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1. Introduction

The asymptotic behavior of solutions of elliptic equations in unbounded domains with some outlets at
infinity was considered in [10], for the elasticity equations in [12], for the Stokes and Navier—Stokes equations
in [4,5,11,16-18] and for the viscoelastic flows [19].

To our knowledge these results have not been generalized for the case of non-Newtonian flows with the
viscosity dependent on the shear strain rate, dependence which is typical for hemorheology (see [5], pp. 8489,
196-200). On the other hand these theorems are important tools for an asymptotic analysis of non-Newtonian
flows in thin structures (modeling blood circulation in blood-vessel network or oil transport in pipelines).
Namely they describe the boundary layers appearing at bifurcation zones (see [13,14] for Newtonian flows).
The paper [3] justifies the first approximation for the Bingham flow, however the boundary layers there are
not yet constructed.

In the present paper the non-Newtonian flow with viscosity depending on the shear strain rate is considered
in domains with outlets and their asymptotic behavior at infinity is studied. Such special form of the rheology
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requires important modifications in the existing technique of an asymptotic analysis of the behavior of
solutions of the Navier—Stokes equations at infinity. We prove the existence and uniqueness of solutions as
well as their exponential stabilization at infinity in the outlets to some analogue of the Poiseuille flow.

The paper has the following structure. Section 2 is devoted to the mathematical analysis of the quasi-
Poiseuille flow for the rheology involving the viscosity depending on the shear strain rate. A Poiseuille flow
is an exact solution to the equations of the fluid motion (Stokes, Navier—Stokes) in an infinite cylinder with
the no slip condition at the boundary, with a linear pressure with respect to the longitudinal variable, and
with the velocity vector having only longitudinal component (called normal velocity) different from zero;
this normal velocity depends only on transversal variables. A quasi-Poiseuille (or Hagen—Poiseuille) flow
is an exact solution having the same structure and corresponding to some non-Newtonian rheology. Such
flows for various rheologies were studied in [5-7,20,21]. We introduce the parameter A, the coefficient of the
non-linear part of the viscosity as function of the shear rate. We prove the existence of a positive constant Ag
such that for all A < Ag there exists a quasi-Poiseuille flow for any given pressure slope (Theorem 2.1). We
prove some auxiliary properties of the quasi-Poiseuille flow used further for the analysis of the problem set
in a domain with outlets. In Section 3 we prove the Poincaré—Friedrichs and Korn’s inequalities in weighted
Sobolev spaces Lemmata 3.1 and 3.2, give the weak formulation for the problem of non-Newtonian flow
with viscosity depending on the shear rate in a domain with outlets and for any A < Ay we prove the
existence and uniqueness of a solution, first in the classical Sobolev space Hi (Theorem 3.4) and then in
weighted Sobolev space (Theorem 3.5); this implies an exponential stabilization of the velocity to the quasi-
Poiseuille flows in the outlets. Section 4 is devoted to the Dirichlet’s boundary value problem in a domain
with one outlet at infinity. First we prove that the boundary value function can be extended to the whole
domain (with a divergence free extension, Lemma 4.1), then set the problem, give its weak formulation
and prove the existence and uniqueness of the solution in the classical and weighted Sobolev spaces
(Theorems 4.2 and 4.3).

2. Non-Newtonian Poiseuille flow

Let n = 2,3, 15, A > 0 be positive constants. Let o be a bounded domain with Lipschitz boundary in R* 1.
Let v be a bounded C'-smooth function R?"~3 — R such that for all y € R?"73 |v(y)| < C, |[Vv(y)| < C
and |V (v(y)y)| < C where C is a positive constant.

Consider the Dirichlet boundary value problem for the equation:

—div((vo + Av(¥(u)))D(u)) + Vp=0, e Rx 0,
divu=0, e R x 0o, (1)
u=0,z€dRxo),

where o is a cross-section of the cylinder R X o, D(u) is the strain rate matrix with the elements

I ou; . . . .
dij = %(gx; + sz)’ ”y(u) = (dlg,d137d23) if n =3 and ’y(u) = dlg if n =2.

Define a quasi-Poiseuille flow as a solution to the following problem: find the couple (V pn, Ppe) such that
Vpa(r) = (vpa(z'),0,...,0)T, and Ppy(z) = —ax1 + 3, a, B € R, 2’ = (22,...,7,), where vp, satisfies

1
—5divar (0 + W (3P (wpa)) Varvpa) = o, @' €0,
2)

vpe =0, 2’ € 0o ,

where 4p(vpy) = %Vm/vpa ifn=2,9p(vps) = (%Vz/vpa,O) if n=3.



216 G. Panasenko and B. Vernescu / Nonlinear Analysis 183 (2019) 214-229

Let us remind that the classical steady form of Poiseuille flow is the couple (V pq, Ppy) in the case A = 0.
In this case function vp, is the solution to the Dirichlet boundary value problem

Vo
—?Avpa =a,7' €0, vpe =0,2' € do.

In particular, if o is a disc of the radius R then vp, = ﬁ(R2 —r2) in polar coordinates.

Let Cpp, be the Poincaré—Friedrichs inequality constant for o, so that for any function u €
H(0), llullgi(oy < Crro|Varull 2 (o)

Theorem 2.1. There exists Ao such that Voo € R,V € [0, Ag) there exists a unique solution to problem (2)

from the Sobolev space H} (o). It satisfies the estimate

« 14
| |CO 0

< Ll e 10 S
lopallio) < Crro O35 3)

where the constant CO depends on o only.

Proof. Let us use a Banach fixed point theorem argument.
Let L be the operator Hi (o) — H} (o), such that for any U € H} (o), LU is a solution to the problem

—%diVII(VOle(LU)) = %div(()\l/(ﬁp(U)))Vgc/U) +a, €0,
(4)
LU =0, 2/ € 0o,

If Ul, U, € H&(O’) then
Ve (LUL) = (LU2)) | 20y < %llV(WP(Ul))WP(Ul) —v(p(U2))7p(U2) | L2(0)

2\ . . 2\
< 700||'YP(U1) =9 (U2)|12(0) = 700||Vm'(U1 = U2)ll12(5)-

2)\C
Yo

Let Ag be equal to 52, then VA < Xg, L is a contraction with the contraction factor ¢ = and there

exists a unique solution.
Taking an initial approximation as 0 we get, as a consequence of the Banach fixed point theorem, the
estimate:

1
IVaorallao) < o IVar L0l
Consider the Dirichlet problem for uy = LO0:
—1pAuy =2, ' €osug =0, 2’ € 0o (5)

There exists a constant C depending only on o, such that [[ug | 71,y < %02. (Moreover, it follows from

the ADN theory [1] that if 9o € OV then there exists a constant C¥, depending on ¢ and N only, such
that [luollyn () < l}%Cé_V). So, [V LO|| 12(5y) < %‘Cg. Applying the Poincaré-Friedrichs inequality, we get:

laf o 1
||UPozHH5(a) < CPFUV*OCJE~

The theorem is thus proved.

Corollary 2.2. Let 9o € C%P and let the function v be of the class C*(R®*"~3). There exists Ay such that
Yo € R,VA € [0, \2) there exists a solution to problem (2) from the space C*# (o).
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Proof. The proof follows from [9] Chapter 4, Theorem 8.3.

Define F, = [ vpq(x')dz’ the flux corresponding to the pressure slope a. Note that the case of a
Newtonian flow (the steady form of Navier-Stokes or Stokes equations) F,, is proportional to a. Here this
is not the case.

Lemma 2.3. Let A < A\g. Then vp, is continuous with respect to a in the norm [|Vyr - || 12(,).-

Proof. Let vpy, and vp,, be solutions corresponding to o = a; and o = ap respectively. Then as in the
proof of Theorem 2.1 we get

”Vm’(vpal - UPOQ)HL2(<7) <
20 . . . A
Vfolll/(“yp(vPal))VP(vPozl) — (9P (vPay))¥P(VPas )l L2(0) + ;0\041 — az|vmeso,

and for A < g,
20 N1
1900y = vpay)lz2c0) < (1= 7€)

and this estimate completes the proof.

A
—|ag — aglv/meso,
0

Corollary 2.4. F, is continuous with respect to c.
Corollary 2.5. sgn(F,) = sgn(a).
Proof. Indeed,
/U avpa(e)da! = — /(, S (00 + Wi (0pa)) Vorvpa oo (2!’

1
= / 5(1/0 + )\V("yp(vpa)))vzlﬂpa : Vw/vpa(x')dx/ > 0.
Lemma 2.6. Let A < min (A, W) For any F € R there exists a unique pair (Vpq, ) satisfying (2)
such that F, = F. There exists a constant Cyy such that for any F € R,

loPallr(o) < CoolFl, [a] < Cool F.
(o)

Proof. Let us define Hi(o) = {p € H}(0)| [, pdz’ = 0} and let us use an equivalent formulation to
problem (2) that is (see [5], section 2.2.2, Proposition 21(ii)):

1 ~
/ 5 (0 + A(3p(vPa)))Varvpa - Varp)da! =0, Vi € Hy(o)

vpa € HY(0), /Upadx' =F, (6)

o

2

where x € H'(0), such that, [ x(z')dz’ =1.
Let Ac C3°(0), a=FA, [ A(x)dz' =1.
Consider now the problem: find u € H} (o) such that

1
4= / (v + Aw(¥p(vPa)))Varvpa - Varx)de!,

/((1/0 + A (yp(u+a)) Ve (u+a) - Vyp)ds' =0, Yo HY (o),
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i.e.

/ VoVt - Vyrpdr = — / / voVyra -V ods

‘/ A (3p(u+ )V (u+ a) - Vrpde!, Vi € HY (o). (7)

Applying the Banach fixed point theorem and the Riesz representation theorem we get the existence and
uniqueness of a solution u € H} (o). Then vp, = u + a.

Let us prove the estimates. We get:

lvpallgt (o) < lullgi oy + lall g )
Next the norm |[ul| g1(, is evaluated using identity (7) by taking ¢ = u, we obtain

IVul32i, <11Vl IVall 2o

Myg +C
+ 20D 190+ 1V l20) Va2 ®)

Applying the Young inequality to the products of norms in the right-hand side and taking A less than

o .
ooy Ve obtain

(1/D[Vulli2,y < 64ValZs,- ©)

This estimate implies the estimate for the H'-norm of v,. Then this estimate with (6)5 is used for evaluation

of a. The lemma is proved.

3. Existence, uniqueness and stabilization of a solution to the non-Newtonian flow equations in an
unbounded domain with cylindrical outlets to infinity

Consider the domain {2 C R™ with J cylindrical outlets to infinity, i.e., 2 = 2y U (Uizlﬂ(k)), where
2y is a bounded domain, 2y N NW = @ for I € {1,...,J}, 2B N RO =@ for k £ 1, k,l € {1,...,J},
and the outlets to infinity 2*) in some coordinate systems z(¥) = (chk), ) having the origins within the

boundary of domain {2y are given by the relations
0% = {2 e R, 2® € gy, 2 >0,

where o, are some bounded domains in R”™™!, cross-sections of the cylinders. Assume that for any
k€ {1,...,J} there exists a 6, > 0 such that the cylinder {z*) € R?, z(*) € g}, , =6 < xgk) < 0} C .
Denote d, the maximal diameter of the cross-sections oj. We assume that the boundary 942 is Lipschitz
and that the common part of the boundaries 02 N 942 # () and has a positive measure. In particular, {2
can be just a semi-infinite cylinder: 2 = {x € R, 2/ € 0 C R"~! 21 > 0}. Evidently there exists a positive
real number R > d,, such that the ball B = {z € R", || < R} contains (.
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Let us define in {2 as usual, weighted function spaces. Denote 5 = (f1,...,8) and set
1 x € -QO
Eg(x) =13 ) 10
5() {exp(Zﬁkxgk)), re® k=1 J (10)

Denote by Wé’Q(Q), [ > 0, the space of functions obtained as the closure of C§°(£2) in the norm

! 1/2
o 2
iz = <Z._o | Bo@Ipruto)p ds)

and set WE’Q(Q) = L3(12). Notice that for 8, > 0 elements of the space WéQ(Q) exponentially vanish as

xgk) — 00.

Lemma 3.1 (Poincaré—Friedrichs Inequality in WéQ(Q)) There ezists a constant Cppg independent of 3,
such that for any function u € WéQ(Q) the inequality holds:

2 2
u < Cpro|lVu .
H ||£%(Q) PF || HE%(-Q)

Proof. As the subdomain (2, has a common part of the boundary with {2, we apply the standard Poincaré—
Friedrichs inequality. Then for any k we consider the cylinders Qﬁ(k )K L =02®n {x&k) € [K,K+1)} and

integrate from x§’“) =K to mgk) = K + 1 with the weight E3 the standard inequality

ull72y ) < (CProy IV ooyl 2(0,))°-
(ok)

Finally we add all these inequalities for all £ and K and for {2 and get the assertion of the theorem.

Lemma 3.2 (Korn’s Inequality in the Weighted Space Wéz(())) Let 3 be max,<p<y Br. Then there exists
a constant Cg, independent of B, such that for any vector-valued function N € Wé’g((}) the inequality holds:

/ Ey(2)|VN[2da < Ce?? / Es(2)D(N) : D(N)da,
2 2
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where : is the Hadamard product, i.e. for two n x n matrices A and B, A : B is the n X n matriz having
entries (A : B);; = A;jB;j, where A;; and B;; are the entries of matrices A and B respectively.

Proof. First for the subdomain (2 we apply the standard Korn’s inequality, then for any k we apply
the standard Korn’s inequality for a cylinder (0,1) x o} with constant Cs,, to the cylinders Qi((k )K =
[l Qe {a:(lk) € [K,K 4 1)} as follows:

/ W Es(@)|VNPdr < / W {26 + 1)) VNPd

K,K+1 QK K41

exp{20,(K +1 }C(,k/

AN

(k) D(N) : D(N(z))dz

(z)D(N) : D(N(z))dz.

IA

emp{QBk}Cgk/(k)
KK+1

Finally we derive the assertion adding all inequalities for cylinders Q[(éc )K 41 and for (o) and taking Cp
as maximum of all constants C,, and the Korn’s constant for {2y. The lemma is proved.

Let us define the cut-off functions yj, associated to each outlet 2(®) as a C?-smooth function vanishing

everywhere in 2 except for the branch 20), where it depends on the local longitudinal variable ;vgk) only,
vanishes if xgk) < 1 and is equal to one if x(lk) > 2.
Remark 3.3. Define
1, x €,
K )
B (z) = exp(2B8,a), ze® 2P <K k=1, (11)

exp(26:K), € Q(k),xgk) >K, k=1,...,J,
Then in the same way we can prove that
/ B (2)| VNP dz < CQe2B/ E(2)D(N) : D(N)dz,
Q Q

and Cy, is independent of K. The Poincaré—Friedrichs inequality as well holds still true:
/E )N dm<CpFQ/ B ()| NP da

Consider a weak formulation of the following main problem:

J J
—div((vo + A(H(N + > x;Vpa,))) DN+ X;Vpa,))
j=1 J=1

n
of;
ZXJ ozjxl —fo—;la—xi,xeﬁ,

J
div(N+ Y " x;jVpa,) =0, z€ 2,
j=1

N=0, €002,
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which is: find N € HE (), such that for any vector-valued divergence free test function ¢ € C§°(£2)

(satisfying divy = 0),

J

J
/Q (0 + N+ 3 x5 Ve )DN+ 3 x;Via, ) : D()—
j=1 j=1

o
oz, )da: ) (13)

J n
V(ij%ng))wdx: /Q(fO'<P+Zfi'
J=1 i=1

J
div(N+) x;jVpa,) =0, € 2.

Jj=1

Denote the linear combination of quasi-Poiseuille flows V, = Z‘jlzl x;V Paj P, = ijl Xjajxgj ).

Theorem 3.4. Let

F;, 7 =1,...,J, be given fluzes, such that ijl F; = 0. Let Vpal,...,Vpaj be

the quasi-Poiseuille flows in the branches 2U) of the domain 2 corresponding to the given fluzes. Let A be
positive number satisfying the condition

Vo

A< . 14
och (14)
Then problem (13) admits a unique weak solution N € Hg(£2).
Proof. Rewrite the variational formulation in the form
/ voD(N) : D(p)dx +/ AW(¥(N +V,))D(N) : D(p)dz
2 2
+ [ MEGN+ V) = (VIDVY) : D)

(15)

and

Note that

+ /Q wD(Vy) : D(¢) + A (H(V))D(Vy) : D(g) — VP, - pda

=/Q(fo-so+§fi-gz)dw7

diviN = —div(V,),z € (2.

/ (0 D(Vy) : D) + A(1(Vy))D(Vy) : D(¢)) dz */ VPy - pdx
i) 0

= 7/9 (div(l/oD(Vx)> + div()\z/(f'y(VX))D(VX)) + VPX> - pda,

where the integrand function vanishes outside the ball Bryo and so has a finite support.
Applying the theorem on the divergence equation (see [2,4,8,15]) we can construct a vector valued function
® € H} () with a support within 2 N Bgya such that

div® = —div(Vy),z € 2.
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Note that the right-hand side here has a finite support because divV Pa; =0 where x; = 1.

Let us introduce a new unknown function N = N + é. Then clearly, divIN = 0, so that problem (12) is
reduced to the corresponding problem for the divergence free unknown N. The existence and uniqueness of
a solution is proved by a Banach fixed point theorem argument with A\ satisfying condition (14).

Define space Hpy,o(£2) = {u € Hj(2),divu = 0} supplied with the norm [|[Vul| 2.,y and operator
L:HY (2) = Hj,o(2) such that for any given N € H}, ,(2), LN is a solution to the problem: for any
vector-valued test function ¢ € C5°(£2), such that divy = 0,

/VOD(EN):D(@)dx+/ MW (¥(N +V,)D(N +V,) : D(p)dx
2 2
—s—/ﬂz/oD(VX):D(@)dx—/QVPX~g0dx (16)

/(f0 ¢+Zf (pdx—i-/QyOD(@):D(gp))dx,

where N =N — ®.
Let us check that £ is contraction for small values of \. Let N, Ny € H;wo(ﬁ), denote M their difference,
then the difference Q = £LN; — LN, satisfies the problem:
[ #D(@): Do+ [ A(vHN+ V)DL + V) -
Q Q
—1(5(N3 + Vy))D(N + V) ) : D()dz = 0

for any vector-valued test function ¢ € C§°(2), such that divgp = 0, where N; = N, — &.
So,

|/ voD(Q (p)dx| <)\C/ |ID(M) : D(¢p)|dz.

Since C§°(2) is dense in H}(2), taking ¢ = Q and applying Korn’s inequality we get:
V0||VQ||2Lz(Q) <Cq /Q wD(Q) : D(Q)dz < ACCq|[ VM| 12 IVQIl 20y
So, we proved that operator £ is a contraction for A satisfying (14). Then the theorem is proved.

Let us define L as the sup,eonp, ., [D(Vy)|-

Theorem 3.5. Let F;, j=1,...,J, be gz'ven fluzes, such that Z‘] F; = 0. Let Vpay,..., Vpa, be
the quasi-Poiseuille flows in the branches 20) of the domain 2 corresponding to the given fluzes. Let
fo,...,fn € E%( ). Let A be positive number satisfying the condition

A<

) 1
CCq 4L} (18)

Then there ezists a positive 3° independent of fi,i = 0,...,n,F;,j = 1,...,J, such that if for all
i=1,...,J,0< Bl <pY then N € W1}2(!2) and satisfies the following estimate:

n J—-1
NItz ) < Cra (foll ez e + D18l e3ca + 3 IF31). (19)
i=1 j=1

where Cry is a positive constant independent of f;,1 =0,...,n, and Fj,j=1,...,J.
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Proof. The proof is similar to the one of Theorem 3.2 of the paper [18]. Namely, let us take in integral
identity (13)p(z) = EéK)(a:)N + W) (), where W) is a vector field constructed in Lemma I1.1.13 of [18]
that we cite here for the reader’s convenience:

Lemma 1.1.13. Let u € H}(2), divu = 0 and f% u-nds =0,k =1,...,J. Then there exists a vector-
valued function W) € HY(02), such that

suppWE) c Uj_ {z € Q(k),xgk) <K}

and

divW ) () = ~div(ES" (z)u(z)), z € Q.

Moreover, there holds the estimate
/Q EY) (@) VW) ()P da < er? /Q B (a) u(z) Pdx
<o [ BO@)Vu(o)Pds
with constant ¢ independent of K and u, and v, = 2max{f1,...,5s}.
We can then define p(z) = EéK)(a:)N(x) + WE)(2); we get: divp =0, ¢|ogp =0 and
/Q wD(N) : D(ES® (2)N(z) + W) (2))dx (20)
+/Q W(H(N =@+ V,))D(N) : D(ES® (2)N(z) + W) (2))dx
- /Q (div(VOD(VX))+div(Am(VX)D(VX))+VPX> (BSR4 W) de

+ / )\(u(ﬁ"(N ~-®+V,))) - V(W(VX)))D(VX) : D<EéK)N W)y

- )R 4 W)
:/ (f() . (EéK)(a:)N(x) +W(K)(x)) n Zfi . 8(Eﬁ 1;+W ))dm
Q -

+ /Q voD(®) : D(ES (2)N(z) + W(K;(;))dx
+ /Q MW(H(N @ +V,)D(®) : DIES (2)N(z) + W) (z))da .
Let us bound from below the term
/f2 v B (z)D(N(x)) : D(N(z))dx
+ /Q MBS (@)v(3(N = @ + V,))D(N(2)) : D(N(x))da
Vo

=5 | EJ)(2)D(N(x)) : D(N(x))dx

and bound from above all other terms. Let us start with the right-hand side of (20). Using Hélder inequality
and Young e-inequality, the above cited Lemma 1.1.13 and weighted Poincaré and Korn inequalities for
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H}(£2) (without loss of generality we can consider £ < 1) we get

(BY) (2)N(z) + W) (2))

) "9
(K) (K) B
(BY) (@)N(2) + W £, . d
I/ ) + (7)) + E oz, x|
,4€/E(K (|f| +§ |f|2)dx+5 /EK) )N da
+ e /E D(N(z))dz + 7 /EK) )N ()2 da

/E<K )|w<K | dm+/ EY) (z) vWH)| dx))

<z, <|f| *3 )i
N

+ e /E(K N(2)) : D( (x))dx—l—/E(_I;)(x)|VW(K)|2dm)
< 415/ E) (2 )<|f0|2+;|fi|2>dz+c;;s/gEéK)(x)D(N(x)):D(N(:c))dar.

In the same way we evaluate the term

|- /Q (div(yoD(VX)) + div()\y("y(VX))D(VX)) + VPX> (B (@)N(x)
W () + /Q v D(®) : D(ES (2)N () + W (2))da
+ / MW (Y(N — @+ V,))D(®) : D(EgK)(x)N(x) + W) (2))dz|

2

where

fo(x) = div(uoD(VX)) + div(Ay@(vx))D(vx)) +VP,, E(z)=
Now we evaluate the terms:
| / wD(N N()(VES) (@))" + VES (2) (N(2))" ) d

Q)\ v(3(N = @ + V,))D(N()) : %(N(m)(VEgK)(x))T+VEéK)(x)(N(x))T>dx

+ /QZ/OD(N(x)) : D(W(K)(x))der/Q)\u(ﬁ(N —® 4+ V,))D(N(z)) : D(WE)(2))dz|

< (w+20)( B @DNG) : DNGe )dz)’
2 /EK) )| VW] d:p)%)

< (e[ B @INPan)” +

<. | B (@) DON(a) : DN(a)da,

[N

and finally

| / Mr(i(N(z) = @ + Vy)) = v(3(V))}D(V
2

) : DES) (@)N(z) + W (2))dz|
<\ /Q CL(ID(N(z))| + [D(®(2))| D(ES (2)N(z) + W) ()| do

< /\CL/Q<’Y*|VN(1‘)||N($)|—|—|VN($)‘2)E[(3K (z) + |[VN(2)|[ VW) | da+
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n

L / B Z 2)ds + cae / ES (@) D(N(2)) : D(N(x))da

< ACL ( /Q B (2)VN(z) : VN(m)dxf

x <cm(/QEgK>(x)|N|2dx) +cs(/QE(_K)( )| VW E |dm)%>
+ \CL /Q B (2)VN(z) : VN(z)dz

Nl

< (coms + ACLCy + c52) /{ B (@) DN () : DIN(a))da

1 no
+ 1 [ Y e
i=1

where constants ¢; are independent of Sy, Cy, is the Korn inequality constant.
These upper bounds for four terms yield the inequality

@/ EY)(2)D(N(2)) : D(N(z))dx
<5 [ @ (1l + o +Z|f| +2Z\f|)
+ (3cze + (c6 + o)y« + ACLCy) /E (z)D(N(z)) : D(N(z))dz.

and A\CLCq < 2. Choose € = ”0 , then from the last inequality we get

1%
Let 7+ < Totee o)

VO w . Es(@)D(N(z)) : D(N(x))da
Q] <K

”0/E<K D(N(z)) : D(N(2))d
2 n i ~ 2
<e [ ESO@)(Ifl + ol + Y 167 + 23 [ )do
2 i=1 i=1
2 B2 NS e 2 S
<e [ Ba@) (ol + ffol” + 3016 + 23 [l o
Q i=1 i=1

Since the right hand side is independent of K, we pass K — oo in this inequality and get

Y
8

- 9 n n -9
gc/ Eg(x) \f0\2+|f0| +Y B +2) I )dm.
2 i=1 i=1

Applying the weighted Poincaré and Korn inequalities we prove the assertion of the theorem. The estimate
(19) follows from this estimate and from the estimate for ® via the Poiseuille flows V pq; and so finally, via
the fluxes Fj (see Lemma 2.6).

Eﬂ( 2)D(N(z)) : D(N(z))dz

4. Existence, uniqueness and stabilization of a solution to the non-Newtonian flow equations in an
unbounded domain with one outlet to infinity and a non-homogeneous Dirichlet’s condition at some part

of the boundary

Consider the domain 2 = 2, U 2N, a particular case of the domain in Section 3. Denote I' =
202:\002W Iy = 002y N 9NWM) | assume that I'j is a cross-section of the cylinder 2(") and let g be a vector-
valued function belonging to the space HO1 / 2(F ) which is the space of traces of functions of H'({2y) vanishing
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at Iy, so that the support of function g belongs to I'. Define

u = inf U .
320 = sy o120

) 1

Lemma 4.1. There exists a divergence free extension g of g such that they coincide at I', § = Vp,
at I'y, where o is such that —ng -n = fo vpadx’, m is an outer normal vector, and such, that

Hg”Hl(Q(O)) < C4HgHH1/2(F), Cy > 0.

Proof. Let g € H'({)) be an extension of g € HY/?(I') vanishing at I’ and such that [|g]l g1 g, <
2||gll g1/2(y (this extension exists due to the definition of the H*'/?(I')-norm). Consider now a Poiseuille flow
function vp, such that the flux — [ g-n = | vpada’, and extend it in H'(£2) multiplying vp, by a function
depending on the longitudinal variable only, so that the extension ¥p, vanishes at the boundary except for
its part I';. Then using Theorem 2.1 and the relation (3) we prove that there exists a constant Cs5 > 0
depending on 2, vo, C; A such that [[Opal g1 (ay) < Csllgll g1/2(p)- Consider the vector-valued function Vpa
having the first component 9p, and other components equal to zero. Let h be a solution of the divergence
equation belonging to H{ (£2):

div h = —div (g + Vpa),

satisfying the estimate ||h|| 10, < Ce|| —div (ng\N/'pa)HLz(QO), Cs > 0, and so |[h|| 1) < C7||g||H1/2(p),
C7 > 0. So, we can take § = g + Vp, + h. So the lemma is proved.

Below we extend function g to the whole domain {2 taking it equal to its trace at I'; for all points of
W,

Consider a weak formulation of the following problem set in (2:

—div((vo + A(7(N +g))) D(N + g)) + V(P — ar1)

div(N+g) =0, z€ 2,

N=0, €00,

corresponding to a non-homogeneous boundary condition with a given velocity g at I'. Define a weak
solution as N € H}(£2), such that for any vector-valued divergence free test function ¢ € C§°(£2) (satisfying
dive = 0),
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[ 0+ AN+ ©)DIN +8): Dl) - agrdo
2

_ T o PRI (22)
_/Q(f" “”;f‘ axi)df”’

div(N+g) =0, z€ 0.
Note that condition div(N + g) = 0 is equivalent to divIN = 0.

Theorem 4.2. Let A be positive number satisfying the condition

Vo

A . 23
<cc, (23)
Then problem (22) admits a unique weak solution N € Hg(£2).
Proof. Rewrite the variational formulation in the form
/ voD(N) : D(p)dz +/ Av(¥(N +g))D(N) : D(p)dx+
10, Q
| A6+ ) = v(5(2) D@ : Dighdo

(24)

T /Q voDg : D(p) + \(3(8))Dg : D(g) — aprds

n

—/Q(f0~cp+2fi~68;i>dx,

=1

and

divN = 0,7 € 2.

The existence and uniqueness of a solution is proved by a Banach fixed point theorem argument with A
satisfying condition (14).

Define operator £ : H}, (£2) — H}. () such that for any given N € H}, (£2), LN is a solution to the
problem: for any vector-valued test function ¢ € C§°(§2), such that divp = 0,

/Q voD(LN) : D(p)dx + /Q A (¥(N +g))D(N + g) : D(p)dx

+/QV0Dg:D(90)_/Qa‘ﬂldx:/g(fO'SD+i_Zlfi' )daz.

Let us check that £ is contraction for small values of A. Let N1, Ny, € H éivo(()), denote M their difference,
then the difference Q = LIN; — LN satisfies the problem:
for any vector-valued test function ¢ € C5°(£2), such that divep = 0,

(25)

Oy
al’i

[ D(@): Do+ [ A(v3(N: + )P + )
0]

(7
~1(3(N2 +§))D(N2 + ) ) : D(¢)de =0

The end of the proof repeats the arguments of the proof of Theorem 3.4.
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Theorem 4.3. Letfy,...,f, € E%(Q). Let X\ be a positive number satisfying the condition

A< Amin{l,

oCo (27)

1
i’

Then N € Wé;2((2) with some positive components of 3 independent of f;,i = 0,...,n,g, and satisfies
the following estimate:

N0y < Cra(Ifoca ) + 2 I3, + el ey ). (28)
i=1
where Cpg is a positive constant independent of f;,i =10,...,n,g.

Proof. We repeat the proof of Theorem 3.5 with the following modification. Function g should be presented
in the form of the sum g = g(1 — x1) + x18, and then the term y;§ is treated as terms Xijaj in the proof
of Theorem 3.5 and the term g(1 — x1) respectively as the term —®. We use Lemma 4.1 to evaluate the

term g via ||g||H1/2(F).
Acknowledgment

The first author was funded by the European Social Fund according to the activity “Improvement of
researchers qualification by implementing world-class R and D projects” Grant No. 09.3.3-LMT-K-712.

References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations
satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959) 623-727, II, Comm. Pure Appl. Math., 17
(35-92) (1964).

[2] M.E. Bogovskii, Solutions of some problems of vector analysis related to operators div and grad, Proc. Semin. S.L. Sobolev
1 (1980) 5-40, in Russian.

[3] R. Bunoiu, A. Gaudiello, A. Leopardi, Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure, J. Math.
Pures Appl. (2018) http://dx.doi.org/10.1016/j.matpur.2018.01.001.

[4] P. Galdi, An Introduction to the Mathematical Theory of Navier—Stokes Equations, Springer, 1994.

[5] P. Galdi, R. Rannacher, A.M. Robertson, S. Turek, Hemodynamical Flows, Modeling, Analysis and Simulation, in:
Oberwolfach Seminars, V.37, Birkhduser, Basel, Boston, Berlin, 2008.

[6] N. Kloviene, K. Pileckas, Non-stationary Poiseuille-type solutions for the second-grade fluid flow, Lith. Math. J. 52 (2)
(2012) 155-171.

[7] N. Kloviene, K. Pileckas, The second grade fluid flow problem in an infinite pipe, Asymptot. Anal. 83 (3) (2013) 237-262.

[8] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach, 1969.

[9] O.A. Ladyzhenskaya, N.N. Ural’ceva, Linear and Quasi-Linear Elliptic Equations, Academic Press, New York, 1968.

[10] E.M. Landis, Second Order Elliptic and Parabolic Equations, Nauka, Moscow, 1971.

[11] S.A. Nazarov, B.A. Plamenevskiy, Elliptic Problems in Domains with Piecewise Smooth Boundary, Nauka, Moscow, 1991.

[12] O.A. Oleinik, G.A. Yosifian, On the asymptotic behaviour at infinity of solutions in linear elasticity, Arch. Ration. Mech.
Anal. 78 (1982) 29-53.

[13] G. Panasenko, Asymptotic expansion of the solution of Navier—Stokes equation in a tube structure, C. R. Math. Acad.
Sci. Paris 326 Série IIb (1998) 867—-872.

[14] G. Panasenko, K. Pileckas, Asymptotic analysis of the non-steady Navier—Stokes equations in a tube structure.l. The case
without boundary layer-in-time, Nonlinear Anal. Theory Methods Appl. 122 (2015) 125-168, http://dx.doi.org/10.1016/
j-na.2015.03.008.

[15] G. Panasenko, K. Pileckas, Divergence equation in thin-tube structure, Appl. Anal. 94 (7) (2015) 1450-1459, http:
//dx.doi.org/10.1080/00036811.2014.933476.

[16] K. Pileckas, Weighted L9-solvability of the steady Stokes system in domains with incompact boundaries, Math. Models
Methods Appl. Sci. 6 (1) (1996) 97-136.

[17] K. Pileckas, On the non-stationary linearized Navier—Stokes problem in domains with cylindrical outlets to infinity, Math.
Ann. 332 (2) (2005) 395-419.


http://refhub.elsevier.com/S0362-546X(19)30015-X/sb1
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb1
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb1
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb1
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb1
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb2
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb2
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb2
http://dx.doi.org/10.1016/j.matpur.2018.01.001
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb4
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb5
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb5
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb5
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb6
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb6
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb6
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb7
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb8
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb9
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb10
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb11
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb12
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb12
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb12
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb13
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb13
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb13
http://dx.doi.org/10.1016/j.na.2015.03.008
http://dx.doi.org/10.1016/j.na.2015.03.008
http://dx.doi.org/10.1016/j.na.2015.03.008
http://dx.doi.org/10.1080/00036811.2014.933476
http://dx.doi.org/10.1080/00036811.2014.933476
http://dx.doi.org/10.1080/00036811.2014.933476
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb16
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb16
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb16
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb17
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb17
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb17

G. Panasenko and B. Vernescu / Nonlinear Analysis 183 (2019) 214-229 229

[18] K. Pileckas, Navier—Stokes system in domains with cylindrical outlets to infinity. Leray’s problem, in: HandBook of
Mathematical Fluid Dynamics, 4, Elsevier, 2007, pp. 445—647, Ch. 8.

[19] K. Pileckas, A. Sequeira, J.H. Videman, Steady flows of viscoelastic fluids in domains with outlets to infinity, J. Math.
Fluid Mech. 2 (2000) 185-218.

[20] K. Rajagopal, A note on unsteady unidirectional flows of a non-Newtonian fluid, Int. J. Nonlinear Mech. 17 (5-6) (1982)
369-373.

[21] K. Rajagopal, A. Gupta, On a class of exact solutions to the equations of motion of a 2D grade fluids, J. Eng. Sci. 19 (7)
(1981) 1009-1014.


http://refhub.elsevier.com/S0362-546X(19)30015-X/sb18
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb18
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb18
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb19
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb19
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb19
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb20
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb20
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb20
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb21
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb21
http://refhub.elsevier.com/S0362-546X(19)30015-X/sb21

	Non-Newtonian flows in domains with non-compact boundaries
	Introduction
	Non-Newtonian Poiseuille flow
	Existence, uniqueness and stabilization of a solution to the Non-Newtonian flow equations in an unbounded domain with cylindrical outlets to infinity
	Existence, uniqueness and stabilization of a solution to the Non-Newtonian flow equations in an unbounded domain with one outlet to infinity and a non-homogeneous Dirichlet's condition at some part of the boundary
	Acknowledgment
	References


