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Abstract

Summary: Searching for homology in the vast amount of sequence data has a particular emphasis on its speed. We
present a completely rewritten version of the sensitive homology search method COMER based on alignment of pro-
tein sequence profiles, which is capable of searching big databases even on a lightweight laptop. By harnessing the
power of CUDA-enabled graphics processing units, it is up to 20 times faster than HHsearch, a state-of-the-art
method using vectorized instructions on modern CPUs.
Availability and implementation: COMER2 is cross-platform open-source software available at https://sourceforge.
net/projects/comer2 and https://github.com/minmarg/comer2. It can be easily installed from source code or using
stand-alone installers.
Contact: mindaugas.margelevicius@bti.vu.lt
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The detection of homology between protein sequences underlies a
wide variety of protein studies ranging from active site and function
prediction to contact and structure prediction. Sensitivity, therefore,
is one of the most desirable properties of homology search methods.
Efforts to increase sensitivity, however, are often accompanied by
an increase in computation time. For homology search methods to
be applicable to the vast amount of sequence data that is available
today, various algorithms have been proposed to reduce computa-
tion time (Altschul et al., 1997; Eddy, 2011; Raimondi et al., 2018;
Remmert et al., 2012).

This article contributes to increasing computing performance
and presents a new implementation (version 2.2) of the COMER
method (Margelevi�cius, 2016, 2018) for homology search based on
alignment of protein sequence profiles. The new version is more
than three orders of magnitude faster, more sensitive, produces
alignments of higher quality and, as it is shown, highly specific.

2 Materials and methods

COMER computing performance is increased by harnessing the
power of the graphics processing unit (GPU). To the best of our
knowledge, COMER2 represents the first GPU implementation of
homology searches based on profile–profile alignment. As a target
processor, a GPU was selected because of its high level of parallelism
and cost efficiency.

The approach and algorithms behind the COMER method have
not changed, but the software has been completely rewritten (see
Supplementary Section S1). Changed architecture, data types, fast

approximations to exponential/logarithmic functions and other
code optimizations have an impact on sensitivity and alignment
quality, which we evaluate in addition to computation time.

We evaluated and benchmarked the new software on (i) a laptop
equipped with a six-core hyper-threaded Intel Core i9-8950HK CPU
clocked at 2.9 GHz, 16GB DDR4 RAM and an 8GB GDDR5
NVIDIA GeForce GTX 1080MQ GPU and (ii) a high-end server
with two 10-core hyper-threaded Intel Xeon Gold 5115 CPUs at
2.4 GHz, 128GB DDR4 RAM and two 16GB HBM2 NVIDIA Tesla
V100 GPU accelerators. The CPUs of these computers support the
AVX2/AVX512 instruction set that provides maximum instruction
throughput for HHsearch/HHblits v3.2.

Two datasets were used. The first, referred to as the SCOPe data-
set, was half of the entries in the SCOPe 2.03 database (Fox et al.,
2013) filtered at 20% sequence identity. Profiles were constructed
from multiple sequence alignments (MSAs) obtained using (i) PSI-
BLAST (Altschul et al., 1997) and (ii) HHblits (Remmert et al.,
2012). 1722 profiles were used as queries to search a total of 4900
profiles.

The second, referred to as the simulated dataset, was composed
of 1 million randomly generated profiles (Margelevi�cius, 2019) and
1284 profiles constructed for the sequences of randomly selected
PDB (Berman et al., 2000) structures sharing <20% sequence iden-
tity at the domain level (1 001 284 profiles in total). Another set of
128 profiles corresponding to PDB entries was used as queries.
MSAs for the PDB sequences were obtained from HHpred PDB70
database 190918 (Zimmermann et al., 2018).

Sensitivity was measured by the number of identified true posi-
tives (TPs). A TP was a domain that was structurally similar to the
query domain or belonged to the same SCOPe superfamily as the
query. For both datasets, the analysis was conducted at the domain
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level. A hit to a dissimilar domain from a different fold or to a ran-
dom profile was a false positive (FP).

For the SCOPe dataset, alignment quality was evaluated by gen-
erating structural models based on profile–profile alignments. A
high-quality alignment (HQA) corresponded to a model structurally
similar to the native structure. Alignment quality was evaluated lo-
cally, along the alignment extent and globally, regarding the whole
domain.

More details can be found in Supplementary Section S2.

3 Results

The results accumulated over all queries are shown in Figure 1.
More results can be found in Supplementary Section S3.

The new version for the SCOPe dataset is more sensitive (Fig. 1A
and D), produces higher-quality alignments evaluated locally
(Fig. 1B and E) and globally (Fig. 1C and F) and is more than three
orders of magnitude faster (Fig. 1G) when measured on the laptop.

The simulated dataset (53GB) was used to estimate running time
on big data and evaluate specificity. COMER v2.2 and HHsearch/
HHblits v3.2 (Steinegger et al., 2019) were the only feasible imple-
mentations for this test.

The results show that COMER v2.2 is highly sensitive (Fig. 1H)
and specific (Fig. 1I). All FPs but one were associated with the same

query (1AL3_A) and locally shared the same secondary structure
with it, indicating a possible evolutionary signal. And there were no
hits to random profiles. In contrast, the results of HHsearch and
HHblits included many statistically significant alignments between
the queries and random profiles.

The property of simultaneously performing searches with mul-
tiple queries and the capability of utilizing multiple GPUs help
COMER v2.2 achieve high performance and scalability. COMER
v2.2 is nearly 10� and 20� faster than HHsearch v3.2, measured
on the server (Fig. 1J) and the laptop (Fig. 1K), respectively. A bene-
ficial characteristic is a weak dependence of its running time (varies
within 15%) on the GPU memory used.

The gains in running time achieved by HHblits are due to its fil-
tering strategy that identified only 7870 (0.8%) profile pairs per
query on average as candidates for alignment, whereas this number
for COMER corresponds to the total number of entries in the data-
base. This difference in computational complexity indicates a high
potential to significantly increase COMER’s computing perform-
ance further (see Section 4).

4 Discussion

COMER v2.2 is cross-platform software written in CUDA and
Cþþ11 and designed to run on major operating systems (Windows,
Linux and macOS). It was tested on Windows 10 using the native
compiler and on the Ubuntu 18.04 LTS and CentOS 7.6 Linux dis-
tributions using GCC (4.8.5, 7.4 and 8.3) and LLVM/Clang 6.0
compilers.

The new implementation of the COMER method exhibits good
performance characteristics and advantageous features. The GPU
memory limit that can be used by COMER2 is configurable, and the
performance weakly depends on the amount of memory used for
computation. In other words, the efficient use of computational
resources allows for fast searching big databases even on a light-
weight laptop.

COMER2 is capable of utilizing multiple GPUs and demon-
strates excellent scalability, which enables large-scale sensitive hom-
ology search to be performed within minutes. The performance gain
is achieved without compromising sensitivity and alignment quality.
On the contrary, COMER2 is now more sensitive and produces
more accurate alignments.

The software architecture provides a foundation for further sig-
nificant improvements. The current version calculates complete dy-
namic programming (DP) matrices and does not use any heuristics
to screen for candidates to the profile–profile alignment phase.
Implementing algorithms for reducing DP complexity, such as
extending from seeds found in the score matrix and applying banded
DP, and for filtering out possibly unrelated pairs can lead to orders
of magnitude improvement in performance. We will investigate
these and other directions in future work.
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Fig. 1. Results for (A–G) the SCOPe and (H–K) the simulated dataset. (A, D and H)

sensitivity; (B and E) alignment quality in the local mode; (C and F) alignment qual-

ity in the global mode. COMER, HHsearch and HHblits maximally extend align-

ments. (G, J and K) running time; (I) specificity. Bold type denotes the new COMER

version. *Measured on a cluster with Intel Xeon CPUs E5-2670 v3
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