ≥  is many times lower than the total density of free 
electrons n in the conduction band of silicon. 

Here for calculation instead of chemical potential the Fermi level energy was used, because the difference 
between these quantities is about 0.01% even at room temperature [24]. 

Figure 3 presents the dependence of the Fermi energy EF and average kinetic energy E  of randomly 
electrons on the total electron density n in the conduction band of silicon. The Fermi energy was calculated from 
Equation (3), and E  was obtained from Equation (19). The average kinetic energy of randomly moving 
electrons in nSi for the total electron density n smaller than 1018 cm−3 equals ( )3 2E kT= , but for 2010n >  
cm−3 FE E≈ , and does not depend on temperature. 

Comparison of the effective density of randomly moving electrons effn  with the total density of free elec- 
trons n  in conduction band of  nSi  is presented for room temperature in Figure 4. Here 

( ) ( ) ( )( )
( ) ( )

0

0

1 d

d
eff g E f E f E En
n g E f E E

∞

∞

−
= ∫

∫
.                               (20) 

It illustrates that the effective density of randomly moving electrons effn  equals the total density of free 
electrons only when the shallow donor density Dn  is smaller than 1810 cm−3. However, a sharp decrease is 
found at high densities, and the ratio effn n  is well below unity at 2110n ≈  cm−3. 

The effective density of randomly moving electrons effn  dependence on the total density n  of free elec- 
trons in  nSi  at 300T =  K is shown in Figure 5. It shows that the effective density of randomly moving  
electrons effn n=  at 1810n ≤ cm−3, but for 2010n >  cm−3 1 3~effn n . 

The diffusion coefficient of randomly moving electrons in nSi can be determined from Equation (16): 

( )2
effD kT e nρ= .                                  (21) 

The obtained results are presented in Figure 6. Here the resistivity ρ  dependence on the total free electron 
density in conduction band data have been taken from [25]-[28], and the effective density effn  of randomly 
moving electrons has been used from Figure 5. 

The increase of the diffusion coefficient of randomly moving electrons at 19  10n>  cm−3 is due to the increase 
of the average kinetic energy of the randomly moving electrons (Figure 3). 

From Equation (15) follows that the drift mobility of randomly moving electrons can be obtained from the 
conductivity σ  or resistivity ρ  measurement results [25]-[28], when the dependence of the density of 
randomly moving electrons effn  on the total density of the free electrons (from Equation (3)) is taken into 
account: 

( ) ( )1drift eff effen e nµ σ ρ= = .                             (22) 

Comparison of drift and Hall [25] [26] mobilities for donor-doped silicon is presented in Figure 7. It is seen 
that the drift mobility of randomly moving electrons in silicon at high doping levels can be many times higher 
than the Hall mobility. 
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Figure 2. Illustration of energy dependent functions ( ) ( ) ( ),g E g E f E  and                

( ) ( ) ( )( )1g E f E f E−  for donor-doped silicon at three normalized Fermi energy values 

FE kTη∗ = : 0,  10  and 20 at 300T = K. The area under the curve ( ) ( )g E f E  
represents the total density of free electrons n  in conduction band (Equation (3)), and the 
shaded area represents the effective density of randomly moving electrons effn  (Equation 

(5)). Here for nSi  ( ) ( )( )1 23 2π 2dn dng E m m E=   with 01.08dnm m= .                    

 

 

Figure 3. Fermi energy FE  and average kinetic energy E  of randomly moving electrons 
as a function of the total free electron density in  nSi  at room temperature.                 

 

 

Figure 4. Ratio between the effective density of randomly moving electrons effn  and the 
total density of free electrons n  as a function of total density of free electrons in nSi  at 
room temperature.                                                               



V. Palenskis 
 

 
129 

 

Figure 5. Dependence of the effective density of randomly moving electrons effn  on the total 
density n  of free electrons in nSi  at 300T =  K.                                   

 

 
Figure 6. The diffusion coefficient of the randomly moving electrons dependence on the total 
density of the free electrons in the conduction band of nSi  at room temperature.            

 

 

Figure 7. Hall Hallµ  (dash line, data from [25] [26]) and drift driftµ  (solid line) mobilities as 
functions of the total density of free electrons in nSi  at 300T =  K.                     

 
The electron relaxation time at the Fermi level at room temperature is the same for all homogeneous metals 

and highly degenerate semiconductors and equals [29]: 

( )F kTτ =  ;                                    (23) 

where 2πh=  is the Plank constant. At highly degenerate nSi  the Hall mobility of electrons 92Hµ ≈  
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cm2/Vs (Figure 7), it corresponds to ( )00.5m m∗ = , while the drift mobility can be many times higher, because 
it also depends on the kinetic energy of the randomly moving electrons. The relaxation time dependence on the 
total density of free electrons in nSi  at 300T = K, defined by using mobility data (Figure 7) and Equations 
(14) and (23) is presented in Figure 8. Here the effective mass of conduction of nSi  00.26m m∗ =  [25] [26] 
for 1710n ≤ cm−3, and 00.5m m∗ ≈  for 1910n >  cm−3. The relaxation time dependence on the total density of 
free electrons in conduction band can be approximated by such relation: 

( )13 171.5 10 1 1.5 10F nτ τ −= + × + × ;                          (24) 

here n  is in cm−3. 
a. c. conductivity usually is represented in the following form [24]: 

( )
1 j

σσ ω
ω τ

=
−

,                                  (25) 

and the relative permittivity for ( ) 1ω τ   as: 

( )
2 2

21 1p p
r j

ω ω
ε

ωω ω τ
= − ≈ −

+
;                              (26) 

where 
2

0
p

σω
ε τ

= .                                      (27) 

Here pω  is the plasma frequency. Accounting the basic Equation (15) for d. c. conductivity σ , the plasma 
frequency can be described as: 

2
2

0
p eff

e n
m εω α

ε ∗= .                                   (28) 

The plasma frequency dependence on parameter effn εα  for nSi  is shown in Figure 9. These results are 
near to that presented in [30]. 

The dielectric function (Equation (26)) vanishes at pω ω= , i.e. longitudinal vibrations (or the density 
oscillations of free electrons) of this frequency can appear in the electron gas even in absence of external 
excitations. 

Usually the plasma frequency is presented in the following form [24] [31] [32]: 
2

2

0
p

e n
m

ω
ε ∗= .                                   (29) 

For silicon the density of states in conduction band is expressed as [24] [33] 

( ) 3 2 2
π
dn

dn
m

g E m E=


,                              (30) 

01.08dnm m=  [32] is the effective mass of the density of states. In this case effn n εα= , for silicon, it is il- 
lustrated in Figure 10. As it is seen there is a good coincidence of digital values of these quantities. 

Though both Equations (28) and (29) give the same digital value of the plasma frequency, but it does not 
mean that all free electrons at high doping levels take part in collective oscillations. As it was shown for drift 
velocity (Equation (17)), the effective force acting to randomly moving electron in materials with highly 
degenerate electron gas is εα  times higher than in non-degenerate case. Equation (28) is valid only then, when 
the average kinetic energy of electron ( )3 2E kT= . Coincidences of digital results from Equations (28) and 
(29) for highly degenerate materials are only then, when the Fermi surface is spherical or the density of states is 
parabolic. For materials with composite density of states (with non-spherical Fermi surfaces) Equation (29) is 
not valid [24] [34]. In principle, the expression (29) is misleading, because from it follows that all free electrons 
at high degenerate of electron gas take part in plasma oscillations. But this is not true, because the applied 
external electric field can only change the energy of randomly moving electrons, which energy is located near 
to the Fermi energy, while the contribution due to the electrons located deep below the Fermi level 
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Figure 8. Relaxation time dependence on total density of free electrons in 
nSi  at 300T =  K. 142.6 10 sFτ

−≈ × .                                
 

 
Figure 9. The plasma frequency dependence on parameter effn εα  for nSi .   

 

 
Figure 10. The parameter effn εα  dependence on the total density n  of free 
electrons in nSi .                                                  

 
is near to zero due to limitations of the Pauli principle. 

Terahertz (THz) plasma frequency range (see Figure 9) of silicon is very important for science and tech- 
nology [32] [35]-[38]. In [31] [39], it is shown that reflectivity of electromagnetic waves has a minimum near to 
plasma frequency, and there the absorption by free charge carriers is increased [40]. This effect is used for THz 
radiation detection and fabrication of THz imaging cameras with plasma-wave-based silicon MOSFET detectors 
[41] [42]. 
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4. Conclusions 
This work tries to attract attention to interpretation of transport properties of degenerate semiconductors and to 
possible large errors caused when classical statistics is applied for estimation of transport parameters for heavily 
doped silicon. The general expressions for effective density of randomly moving electrons, their diffusion 
coefficient, drift mobility, and conductivity are presented and illustrated for electrons in silicon. The calculated 
values of effective density of randomly moving electrons, their diffusion coefficient, drift mobility, and plasma 
frequency for donor-doped silicon at any degree of degeneracy there are presented at room temperature. The 
comparison between the hall mobility and the drift mobility of randomly moving electrons is made and their specific 
behavior at high level of degeneracy is explained. The presented general expressions are valid for holes as well. 

It is unambiguously shown that under equilibrium conditions the Nyquist formula, and the Einstein relation 
are always fulfilled for one type of charge carriers in homogeneous materials. The form of relation does not 
depend on the non-parabolicity of conduction band or on mechanism of scattering of charge carriers: The ex- 
pressions of the Nyquist formula and the Einstein relation remain the same. 
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