A Limit Theorem for Twists of L-Functions of Elliptic Curves

Virginija Garbaliauskiené ${ }^{a}$ and Antanas Laurinčikas ${ }^{b}$

${ }^{a}$ Šiauliai University
P. Višinskio str. 19, LT-77156 Šiauliai, Lithuania
${ }^{b}$ Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
E-mail(corresp.): virginija@fm.su.lt
E-mail: antanas.laurincikas@mif.vu.lt

Received June 19, 2014; revised October 2, 2014; published online November 1, 2014

Abstract

In the paper, a limit theorem for weakly convergent probability measures on the complex plane for twisted with Dirichlet character L-functions of elliptic curves with an increasing modulus of the character is proved.

Keywords: characteristic transform, Dirichlet character, elliptic curve, L-function of elliptic curve, probability measure, weak convergence.

AMS Subject Classification: 11M41; 44K15.

1 Introduction

The present paper is a continuation of [5] and [7]. Therefore, we briefly remind the limit theorems for the modulus and argument for twists of L-functions of elliptic curves obtained in [5] and [4], respectively.

Let E be an elliptic curve over the field of rational numbers given by the Weierstrass equation

$$
y^{2}=x^{3}+a x+b, \quad a, b \in \mathbb{Z}
$$

with non-zero discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$. For a prime number p, denote by E_{p} the reduction of the curve E modulo p which is a curve over the finite field \mathbb{F}_{p}, and define $\lambda(p)$ by

$$
\left|E\left(\mathbb{F}_{p}\right)\right|=p+1-\lambda(p),
$$

where $\left|E\left(\mathbb{F}_{p}\right)\right|$ denotes the number of points of E_{p}. Let $s=\sigma+i t$ be a complex variable. Then the L-function of the elliptic curve E is defined, for $\sigma>\frac{3}{2}$, by

$$
L_{E}(s)=\prod_{p \mid \Delta}\left(1-\frac{\lambda(p)}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta}\left(1-\frac{\lambda(p)}{p^{s}}+\frac{1}{p^{2 s-1}}\right)^{-1} .
$$

In view of the Taniyama-Shimura conjecture which was proved in [1], the function $L_{E}(s)$ continues analytically to an entire function.

Now let χ be a Dirichlet character modulo q. Then the twist $L_{E}(s, \chi)$ of $L_{E}(s)$ with the character χ is defined, for $\sigma>\frac{3}{2}$, by

$$
L_{E}(s, \chi)=\prod_{p \mid \Delta}\left(1-\frac{\lambda(p) \chi(p)}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta}\left(1-\frac{\lambda(p) \chi(p)}{p^{s}}+\frac{\chi^{2}(p)}{p^{2 s-1}}\right)^{-1},
$$

and continues analytically to an entire function. Moreover, the function $L_{E}(s)$, for $\sigma>\frac{3}{2}$, can be rewritten in the form

$$
\begin{equation*}
L_{E}(s, \chi)=\prod_{p \backslash \Delta}\left(1-\frac{\lambda(p) \chi(p)}{p^{s}}\right)^{-1} \prod_{p \nmid \Delta}\left(1-\frac{\alpha(p) \chi(p)}{p^{s}}\right)^{-1}\left(1-\frac{\beta(p) \chi(p)}{p^{s}}\right)^{-1} \tag{1.1}
\end{equation*}
$$

where $\alpha(p)$ and $\beta(p)$ are complex conjugate numbers satisfying $\alpha(p) \beta(p)=p$ and $\alpha(p)+\beta(p)=\lambda(p)$.

Define two multiplicative functions $a_{z}(m)$ and $b_{z}(m), m \in \mathbb{N}$, where, for $p \nmid \Delta$ and $l \in \mathbb{N}$,

$$
\begin{aligned}
& a_{z}\left(p^{l}\right)=\sum_{j=0}^{l} d_{z}\left(p^{j}\right) \alpha^{j}(p) d_{z}\left(p^{l-j}\right) \beta^{l-j}(p), \\
& b_{z}\left(p^{l}\right)=\sum_{j=0}^{l} d_{z}\left(p^{j}\right) \bar{\alpha}^{j}(p) d_{z}\left(p^{l-j}\right) \bar{\beta}^{l-j}(p),
\end{aligned}
$$

while, for $p \mid \Delta$ and $l \in \mathbb{N}$,

$$
a_{z}\left(p^{l}\right)=b_{z}\left(p^{l}\right)=d_{z}\left(p^{l}\right) \lambda^{l}(p)
$$

where

$$
d_{z}\left(p^{l}\right)=\frac{\theta(\theta+1) \cdots(\theta+l-1)}{l!} \quad \text { with } \quad \theta=\frac{z}{2} .
$$

Suppose that the modulus q of the character χ is a prime number and is not fixed, and put, for $Q \geq 2$,

$$
\mu_{Q}(\ldots)=M_{Q}^{-1} \sum_{\substack{q \leq Q}} \sum_{\substack{x=x(\bmod q) \\ x \neq \chi_{0}}} 1, \quad \text { where } \quad M_{Q}=\sum_{\substack{q \leq Q}} \sum_{\substack{x=x(\bmod q) \\ x \neq \chi_{0}}} 1,
$$

χ_{0}, as usual, denotes the principal character, and in place of dots a condition satisfied by a pair $(q, \chi(\bmod q))$ is to be written.

Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S, and, on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, define the probability measure $P_{\mathbb{R}}$ by the characteristic transforms

$$
w_{k}(\tau)=\int_{\mathbb{R} \backslash\{0\}}|x|^{i \tau} \operatorname{sgn}^{k} \mathrm{~d} P_{\mathbb{R}}=\sum_{m=1}^{\infty} \frac{a_{i \tau}(m) b_{i \tau}(m)}{m^{2 \sigma}}, \quad \tau \in \mathbb{R}, k=0,1
$$

Then a limit theorem for $\left|L_{E}(s, \chi)\right|$ proved in [5] is of the form.

Theorem 1. Suppose that $\sigma>\frac{3}{2}$. Then $\mu_{Q}\left(\left|L_{E}(s, \chi)\right| \in A\right), A \in \mathcal{B}(\mathbb{R})$, converges weakly to the measure $P_{\mathbb{R}}$ as $Q \rightarrow \infty$.

In [3], a limit theorem for the argument of the function $L_{E}(s, \chi)$ has been proved. Denote by γ the unit circle on the complex plane, and let P_{γ} be a probability measure on $(\gamma, \mathcal{B}(\gamma))$ defined by the Fourier transform

$$
g(k)=\int_{\gamma} x^{k} \mathrm{~d} P_{\gamma}=\sum_{m=1}^{\infty} \frac{a_{k}(m) b_{-k}(m)}{m^{2 \sigma}}, \quad k \in \mathbb{Z} .
$$

Then the main result of [4] is the following statement.
Theorem 2. Suppose that $\sigma>\frac{3}{2}$. Then

$$
\mu_{Q}\left(\exp \left\{i \arg L_{E}(s, \chi)\right\} \in A\right), \quad A \in \mathcal{B}(\gamma)
$$

converges weakly to the measure P_{γ} as $Q \rightarrow \infty$.
The aim of this note is to consider the weak convergence of the frequency

$$
P_{Q, \mathbb{C}}(A) \stackrel{\text { def }}{=} \mu_{Q}\left(L_{E}(s, \chi) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

as $Q \rightarrow \infty$. In other words, we will obtain a limit theorem for the twists $L_{E}(s, \chi)$ as $Q \rightarrow \infty$ on the complex plane \mathbb{C}. This theorem joins Theorems 1 and 2 .

Let, for brevity,

$$
\theta_{ \pm}=\theta(\tau, \pm k)=\frac{i \tau \pm k}{2}, \quad \hat{\theta}_{ \pm}=2 \theta_{ \pm}, \quad \tau \in \mathbb{R}, k \in \mathbb{Z}
$$

On $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, define the probability measure $P_{\mathbb{C}}$ by the characteristic transform

$$
w_{k}(\tau, k)=\int_{\mathbb{C} \backslash\{0\}}|z|^{i \tau} \mathrm{e}^{i k \arg z} \mathrm{~d} P_{\mathbb{C}}=\sum_{m=1}^{\infty} \frac{a_{\hat{\theta}_{+}}(m) b_{\hat{\theta}_{-}}(m)}{m^{2 \sigma}}, \quad \tau \in \mathbb{R}, k \in \mathbb{Z}
$$

Theorem 3. Suppose that $\sigma>\frac{3}{2}$. Then $P_{Q, \mathbb{C}}$ converges weakly to the measure $P_{\mathbb{C}}$ as $Q \rightarrow \infty$.

2 Characteristic Transform of $P_{Q, \mathbb{C}}$

For the proof of Theorem 3, we apply the method of characteristic transforms of probability measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$. Thus, we start with a formula for the characteristic transform $w_{Q}(\tau, k)$ of the measure $P_{Q, \mathbb{C}}$. By the definition of $P_{Q, \mathbb{C}}$, we have that

$$
\begin{align*}
w_{Q}(\tau, k) & =\int_{\mathbb{C} \backslash\{0\}}|z|^{i \tau} \mathrm{e}^{i k \arg z} \mathrm{~d} P_{Q, \mathbb{C}} \\
& =\frac{1}{M_{Q}} \sum_{\substack{ \\
q \leq Q}} \sum_{\substack{\begin{subarray}{c}{\chi(\bmod q) \\
\chi \neq x_{0}} }}\end{subarray}}\left|L_{E}(s, \chi)\right|^{i \tau} \mathrm{e}^{i k \arg L_{E}(s, \chi)}, \quad \tau \in \mathbb{R}, k \in \mathbb{Z} \tag{2.1}
\end{align*}
$$

For arbitrary $\delta>0$, denote by R the half-plane $\left\{s \in \mathbb{C}: \sigma \geq \frac{3}{2}+\delta\right\}$. Then, in view of the Hasse estimate

$$
|\lambda(p)| \leq 2 \sqrt{p}
$$

and (1.1), we have that $L_{E}(s, \chi) \neq 0$ for $s \in R$. Thus,

$$
\left|L_{E}(s, \chi)\right|=\left(L_{E}(s, \chi) \overline{L_{E}(s, \chi)}\right)^{\frac{1}{2}}
$$

and

$$
\mathrm{e}^{i \arg L_{E}(s, \chi)}=\left(\frac{L_{E}(s, \chi)}{\overline{L_{E}(s, \chi)}}\right)^{\frac{1}{2}}
$$

Using the Euler product (1.1), we find that, for $s \in R$,

$$
\begin{aligned}
&\left|L_{E}(s, \chi)\right|^{i \tau} \mathrm{e}^{i k \arg L(s, \chi)} \\
&= \exp \left\{-\frac{i \tau}{2} \sum_{p \mid \Delta}\left(\log \left(1-\frac{\lambda(p) \chi(p)}{p^{s}}\right)+\log \left(1-\frac{\lambda(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)\right)\right. \\
&-\frac{k}{2} \sum_{p \mid \Delta}\left(\log \left(1-\frac{\lambda(p) \chi(p)}{p^{s}}\right)-\log \left(1-\frac{\lambda(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)\right) \\
&-\frac{i \tau}{2} \sum_{p \nmid \Delta}\left(\log \left(1-\frac{\alpha(p) \chi(p)}{p^{s}}\right)+\log \left(1-\frac{\beta(p) \chi(p)}{p^{s}}\right)\right) \\
&-\frac{i \tau}{2} \sum_{p \nmid \Delta}\left(\log \left(1-\frac{\bar{\alpha}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)+\log \left(1-\frac{\bar{\beta}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)\right) \\
&-\frac{k}{2} \sum_{p \nmid \Delta}\left(\log \left(1-\frac{\alpha(p) \chi(p)}{p^{s}}\right)+\log \left(1-\frac{\beta(p) \chi(p)}{p^{s}}\right)\right) \\
&\left.+\frac{k}{2} \sum_{p \nmid \Delta}\left(\log \left(1-\frac{\bar{\alpha}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)+\log \left(1-\frac{\bar{\beta}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)\right)\right\} \\
&= \prod_{p \mid \Delta} \exp \left\{-\frac{i \tau}{2} \log \left(1-\frac{\lambda(p) \chi(p)}{p^{s}}\right)-\frac{k}{2} \log \left(1-\frac{\lambda(p) \chi(p)}{p^{s}}\right)\right\} \\
& \times \prod_{p \mid \Delta} \exp \left\{-\frac{i \tau}{2} \log \left(1-\frac{\lambda(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)+\frac{k}{2} \log \left(1-\frac{\lambda(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)\right\} \\
& \times \prod_{p \nmid \Delta} \exp \left\{-\frac{i \tau}{2}\left(\log \left(1-\frac{\alpha(p) \chi(p)}{p^{s}}\right)+\log \left(1-\frac{\beta(p) \chi(p)}{p^{s}}\right)\right)\right. \\
&\left.-\frac{k}{2}\left(\log \left(1-\frac{\alpha(p) \chi(p)}{p^{s}}\right)+\log \left(1-\frac{\beta(p) \chi(p)}{p^{s}}\right)\right)\right\} \\
& \quad \times \prod_{p \nmid \Delta} \exp \left\{-\frac{i \tau}{2}\left(\log \left(1-\frac{\bar{\alpha}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)+\log \left(1-\frac{\bar{\beta}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)\right)\right. \\
&\left.\quad+\frac{k}{2}\left(\log \left(1-\frac{\bar{\alpha}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)+\log \left(1-\frac{\bar{\beta}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
= & \prod_{p \mid \Delta}\left(1-\frac{\lambda(p) \chi(p)}{p^{s}}\right)^{-\theta_{+}} \prod_{p \mid \Delta}\left(1-\frac{\lambda(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)^{-\theta_{-}} \\
& \times \prod_{p \nmid \Delta}\left(1-\frac{\alpha(p) \chi(p)}{p^{s}}\right)^{-\theta_{+}}\left(1-\frac{\beta(p) \chi(p)}{p^{s}}\right)^{-\theta_{+}} \\
& \times \prod_{p \nmid \Delta}\left(1-\frac{\bar{\alpha}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)^{-\theta_{-}}\left(1-\frac{\bar{\beta}(p) \bar{\chi}(p)}{p^{\bar{s}}}\right)^{-\theta_{-}} . \tag{2.2}
\end{align*}
$$

Here the multi-valued functions $\log (1-z)$ and $(1-z)^{-w}, w \in \mathbb{C} \backslash\{0\}$, in the region $|z|<1$ are defined by continuous variation along any path lying in this region from the values $\left.\log (1-z)\right|_{z=0}=0$ and $\left.(1-z)^{-w}\right|_{z=0}=1$, respectively.

In the above notation, we have that, for $|z|<1$,

$$
(1-z)^{-\theta_{ \pm}}=\sum_{l=0}^{\infty} d_{\hat{\theta}_{\mp}}\left(p^{l}\right) z^{l} .
$$

Therefore, equality (2.2) shows that, for $s \in R$,

$$
\begin{align*}
& \left|L_{E}(s, \chi)\right|^{i \tau} \mathrm{e}^{i k \arg L_{E}(s, \chi)} \\
& =\prod_{p \mid \Delta} \sum_{j=0}^{\infty} \frac{d_{\hat{\theta}_{+}}\left(p^{j}\right) \lambda^{j}(p) \chi^{j}(p)}{p^{j s}} \\
& \quad \times \prod_{p \mid \Delta} \sum_{j=0}^{\infty} \frac{d_{\hat{\theta}_{-}}\left(p^{j}\right) \lambda^{j}(p) \bar{\chi}^{j}(p)}{p^{j \bar{s}}} \prod_{p \nmid \Delta} \sum_{l=0}^{\infty} \frac{d_{\hat{\theta}_{+}}\left(p^{l}\right) \alpha^{l}(p) \chi^{l}(p)}{p^{l s}} \\
& \quad \times \prod_{p \nmid \Delta} \sum_{r=0}^{\infty} \frac{d_{\hat{\theta}_{+}}\left(p^{r}\right) \beta^{r}(p) \chi^{r}(p)}{p^{r s}} \prod_{p \nmid \Delta} \sum_{l=0}^{\infty} \frac{d_{\hat{\theta}_{-}}\left(p^{l}\right) \bar{\alpha}^{l}(p) \bar{\chi}^{l}(p)}{p^{l \bar{s}}} \\
& \quad \times \prod_{p \nmid \Delta} \sum_{r=0}^{\infty} \frac{d_{\hat{\theta}_{-}}\left(p^{r}\right) \bar{\beta}^{r}(p) \bar{\chi}^{r}(p)}{p^{r \bar{s}}} . \tag{2.3}
\end{align*}
$$

Let $\hat{a}_{z}(m)$ and $\hat{b}_{z}(m)$ be multiplicative functions with respect to m defined, for $p \nmid \Delta$ and $l \in \mathbb{N}$, by

$$
\begin{equation*}
\hat{a}_{z}\left(p^{l}\right)=\sum_{j=0}^{l} d_{z}\left(p^{j}\right) \alpha^{j}(p) \chi^{j}(p) d_{z}\left(p^{l-j}\right) \beta^{l-j}(p) \chi^{l-j}(p) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{b}_{z}\left(p^{l}\right)=\sum_{j=0}^{l} d_{z}\left(p^{j}\right) \bar{\alpha}^{j}(p) \bar{\chi}^{j}(p) d_{z}\left(p^{l-j}\right) \bar{\beta}^{l-j}(p) \bar{\chi}^{l-j}(p), \tag{2.5}
\end{equation*}
$$

and, for $p \mid \Delta$ and $l \in \mathbb{N}$, by

$$
\begin{equation*}
\hat{a}_{z}\left(p^{l}\right)=d_{z}\left(p^{l}\right) \lambda^{l}(p) \chi^{l}(p) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{b}_{z}\left(p^{l}\right)=d_{z}\left(p^{l}\right) \lambda^{l}(p) \bar{\chi}^{l}(p) . \tag{2.7}
\end{equation*}
$$

For $|\tau| \leq c$, with arbitrary $c>0$, and $l \in \mathbb{N}$, we have that

$$
\begin{align*}
\left|d_{\hat{\theta}_{ \pm}}\left(p^{l}\right)\right| & \leq \frac{\left|\theta_{ \pm}\right|\left(\left|\theta_{ \pm}\right|+1\right) \ldots\left(\left|\theta_{ \pm}\right|+l-1\right)}{l!} \\
& \leq\left|\theta_{ \pm}\right| \prod_{v=1}^{l}\left(1+\frac{\left|\theta_{ \pm}\right|}{v}\right) \leq(l+1)^{c_{1}} \tag{2.8}
\end{align*}
$$

where c_{1} depends on c and k, only. By the definition of the quantities $\alpha(p)$ and $\beta(p)$, we find that $|\alpha(p)|=|\beta(p)|=\sqrt{p}$. Thus, for $p \nmid \Delta$ and $l \in \mathbb{N}$, equalities (2.4) and (2.5) give the bounds

$$
\begin{equation*}
\left|\hat{a}_{\hat{\theta}_{+}}\left(p^{l}\right)\right| \leq p^{\frac{l}{2}} \sum_{j=0}^{l}(j+1)^{c_{1}}(l-j+1)^{c_{1}} \leq p^{\frac{l}{2}}(l+1)^{2 c_{1}+1} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\hat{b}_{\hat{\theta}_{-}}\left(p^{l}\right)\right| \leq p^{\frac{l}{2}}(l+1)^{2 c_{1}+1} \tag{2.10}
\end{equation*}
$$

It is known [6] that, for $p \mid \Delta$, the numbers $\lambda(p)$ take the values 1 or 0 . Therefore, in view of (2.6)-(2.8), for $p \mid \Delta$ and $l \in \mathbb{N}$,

$$
\begin{equation*}
\left|\hat{a}_{\hat{\theta}_{+}}\left(p^{l}\right)\right| \leq(l+1)^{c_{1}}, \quad\left|\hat{b}_{\hat{\theta}_{-}}\left(p^{l}\right)\right| \leq(l+1)^{c_{1}} . \tag{2.11}
\end{equation*}
$$

Now estimates (2.9)-(2.11) and the multiplicativity of the functions $\hat{a}_{z}(m)$ and $\hat{b}_{z}(m)$ yield

$$
\begin{align*}
& \left|\hat{a}_{\hat{\theta}_{+}}(m)\right|=\sqrt{m} \prod_{\substack{p^{l} \mid m \\
p^{l+1}+m}}(l+1)^{2 c_{1}+1}=\sqrt{m} d^{2 c_{1}+1}(m), \tag{2.12}\\
& \left|\hat{b}_{\hat{\theta}_{-}}(m)\right| \leq \sqrt{m} d^{2 c_{1}+1}(m) \tag{2.13}
\end{align*}
$$

where $d(m)$ denotes the divisor function. Since

$$
\begin{equation*}
d(m)=\mathrm{O}_{\varepsilon}\left(m^{\varepsilon}\right) \tag{2.14}
\end{equation*}
$$

with every $\varepsilon>0$, the above estimates show that the series

$$
\sum_{m=1}^{\infty} \frac{a_{\hat{\theta}_{+}}(m)}{m^{s}} \text { and } \sum_{m=1}^{\infty} \frac{b_{\hat{\theta}_{-}}(m)}{m^{\bar{s}}}
$$

converge absolutely for $|\tau| \leq c, k \in \mathbb{Z}$ and $s \in R$. Therefore, taking into account (2.3), we obtain that, for $|\tau| \leq c, k \in \mathbb{Z}$ and and $s \in R$,

$$
\begin{aligned}
& \left|L_{E}(s, \chi)\right|^{i \tau} \mathrm{e}^{i k \arg L_{E}(s, \chi)} \\
& \quad=\prod_{p \mid \Delta} \sum_{j=0}^{\infty} \frac{\hat{a}_{\hat{\theta}_{+}}\left(p^{j}\right)}{p^{j s}} \prod_{p \mid \Delta} \sum_{l=0}^{\infty} \frac{\hat{b}_{\hat{\theta}_{-}}\left(p^{l}\right)}{p^{l \bar{s}}} \prod_{p \nmid \Delta} \sum_{j=0}^{\infty} \frac{\hat{a}_{\hat{\theta}_{+}}\left(p^{j}\right)}{p^{j s}} \prod_{p \nmid \Delta} \sum_{l=0}^{\infty} \frac{\hat{b}_{\hat{\theta}_{-}}\left(p^{l}\right)}{p^{l \bar{s}}} \\
& \quad=\sum_{m=1}^{\infty} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}} \sum_{n=1}^{\infty} \frac{\hat{b}_{\hat{\theta}_{-}}(n)}{n^{\bar{s}}} .
\end{aligned}
$$

Substituting this into (2.1), we find that

$$
\begin{equation*}
w_{Q}(\tau, k)=\frac{1}{M_{Q}} \sum_{q \leq Q} \sum_{\substack{x=x \bmod q) \\ x \neq \chi_{0}}} \sum_{m=1}^{\infty} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}} \sum_{n=1}^{\infty} \frac{\hat{b}_{\hat{\theta}_{-}}(n)}{n^{\bar{s}}} . \tag{2.15}
\end{equation*}
$$

3 Proof of Theorem 3

For the proof of Theorem 3, we apply the following continuity theorem in terms of characteristic transforms for probability measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C})$). Let $P_{n}, n \in \mathbb{N}$, and P be probability measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$. We say that P_{n}, as $n \rightarrow \infty$, converges weakly in the sense of \mathbb{C} to P if P_{n} converges weakly to P as $n \rightarrow \infty$, and, additionally,

$$
\lim _{n \rightarrow \infty} P_{n}(\{0\})=P(\{0\})
$$

Denote by $w_{n}(\tau, k)$ the characteristic transform of the measure P_{n}.
Lemma 1. Suppose that

$$
\lim _{n \rightarrow \infty} w_{n}(\tau, k)=w(\tau, k), \quad \tau \in \mathbb{R}, k \in \mathbb{Z}
$$

where the function $w(\tau, 0)$ is continuous at the point $\tau=0$. Then, on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$, there exists a probability measure P such that P_{n} converges weakly in the sense of \mathbb{C} to P as $n \rightarrow \infty$. In this case, $w(\tau, k)$ is the characteristic transform of the measure P.

Proof of the lemma is given in [7], [8].
Proof of Theorem 3. Using formula (2.15), we will obtain the asymptotics for $w_{Q}(\tau, k)$ as $Q \rightarrow \infty$. Let $r=\log Q$. Then estimates (2.12)-(2.14) show that, uniformly in $s \in R,|\tau| \leq c$, and, for any fixed $k \in \mathbb{Z}$ and $\varepsilon>0$,

$$
\sum_{m>r} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}}=\mathrm{O}_{\varepsilon}\left(\sum_{m>r} \frac{1}{m^{1+\delta-\varepsilon}}\right)=\mathrm{O}_{\varepsilon}\left(r^{-\delta+\varepsilon}\right)
$$

and

$$
\sum_{m>r} \frac{\hat{b}_{\hat{\theta}_{-}}(m)}{m^{\bar{s}}}=\mathrm{O}_{\varepsilon}\left(r^{-\delta+\varepsilon}\right) .
$$

Substituting this in (2.15), we obtain that, for $s \in R,|\tau| \leq c$ and any fixed $k \in \mathbb{Z}$,

$$
\begin{aligned}
w_{Q}(\tau, k)= & \frac{1}{M_{Q}} \sum_{\substack{q \leq Q}} \sum_{\substack{x=x(\bmod q) \\
x \neq \chi_{0}}}\left(\left(\sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}}+\mathrm{O}_{\varepsilon}\left(r^{-\delta+\varepsilon}\right)\right)\right. \\
& \left.\left(\sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_{-}}(n)}{n^{\bar{s}}}+\mathrm{O}_{\varepsilon}\left(r^{-\delta+\varepsilon}\right)\right)\right)
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{M_{Q}} \sum_{q \leq Q} \sum_{\substack{x=x(\bmod q) \\
x \neq x_{0}}}\left(\sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}} \sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_{-}}(n)}{n^{\bar{s}}}\right) \\
& +\mathrm{O}_{\varepsilon}\left(r^{-\delta+\varepsilon} \frac{1}{M_{Q}} \sum_{q \leq Q} \sum_{\substack{x=x(\bmod q) \\
x \neq \chi_{0}}}\left(\left|\sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}} \| \sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_{-}}(n)}{n^{\bar{s}}}\right|\right)\right) \\
& +\mathrm{O}_{\varepsilon}\left(r^{-\delta+\varepsilon}\right) \\
= & \frac{1}{M_{Q}} \sum_{q \leq Q} \sum_{\substack{x=\chi(\bmod q) \\
x \neq \chi_{0}}}\left(\sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}} \sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_{-}}(n)}{n^{\bar{s}}}\right)+\mathrm{O}_{\varepsilon}\left(r^{-\delta+\varepsilon}\right) \tag{3.1}
\end{align*}
$$

Here we have used the estimates

$$
\sum_{m \leq r} \frac{\hat{a}_{\hat{\theta}_{+}}(m)}{m^{s}}=\mathrm{O}\left(\sum_{m \leq r} \frac{1}{m^{1+\delta-\varepsilon}}\right)=\mathrm{O}(1), \quad \sum_{n \leq r} \frac{\hat{b}_{\hat{\theta}_{-}}(n)}{n^{\bar{s}}}=\mathrm{O}(1)
$$

which are uniform in $s \in R$ and $|\tau| \leq c$.
By (2.4)-(2.7), using the multiplicativity of $\hat{a}_{\hat{\theta}_{+}}(m)$ and $\hat{b}_{\hat{\theta}_{-}}(n)$, the complete multiplicativity of Dirichlet characters as well as the notation for $a_{\hat{\theta}_{+}}(m)$ and $b_{\hat{\theta}_{-}}(n)$, we find that

$$
\begin{aligned}
\hat{a}_{\hat{\theta}_{+}}(m)= & \prod_{\substack{p^{l} \mid m \\
p^{l+1} \nmid m, p \nmid \Delta}} \sum_{j=0}^{l} d_{\hat{\theta}_{+}}\left(p^{j}\right) \alpha^{j}(p) d_{\hat{\theta}_{+}}\left(p^{l-j}\right) \beta^{l-j}(p) \chi\left(p^{l}\right) \\
& \times \prod_{\substack{p^{l}\left|m \\
p^{l+1} \nmid m, p\right| \Delta}} d_{\hat{\theta}_{+}}\left(p^{l}\right) \lambda^{l}(p) \chi\left(p^{l}\right) \\
= & \chi(m) \prod_{\substack{p^{l} \mid m \\
p^{l+1} \nmid m, p \nmid \Delta}} \sum_{j=0}^{l} d_{\hat{\theta}_{+}}\left(p^{j}\right) \alpha^{j}(p) d_{\hat{\theta}_{+}}\left(p^{l-j}\right) \beta^{l-j}(p) \\
& \times \prod_{\substack{p^{l}\left|m \\
p^{l+1} \nmid m, p\right| \Delta}} d_{\hat{\theta}_{+}}\left(p^{l}\right) \lambda^{l}(p)=a_{\hat{\theta}_{+}}(m) \chi(m), \quad \hat{b}_{\hat{\theta}_{-}}(m)=b_{\hat{\theta}_{-}}(m) \bar{\chi}(m) .
\end{aligned}
$$

Thus, (3.1) can be written in the form

$$
\begin{align*}
w_{Q}(\tau, k)= & \sum_{m \leq r} \frac{a_{\hat{\theta}_{+}}(m)}{m^{s}} \sum_{n \leq r} \frac{b_{\hat{\theta}_{-}}(n)}{n^{s}} \frac{1}{M_{Q}} \sum_{\substack{q \leq Q}} \sum_{\substack{x=\chi(\bmod q) \\
\chi \neq \chi_{0}}} \chi(m) \bar{\chi}(n) \\
& +\mathrm{O}_{\varepsilon}\left(r^{-\delta+\varepsilon}\right) . \tag{3.2}
\end{align*}
$$

First we suppose that $m \neq n$. Then, clearly,

$$
\begin{align*}
& \sum_{\substack{q \leq Q}} \sum_{\substack{x=\chi(\bmod q) \\
\chi \neq \chi_{0}}} \chi(m) \bar{\chi}(n)=\sum_{\substack{q \leq Q}} \sum_{\substack{x=\chi(\bmod q) \\
\chi \neq \chi_{0}}}|\chi(m)|^{2} \\
&=M_{Q}-\sum_{\substack{q \mid m \\
q \leq r}}(q-2)=M_{Q}+\mathrm{O}\left(\sum_{q \leq r} q\right)=M_{Q}+\mathrm{O}\left(r^{2}\right) \tag{3.3}
\end{align*}
$$

If $m \neq n$, then, in view of the formula

$$
\sum_{\chi=\chi(\bmod q)} \chi(m) \bar{\chi}(n)= \begin{cases}q-1 & \text { if } m \equiv n(\bmod q) \\ 0 & \text { if } m \not \equiv n(\bmod q)\end{cases}
$$

with $(m, q)=1$, we find that

$$
\begin{aligned}
\sum_{\substack{q \leq Q}} \sum_{\substack{x=\chi(\bmod q) \\
\chi \neq \chi_{0}}} \chi(m) \bar{\chi}(n)= & \sum_{\substack{q \leq Q}} \sum_{\substack{x=\chi(\bmod q) \\
q \mid(m-n)}} \chi(m) \bar{\chi}(n) \\
& +\sum_{\substack{q \leq Q}} \sum_{\substack{\chi=\chi(\bmod q) \\
q \nmid(m-n)}} \chi(m) \bar{\chi}(n)+\mathrm{O}\left(\sum_{q \leq Q} 1\right) \\
= & \mathrm{O}\left(\sum_{q \leq r} q\right)+\mathrm{O}\left(\frac{Q}{\log Q}\right)=\mathrm{O}\left(\frac{Q}{\log Q}\right)
\end{aligned}
$$

Therefore, in view of the estimate [8]

$$
M_{Q}=\frac{Q^{2}}{2 \log Q}+\mathrm{O}\left(\frac{Q^{2}}{\log ^{2} Q}\right)
$$

we obtain from (3.2) and (3.3) that, uniformly in $s \in R,|\tau| \leq c$, and any fixed $k \in \mathbb{Z}$

$$
\begin{equation*}
w_{Q}(\tau, k)=\sum_{m=1}^{\infty} \frac{a_{\hat{\theta}_{+}}(m) b_{\hat{\theta}_{-}}(m)}{m^{2 \sigma}}+\mathrm{o}(1) \tag{3.4}
\end{equation*}
$$

as $Q \rightarrow \infty$.
The functions $a_{\hat{\theta}_{+}}(m)$ and $b_{\hat{\theta}_{-}}(m)$ are continuous in τ. Therefore, the uniform convergence for $|\tau| \leq c$ of the series

$$
w(\tau, k)=\sum_{m=1}^{\infty} \frac{a_{\hat{\theta}_{+}}(m) b_{\hat{\theta}_{-}}(m)}{m^{2 \sigma}}
$$

shows that the function $w(\tau, 0)$ is continuous at $\tau=0$. Therefore, (3.4) together with Lemma 1 proves the theorem.

4 Concluding Remarks

Denote by $L(s, \chi)$ the Dirichlet L-functions. E. Stankus in [9] obtained, for $\sigma>\frac{1}{2}$, the weak convergence for

$$
P_{Q}(A) \stackrel{\text { def }}{=} \mu_{Q}\left(L_{E}(s, \chi) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

as $Q \rightarrow \infty$. Let P be a probability measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ defined by the characteristic transform

$$
w_{R}(\tau, k)=\sum_{m=1}^{\infty} \frac{d_{\hat{\theta}_{+}}(m) d_{\hat{\theta}_{-}}(m)}{m^{2 \sigma}}, \quad \sigma>\frac{1}{2}, \tau \in \mathbb{R}, k \in \mathbb{Z}_{0}
$$

Then he proved that P_{Q} converges weakly to P as $Q \rightarrow \infty$. This theorem connects limit theorems for $|L(s, \chi)|$ and $\arg L(s, \chi)$ obtained by P.D.T.A. Elliott in [2] and [3], respectively.

Thus, a limit theorem for Dirichlet L-functions is valid also on the left of the absolute convergence half-plane $\sigma>1$. For the proof of such a theorem, the convergence, for $\sigma>\frac{1}{2}$, of the series

$$
L(s, \chi)=\sum_{m=1}^{\infty} \frac{\chi(m)}{m^{s}}, \quad \chi \neq \chi_{0}
$$

is essentially used. Differently from Dirichlet L-functions, we do not have any information on the convergence of the series for $L_{E}(s, \chi), \chi \neq \chi_{0}$, in the halfplane $\sigma>1$. Therefore, we can prove Theorem 3 only in the half-plane of absolute convergence of the series for $L_{E}(s, \chi)$. However, we conjecture that Theorem 3 remains also true for $\sigma>1$.

References

[1] C. Breuil, B. Conrad, F. Diamond and R. Taylor. On the modularity of elliptic curves over \mathbb{Q} : wild 3 -adic exercises. J. Amer. Math. Soc., 14:843-939, 2001. http://dx.doi.org/10.1090/S0894-0347-01-00370-8.
[2] P.D.T.A. Elliott. On the distribution of the values of L-series in the half-plane $\sigma>\frac{1}{2}$. Indag. Math., 31(3):222-234, 1971. http://dx.doi.org/10.1016/S1385-7258(71)80030-6.
[3] P.D.T.A. Elliott. On the distribution of the $\arg L(s, \chi)$ in the half-plane $\sigma>\frac{1}{2}$. Acta Arith., 20:155-169, 1972.
[4] V. Garbaliauskienė and A. Laurinčikas. Limit theorems for twists of L-functions of elliptic curves. II. Math. Model. Anal., 17(1):90-99, 2012. http://dx.doi.org/10.3846/13926292.2012.645170.
[5] V. Garbaliauskiené, A. Laurinčikas and E. Stankus. Limit theorems for twists of L-functions of elliptic curves. Lith. Math. J, 50(2):187-197, 2010. http://dx.doi.org/10.1007/s10986-010-9079-z.
[6] H. Iwaniec and E. Kowalski. Analytic Number Theory, volume 53 of Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., 2000.
[7] A. Laurinčikas. Value-distribution of complex-valued functions. Liet. Matem. Rink., 15(2):25-39, 1975. (In Russian)
[8] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.
[9] E. Stankus. The distribution of L-functions. Liet. Matem. Rink., 15(2):127-134, 1975. (In Russian)

