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Geometric phase retarders—such as q-plates and S-
waveplates—have found wide applications due to sim-
plicity of operational principles and flexibility for
the generation of azimuthally symmetric polarization
states and optical vortices. Ellipticity of the polariza-
tion vector and phase of the generated beam strongly
depend on the retardation of the plate. Real devices
usually have retardation value slightly different than
the nominated one. Previously unattended perturba-
tion of the retardation leads to asymmetry in intensity
distribution and variation of ellipticity of the local po-
larization vector of the generated beam. We elucidate
that controlled and intentionally driven azimuthally
variable, oscillating perturbation of the retardation re-
veals possibility to avoid distortions in the generated
beam and leads to the recovery of the symmetrically
distributed intensity and polarization (with zero ellip-
ticity) of the beam. Described recovery of the desired
polarization state could find application for generation
of the high purity beam with azimuthally symmetric
polarization, which local polarization ellipse has zero
ellipticity. © 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Increasing number of photonic applications employ vector
beams with exotic polarization and phase distributions. For
example, optical vortices are used in optical trapping [1, 2]. Ra-
dially/azimuthally polarized beams are used for electron bunch
acceleration and compression [3–6], and laser material process-
ing [7–10]. Among other methods these beams can be conve-
niently generated using a geometric phase retarder. The retarder
is a quarter- and half-wave plate with variable orientation of
the fast axis. It can be manufactured by gluing together pieces
of waveplates – axially-symmetric plates [11, 12], using liquid
crystals – q-plates [13, 14], and by writing nano-grating inside a
glass plate – S-waveplate [15, 16].

Radially (azimuhally) polarized beam can be considered as a

superposition of two vortex beams of opposite directions of vor-
ticity and circulations of the polarization vector [17–21]. Since
the beam generated on the retarder is a superposition of two
vortex beams, then it is very sensitive to the small perturbations
of (i) retardance and of (ii) orientation of variable optical axis of
the plate. (i) λ/2 retardation value ensures (a) equal intensities
of right- (left-)hand circularly polarized (R and L, respectively)
vortex components of the beam, and (b) coincidence/match of
locations of vortices within these components; (a) and (b) en-
sures "linear" (meaning zero ellipticity of the local polarization
vector) polarization of the converted beam. (ii) Gradual change
of the orientation of the optical axis of a geometric phase retarder
ensures (c) constant advance of the vortex phase in the L and R
components of the beam, and (d) constant rotation of orientation
of the local polarization vector of the generated beam, hence its
alignment in radial (azimuthal) pattern. It is technically chal-
lenging to create a geometric-phase retarder plate with exactly
half waveplate (π) retardation at every point on the plate (i.e.
spatially homogeneous retardation). Majority of techniques es-
pecially at their early production years, have been producing
plates with retardation which differs from π by up to 10% at
different places on the plate (i.e. spatially inhomogeneous re-
tardation). Previously, effect of retardation perturbation on the
generated beam was studied only partially. D’Errico et al. [22]
considered features of a vector beam generated by a geomet-
ric phase retarder with retardation perturbed homogeneously
only, which usually is not the case in the experiment. Moreover,
methods for recovery of the desired polarization distribution
generated with the perturbed retarder were not suggested.

The effect of (ii) perturbation of orientation of the optical
axis of the retarder will be studied elsewhere. In this article,
we investigate the effect of (i) perturbation of retardation of the
geometric phase retarder, considering both homogeneous and
inhomogeneous perturbation, on the polarization, phase, and
intensity structure of the generated beam. Our theory suggests,
and experiment confirms, that perturbation of retardation leads
to the off-axis shift of vortices in the L and R components. This
in turn results in break in the symmetry of intensity, ellipticity of
local polarization vector, and phase distribution of the converted
beam. However, it appears that inhomogeneous perturbation
of retardation in the form of azimuthally asymmetric oscilla-
tions around half-wave plate value might lead to recovery of
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Fig. 1. Schematic of polarization, phase, and angular momenta conversion for incident (a) circularly polarized and (b) linearly
polarized beams. Arrows and the Jones matrices at the bottom of the arrows show polarization state; phase is shown at the back-
ground. Right hand circular polarization state is shown by red color, linear - by green, left hand circular - by blue color. Compo-
nents shown by dotted lines have zero intensity. Retardance of the S-waveplate and orientation of its optical axis are shown in the
middle together with its Jones matrix.

the symmetrically distributed intensity, phase, and desired zero
ellipticity of the local polarization vector of the beam upon its
free space propagation. These results are of importance for un-
derstanding the reasons of differences between expected and
obtained quality of the generated beams. They can be used
as alternative approach for the generation of high purity radi-
ally (azimuthally) polarized beams, and are of importance for
high precision experiments, such as electron bunch compression
using radially polarized beams.

2. POLARIZATION-PHASE CONVERSION OF THE
BEAM ON A GEOMETRIC PHASE RETARDER

Fig. 1 schematically shows the process of conversion of the beam
on the geometric phase retarder. We consider the retarder which
induces half-wave retardance and which optical axis rotates 180
degrees over full azimuthal angle, i.e. topological charge of the
retarder is q = 1/2 [13]. The Jones matrix of the unperturbed
retarder with π retardation is given by:

Mq =

cos(ϕ) sin(ϕ)

sin(ϕ) − cos(ϕ)

 , (1)

where ϕ is the azimuthal angle of a polar coordinate system. The
middle part of Figure 1 schematically demonstrates orientation
of the optical axis of the retarder, its retardation (exactly λ/2
or π), and the Jones matrix Mq. We discuss the action of the
retarder on different input polarization states. The Jones vectors
of horizontally (X), vertically (Y) linearly, and left-handed (L)

and right-handed (R) circularly polarized states are given by:

EX =
1√
2

1

0

 ; EY =
1√
2

0

1

 ;

EL =
1√
2

1

i

 ; ER =
1√
2

 1

−i

 ,

(2)

respectively.
Left part of Fig. 1 labelled ‘incident’ shows incident polar-

ization state and corresponding Jones vector. A Gaussian beam
converted by such a retarder transforms to a doughnut shaped
beam. Right part of Fig. 1 labelled ‘output’ shows polariza-
tion state of the converted beam. Orientation of arrows shows
phase of the beam, with the phase map at the background. The
conversion is accompanied by the following transformation of
polarization and phase of the beam: Fig. 1a the initial left (right)
circular polarization (with |l| = 0) transforms to right (left) circu-
lar polarization, the beam acquires vortex phase with topological
charge |l| = 1, as evident from the eiϕ component in the Jones
matrix and by phase distribution in the corresponding subimage.
With the notations of Eqs. (1), (2) we can write:

MqEL = ER exp(iϕ); MqER = EL exp(−iϕ). (3)

Fig. 1b shows that the initial linear polarization becomes
azimuthal if the retarder is oriented perpendicularly to the ori-
entation of the incident linear polarization, and radial if this
orientation is parallel (not shown). The output beam is a super-
position of two vortices with opposite phases, so the total phase
of the beam remains vortex-free, e.g. the amplitude functions

MqEX = ERP; MqEY = EAP, (4)
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Fig. 2. Modelling results of polarization, phase, and intensity distribution of the beam converted by the geometric phase retarder
with (a) ideal π retardation and (b) perturbed retardation π + π/6. Circularly polarized Gaussian beam is incident. Arrows and
the Jones matrices at the bottom of the arrows show polarization state; phase is shown at the background. Components shown by
dotted lines have zero intensity. Retardance of the S-waveplate, orientation of its optical axis, and its Jones matrix are also shown.
Polarization of the converted beam is shown in the column "Polarization". It is color coded as in Fig. 1. Columns labelled by L, R,
L + R, and X + Y show intensity and phase of left-hand, right-hand, combined left- and right-hand circularly polarized components,
and of combined horizontally and vertically polarized components of the beam, respectively. Locations of optical vortices in the
combined beam are shown in the rightmost column.

where

ERP =
1√
2

cos(ϕ)

sin(ϕ)

 ; EAP =
1√
2

 sin(ϕ)

− cos(ϕ)

 (5)

describe the radial and azimuthal polarizations, respectively.

3. HOMOGENEOUS RETARDATION

A. Circularly polarized input beam for optical vortex genera-
tion

A.1. Unperturbed case

In this case, retardance of the plate is homogeneous and has π
value.

Phase and Intensity. Fig. 2a in columns with corresponding
labels shows phase and intensity distribution in the L and R
polarized components of the converted beam. Initially incident
L component after conversion has zero intensity. All the inten-
sity is in the R component which has a vortex phase. Intensity
distribution is symmetric.

Polarization. Upon conversion polarization vector preserves
initial value of ellipticity but changes its sign. Incident L polar-
ization becomes R with homogeneously distributed ellipticity
and orientation of polarization ellipses as shown in column ‘Po-
larization’ in Fig. 2a.

Location of vortices. Output beam was decomposed to X-
and Y-polarized components, which phase is shown in the col-
umn ‘X+Y’ in Fig. 2a. Vortices from orthogonally polarized
components have the same locations within the beam, as seen in
the rightmost ‘OVs locations’ column in Fig. 2a.

A.2. Perturbed case

Retardation of the geometric phase retarder can vary from π
value due to manufacturing errors, or if the incident wavelenght

is different than the nominated one. The converter with the
perturbed retardation is represented by the Jones matrix Mu:

Mu =

cos(qϕ) − sin(qϕ)

sin(qϕ) cos(qϕ)


×

1 0

0 exp(i∆) exp(iu)

 cos(qϕ) sin(qϕ)

− sin(qϕ) cos(qϕ)

 .

(6)

From Eq. (6) we obtain:

Mu =
a
2

Mq +
b
2

MI , (7)

where
a = [1 + exp(iu)] , b = [1− exp(iu)] (8)

and MI =

1 0

0 1

 is a unity matrix, Mq is the matrix of the

unperturbed retarder (Eq. (1)). q describes rotation of optical
axis of the plate (we consider q = 1/2), ∆ is the retardation of the
plate (we consider that ∆ = π) and u describes perturbation of
the retardation. When u = 0, b = 0 and Mu = Mq. When u 6= 0,
the effect of the plate on X, Y, L, R, and elliptic polarizations can
be described by amplitude functions:

MuEX =
a
2

ERP +
b
2

EX , MuEY =
a
2

EAP +
b
2

EY , (9)
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2
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2
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a
2

EL exp(−iϕ) +
b
2

ER,
(10)

and

MuEe =
1
2
( acER exp(iϕ)

+adEL exp(−iϕ) + bcEL + bdER) ,
(11)
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Fig. 3. Modelling results of polarization, phase, and intensity distribution of the beam converted by the geometric retarder with (a)
ideal π retardation and (b) perturbed retardation π + π/6. Linearly polarized Gaussian beam is incident (which is decomposed
to L and R polarized components). Arrows and the Jones matrices at the bottom of the arrows show polarization state; phase is
shown at the background. Components shown by dotted lines have zero intensity. Retardance of the S-waveplate, orientation of
its optical axis, and its Jones matrix are also shown. Polarization of the converted beam is shown in the column "Polarization". It is
color coded as in Fig. 1. Columns labelled by L, R, L + R, and X + Y show intensity and phase of left-hand, right-hand, combined left-
and right-hand circularly polarized components, and of combined horizontally and vertically polarized components of the beam,
respectively. Locations of optical vortices in the combined beam are shown in the rightmost column.

respectively. Where c and d are weights of L and R polarized
components, respectively. As seen from Eqs. (9) and (10) the
output beam is a superposition of the desired polarization state
(as from the unperturbed case) and some coherent background
polarized as the incident beam. Fig. 2b shows the results of
modelling to demonstrate this as described below. Here we
consider homogeneous retardation of the retarder, which differs
from π by extra π/6, i.e. u = π/6, see Eqs.( 7) and (8).

Phase and Intensity. In contrary to the unperturbed case,
when retardation of the plate differs from π, both L and R com-
ponents of the resulting beam are nonzero, as shown in the
Fig. 2b in the columns with corresponding labels. But only com-
ponent with polarization state orthogonal to that of the incident,
which in our case is R, acquires vortex phase, while L compo-
nent is a vortex-free background. Therefore, the beam with
vortex phase and doughnut intensity can be spatially separated
from the resultant superposition by a polarizer. Intensity of the
converted beam remains symmetric.

Polarization. Column ‘Polarization’ in Fig. 2b shows that
even though ellipticity of the incident polarization was homo-
geneous, ellipticity and orientation of the polarization ellipses
of the converted beam become inhomogeneous, i.e. spatially
variable. Nonetheless, this elliptical polarization can be decom-
posed to L and R components to separate the homogeneously
polarized vortex beam, as mentioned previously.

Location of vortices. Coherent background in the gener-
ated superposition of vortex beam and non-vortex background
shifts vortex from the center of the beam [23]. This is explic-
itly shown by the decomposing the resulting beam into the X-
and Y-polarized components (Fig. 2b columns ‘X+Y’ and ‘OVs
locations’).

Generation of optical vortex beam using spatial separation by
polarization was recently demonstrated in an octave spanning

range [16].

B. Linearly polarized input beam for generation of ra-
dial/azimuthal polarization

B.1. Unperturbed case

In this case, retardance of the plate is homogeneous and has π
value.

Phase and Intensity. Incident linear polarization is consid-
ered as superposition of L and R components, as it is schemati-
cally shown in the ‘incident’ column of Fig. 3a. Upon conversion
both incident, L and R, components flip handedness and acquire
vortex phase as shown in the columns ‘L’ and ‘R’. Vortices in
these components have orthogonal direction of vorticity. L and
R components have equal amplitudes and symmetric intensity
distributions. The generated azimuthally polarized beam is
vortex-free, it has plane phase (Fig. 3a column ‘L+R’).

Polarization. Polarization vector is oriented azimuthally, as
shown in the column ‘Polarization’ in Fig. 3a. Ellipticity of the
polarization vector of the resultant beam is zero (i.e. polarization
is linear at every point).

Location of vortices. The rightmost ‘OVs locations’ column
in Fig. 3a shows that the vortices from orthogonally polarized
L and R components have the same locations within the beam.
Then vortex phase is cancelled such that the resultant phase of
the azimuthally polarized beam is vortex free.

B.2. Perturbed case

Here we consider homogeneous retardation of the retarder,
which differs from π by extra π/6, i.e. u = π/6, see Eqs. (7) and
(8). Fig. 3b demonstrates the effect of such perturbation on the
generation of radially/azimuthally polarized beam.

Phase and Intensity. Upon conversion both incident, L and
R, components flip handedness of polarization and acquire vor-
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Fig. 4. Experimentally retrieved polarization (using Stokes parameters [24–26]) and locations of vortices in the beam converted on
the S-waveplate (RPC-532-04-216) in the case of circularly (upper part) and linearly (lower part of the figure) polarized incident
Gaussian beam. Vortex location is marked by red star. Rightmost column shows magnified area shown by the red square in the
subimages with interference. Polarization of the reference beam for interference is vertical, Y.

tex phase as shown in the columns ‘L’ and ‘R’ of Fig. 3b. In
contrary to the unperturbed case, the L and R components, and
combined resultant beam have asymmetric intensity distribu-
tions (Fig. 3b columns ‘L’, ‘R’, and ‘L+R’, respectively). Total
phase of the generated azimuthally polarized beam is not vortex-
free in this case.

Polarization. Column ‘Polarization’ in Fig. 3b shows that
even though the polarization of the incident beam was homo-
geneous, the converted beam becomes inhomogeneously po-
larized, i.e. ellipticity of the local polarization ellipse spatially
varies. It changes from the left-hand at the upper part of the
beam to the right-hand elliptically polarized at the lower part.
Polarization ellipses remain orientated azimuthally because its
orientation depends on the orientation of the optical axis of the
geometric phase retarder only.

Location of vortices. Each of the L and R components is
superposition of vortex beam and vortex-free background (as
explained in the section A). This leads to the shift of the vortices
in these component from the center of a beam [23], as explicitly
shown in the rightmost ‘OVs locations’ column in Fig. 3b. This
difference of locations of vortices does not allow for full cancella-
tion of the vortex phase in the resultant beam and causes above
mentioned spatially variable ellipticity of the local polarization
vector.

4. INHOMOGENEOUS RETARDATION

A. Experimental observations
In practice, it is hard to manufacture an element with spatially
homogeneous retardation. For example, experimentally mea-
sured retardation of the nano-structured geometric phase re-
tarder (S-waveplate "RPC-532-04-216") manufactured for the
central wavelength λ = 532 nm is shown in Fig. 4 in the column
with corresponding label. Its retardation oscillates around π
value from π−π/12 to π + π/5 and has a variable profile. As a
result, beam acquires spatially variable ellipticity (Fig. 4 column
‘Polarization’). This results in appearance of vortex phase in the
beam, as seen from the interference pattern shown the corre-
sponding column in Fig. 4. Interference patterns demonstrate
appearance of the vortex phase in the Y polarized component

of the beam, which would be vortex free if the retardation was
π. Position of the vortex is shifted further from the center of
the beam than expected from the previous sections. Therefore,
the following question we aim to answer is: What effect the
inhomogeneous retardation which oscillates around π value has
on the beam conversion?

B. Oscillating (sinusoidal) retardation
Experimentally retrieved oscillating profile of retardation of
the S-waveplate has led to consideration of sinusoidal profiles
of retardation of the geometric phase retarder. Therefore, the
following retardation profile of the plate is considered: u =
α sin(jϕ) (to be used in Eq. (8)) as shown in the ‘Retardation’
columns in Fig. 6 and 8, where j is the period of oscillation, ϕ is
the azimuthal angle changing from 0 to 2π, and α is the depth of
perturbation of retardation. α = π/6 was chosen to be similar to
the experimentally retrieved value from the previous subsection.

In this case, we make use of Jacobi-Anger expansion:

exp(iu) = exp(iα sin(jϕ)) =
∞
∑

n=−∞
Jn(α) exp(injϕ), where

Jn is the Bessel function. Moreover, J−n(α) = (−1)n Jn(α). We
insert the expansion into coefficients a and b of Eqs. (7) and (8):

a =1 + exp(iu) =
1 + J0(α) + J1(α)2i sin(jϕ) + J2(α)2 cos(2jϕ) + . . .

(12)

and

b =1− exp(iu) =
1− J0(α)− J1(α)2i sin(jϕ)− J2(α)2 cos(2jϕ) + . . .

(13)

When α < 1, J0(α) ≈ 1 and we note the difference in Eqs. (12)
and (13): in Eq. (12) the main contribution is made of (1 + J0(α))
and the field is modulated by the following sin(jϕ) and higher
terms. In Eq. (13), the term (1− J0(α)) vanishes, and the mod-
ulations are more prominent. Another important aspect is that
during the free-space propagation the higher order oscillations
diffract out faster than lower order oscillations (Fig. 5). This al-
lows us to leave only J0 and J1 terms in expansions Eqs. (12) and
(13) and neglect oscillations of the higher order. Modelling was
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performed both using the approximation and without it show-
ing no significant difference. Fig. 5 demonstrates normalized
intensity of the vortex, R, and background components, L, (the
latter are labelled by the corresponding j number). Size of the
vortex component is 100 µm, size of the background component
is 2.5 times bigger for j = 8. Therefore, upon beam propagation
high-order component diffracts faster and leaves the central part
of the beam. This has important consequence for the generation
of the beam with azimuthal/radial polarization, as discussed
below.

Fig. 5. Size of the vortex, R, component is 100 µm. Sizes of the
background, L, components for j = 2, 5, 8 (as specified in the
labels) are 150, 200, 250 µm, respectively. Propagation distance
z = 1 cm, size of the initial Gaussian beam is 100 µm, λ = 532
nm.

B.1. Retardance oscillating as u = α sin(jϕ), where j = 1

Figure 6 demonstrates the polarization, phase, and intensity
of the beam generated by the geometric phase retarder with
sinusoidally variable profile of retardation with amplitude α =
π/6 and period j = 1. Figure 7 demonstrates evolution of the
generated beam upon its free space propagation.

Circularly polarized (L) incident beam:
Phase and intensity. Similarly to the case of homogeneously

perturbed retarder, the resulting beam is a superposition of L
and R components. However, in the case of inhomogeneous
retardation, both L and R components of the resulting beam
carry optical vortices (upper part of Fig. 6). For j = 1, size of
both, L and R, polarized components and their divergence are
similar, as explicitly shown in the upper part of Fig. 7. The coher-
ent background affects the total intensity distribution making it
asymmetric.

Polarization. The generated beam has spatially variable el-
lipticity and orientation of polarization ellipses (upper part of
Fig. 6 ‘Polarization’).

Linearly polarized (R+L) incident beam:

Phase and intensity. As previously, linearly polarized inci-
dent beam is considered as a superposition of L and R polarized
components. Each of these components, after conversion on
the retarder, is a superposition of vortex and background com-
ponents, both of which carry optical vortices as demonstrated
above. Therefore, intensity distribution of the L and R compo-
nents is strongly asymmetric (lower part of Fig. 6).

Polarization. Polarization ellipses of the generated beam
have spatially variable ellipticity (lower part of Fig. 6 ‘Polariza-
tion’). Polarization is right-hand elliptical (shown by blue color)
at the upper and lower parts of the beam where the deviations
of the retardation from π is maximal and it is linear (shown by
green color) at places where the plate has π retardation. Lower
part of Fig. 7 demonstrates evolution of the polarization distri-
bution upon beam propagation. Polarization remains elliptical
with variable ellipticity of the local polarization vector.

Location of vortices. Vortices from the orthogonally polar-
ized components have different locations within the beam, as
explicitly shown in the rightmost ‘OVs locations’ column in
Fig. 6. This difference of locations of vortices does not allow for
full cancellation of the vortex phase in the resultant beam.

B.2. Retardance oscillating as u = α sin(jϕ), where j = 8

Figure 8 demonstrates the polarization, phase, and intensity
of the beam generated by the geometric phase retarder with
sinusoidally variable profile of retardation with amplitude α =
pi/6 and period j = 8. Figure 9 demonstrates evolution of the
generated beam upon its free space propagation.

Circularly polarized (L) incident beam:
Phase and intensity. Upper part of Fig. 8 shows intensity and

phase of the L and R components of the beam after conversion
on the retarder. Background component, L, carry a number
of optical vortices and resembles a 16 petal structure. This is
because retardation profile of the geometric phase retarder 16
times crosses π value along the full azimuthal angle. Contrary
to the previously described case (j = 1), in the case of j = 8
the multi-vortex background component, L, diffracts faster than
the vortex component, R, upon propagation. This is explicitly
shown in the upper part of Fig. 9 (and in Fig. 5). Therefore,
only periphery of the generated beam is affected, while the main
(brightest) ring of the light remains intact (upper part of Fig. 8).

Polarization. Since only periphery of the beam is affected,
the polarization of the generated beam remains homogeneous,
circularly polarized, on the brightest ring of light (upper part of
Fig. 8 column ‘Polarization’).

Linearly polarized (R+L) incident beam:
Phase and intensity. As demonstrated above in the case of

circularly polarized incident beam, after conversion on the plate
with retardation oscillating j = 8 times around π value, the size
and divergence of the vortex and background components are
different. Thereby additional vortices appearing in the beam
affect mostly periphery of the generated beam. Therefore, the
brightest ring of light remains almost intact. Lower part of Fig. 9
explicitly demonstrates recovery of symmetry of intensity distri-
bution upon beam propagation due to different divergences of
vortex and multi-vortex background components of the beam.

Polarization. Since only periphery of the beam is affected,
the polarization of the generated beam remains homogeneous,
linearly polarized, on the brightest ring of light (lower part of
Fig. 8 column ‘Polarization’). Lower part of Fig. 9 demonstrates
evolution of the polarization distribution upon beam propaga-
tion. As the multi-vortex background component diffracts faster
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Fig. 6. Modelling results of polarization, phase, and intensity distribution of the beam converted by the geometric phase retarder
with sinusoidal profile of retardation, u = α sin(1ϕ). Conversion of circularly polarized incident Gaussian beam is shown in the
upper part, of linearly polarized - in the lower part. Retardance distribution and its profile along full azimuthal angle (blue curve)
are also shown. Polarization of the converted beam is shown in the column "Polarization". It is color coded as in Fig. 1. Columns
labelled by L, R, and L + R show intensity and phase of left-hand, right-hand, combined left- and right-hand circularly polarized
components, respectively. Locations of optical vortices in the combined beam are shown in the ‘OVs locations’ column.

Fig. 7. Upper part: Normalized intensity distributions in L and R components of the beam versus propagation distance, z, is shown.
x coordinate is taken at 0 mm. Circularly polarized beam was incident on the plate with u = α sin(1ϕ) profile of retardation. Note
similar divergence of two components.
Lower part: Snapshots of intensity and polarization of the beam at specified propagation distances, z, are shown. Right (left) hand
circular polarization is shown by red (blue) color, linear - by green. Linearly polarized beam was incident on the plate with u =
α sin(1ϕ) profile of retardation.

and leaves the beam, the local polarization vector becomes linear,
with zero ellipticity (shown by green color). The desired, in this
case azimuthal polarization, is recovered.

Location of vortices. Since only periphery of the beam is
affected, vortices of L and R components are located much closer

to each other (Fig. 8 ‘OVs locations’). This leads to almost full
cancellation of the vortex phase in the resultant beam (Fig. 8
column ‘L+R’), to recovery of symmetric ring of light (Fig. 9
‘z = 1 m’), and to recovery of the desired polarization state with
zero ellipticity of the local polarization vector on the ring of light
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Fig. 8. Modelling results of polarization, phase, and intensity distribution of the beam converted by the geometric phase retarder
with sinusoidal profile of retardation, u = α sin(8ϕ). Conversion of circularly polarized incident Gaussian beam is shown in the
upper part, of linearly polarized - in the lower part. Retardance distribution and its profile along full azimuthal angle (blue curve)
are also shown. Polarization of the converted beam is shown in the column "Polarization". It is color coded as in Fig. 1. Columns
labelled by L, R, and L + R show intensity and phase of left-hand, right-hand, combined left- and right-hand circularly polarized
components, respectively. Locations of optical vortices in the combined beam are shown in the ‘OVs locations’ column.

Fig. 9. Upper part: Normalized intensity distributions in L and R components of the beam versus propagation distance, z, is shown.
x coordinate is taken at 0 mm. Circularly polarized beam was incident on the plate with u = α sin(8ϕ) profile of retardation. Note
different divergence of two components.
Lower part: Snapshots of intensity and polarization of the beam at specified propagation distances, z, are shown. Right (left) hand
circular polarization is shown by red (blue) color, linear - by green. Linearly polarized beam was incident on the plate with u =
α sin(8ϕ) profile of retardation.

(Fig. 9 ‘z = 1 m’).
Therefore, even though the geometric phase retarder has

strongly perturbed retardation, for j > 5, locations of vortices
in the L and R components almost coincide, then the local po-
larization vector of the generated beam acquires homogeneous
(zero) ellipticity, close to that in the case of ideal homogeneous

retardation with π value.

5. CONCLUSION

Conversion of the beam consisting of superposition of two
orthogonal circularly polarized components on the geometric
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phase retarder was considered. (1) When the retarder induces
spatially homogeneous half-wave retardation each of the circularly
polarized components acquire vortex phase. In the case of liner-
aly polarized beam incident on the retarder the resulting beam
is vortex free, azimuthally/radially polarized with symmetric
intensity distribution. (2) When the retarder induces spatially ho-
mogeneous retardation which differs from half-wave retardation then
each of the circularly polarized components are superposition
of vortex and background components. Interplay between these
components results in the shift of position of vortices from the
center of the beam (mismatch in their locations). This leads
to azimuthally/radially aligned polarization with variable el-
lipticity of the local polarization ellipse, asymmetric intensity
and phase distribution. (3) When the retarder induces spatially
inhomogeneous retardation which oscillates around half-wave re-
tardation then each of the circularly polarized components are
superposition of two vortex components. (3a) When this os-
cillation is "slow" (<2 times around π value), then the diver-
gence of two vortex components is similar. Interplay between
these components results in, shift of vortices within orthogonal
circularly polarized components, thus asymmetric beam with
variable ellipticity of local polarization vector, similarly to the
above described (2) case. (3b) When oscillation of retardation
profile around π value is fast (>5 times), then the divergence of
two vortex components of each orthogonal circularly polarized
components of the beam are different. Upon propagation low
intensity multi-vortex component diverges faster (then the sin-
gle vortex component) and converges to the periphery of the
beam. Therefore, vortices within orthogonal circularly polarized
components remains to be located in the center of the beam.
Thus resulting beam acquires symmetric intensity distribution
and radial/azimuthal polarization with zero ellipticity of the
local polarization ellipse, similarly to the (1) case of geometric
phase retarder with homogeneous half-wave retardation.

Therefore, intentional spatial variation of the retardation of
the geometric phase retarder in the α sin(jϕ) form might be
an alternative technology for the generation of beams with ra-
dial/azimuthal polarization when homogeneous retardation is
not achievable on practice.
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