Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in Southern Norway

Irma Razanske³, Olav Rosefa,b, Jana Radzijevskaja³, Maksim Bratchikova³,c, Loreta Griciuviene³, Algimantas Paulauskas³,*

³ Department of Biology, Vytautas Magnus University, Vileikos 8, LT-44404, Kaunas, Lithuania
⁴ Rosefield Research Station, Frolandsveien 2667, 4828, Mjønstow, Norway
⁵ Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M.K. Čiurlionio 21, LT-03101, Vilnius, Lithuania

ARTICLE INFO

Keywords:
Capreolus capreolus
Cervus elaphus
Anaplasma phagocytophilum
Babesia spp.
Ixodes ricinus
Norway

ABSTRACT

Anaplasma phagocytophilum and Babesia spp. are causative agents of tick-borne infections that are increasingly considered as a threat to animal and public health. To assess the role of cervids in the maintenance of zoonotic pathogens in Norway, we investigated the prevalence of A. phagocytophilum and Babesia spp. in free-ranging roe deer and red deer. Initial screening of spleen samples of 104 animals by multiplex real-time PCR targeting the major surface protein (msp2) gene and 18S rRNA revealed the presence of A. phagocytophilum infection in 81.1% red deer (Cervus elaphus) and 88.1% roe deer (Capreolus capreolus), and Babesia parasites in 64.9% red deer and 83.6% roe deer, respectively. Co-infections were found in 62.2% red deer and 79.9% roe deer. Nested PCR and sequence analysis of partial msp4 and 18S rRNA genes were performed for molecular characterization of A. phagocytophilum strains and Babesia species. A total of eleven A. phagocytophilum msp4 gene sequence variants were identified: five different variants were 100% identical to corresponding A. phagocytophilum sequences deposited in the GenBank database, while six other sequence variants had unique nucleotide polymorphisms. Sequence analysis of the 18S rRNA gene demonstrated the presence of multiple Babesia species, including Babesia capreoli, Babesia divergens, Babesia venatorum and Babesia odocoi/Babesia cf. odocoi. This study is the first report demonstrating the prevalence and molecular characterization of A. phagocytophilum strains and Babesia species in roe deer and red deer in Norway. The high infection and co-infection rates with A. phagocytophilum and Babesia spp. in red deer and roe deer suggest that these cervids may play an important role in the transmission of single and multiple pathogens.

1. Introduction

During the past two decades, the distribution and abundance of Ixodes ricinus ticks have increased in Europe due to climate changes (Medlock et al., 2013). I. ricinus is ubiquitous on the coastline of Southern Norway. Norway represents the northern limit in the geographical distribution of I. ricinus, and recently an expansion of the range further north and at higher elevations has been reported (the study was based on a questionnaire for veterinarians and occasional finding of adult ticks) (Jore et al., 2011). Soleng et al. (2018) reported that only a few ticks were collected in areas located at 66.1°N and no ticks were found further north up to 67.6°N using flagging method. Ticks occurring in new areas may increase the risk of tick-borne infections, e.g., Lyme borreliosis, anaplasmosis and babesiosis. Hosts of the adult I. ricinus ticks are large vertebrates. Tick densities are likely to be strongly influenced by population density fluctuations in vertebrate host species and wildlife management. This may lead to the high tick densities in areas with free-ranging cervids (Wilson et al., 1988; Paul et al., 2016).

Tick-borne fever, caused by Anaplasma phagocytophilum, is a well-known disease of domestic animals in several countries in Europe, Asia, and America (Woldehiwet, 2010). The disease is characterized by infected neutrophils, high fever, neutropenia, reduced milk yield, abortion and reduced fertility in domestic sheep (Woldehiwet and Scott, 1993; Stuen et al., 2013b). In Europe, besides domestic ruminants, A. phagocytophilum has been identified in horses (Equus caballus)
Spleen samples were collected from 104 free ranging roe deer (67) and red deer (37) by hunters in the southern part of Norway during the hunting season in autumn 2013–2016. DNA was extracted from frozen spleens using Genomic DNA Purification Kit (Thermo Fisher Scientific) and stored at −20 °C until PCR analysis. The samples were screened for the presence of selected pathogen DNA using multiplex real-time-PCR assay designed for this study to amplify a 98 bp product from A. phagocytophilum (msp2 gene) and 214 bp product from Babesia spp. 18S rRNA of Babesia spp. were extracted from the gel and purified using GeneJET Gel Extraction Kit (Thermo Fisher Scientific) following the manufacturer’s instructions. Obtained sequences were compared with sequences available from the GenBank database with the BLASTn tool of the National Center for Biotechnology. Phylogenetic analysis was conducted using MEGA6 software (Tamura et al., 2013). Maximum-Likelihood tree with reliability tested using bootstrapping with 1000 replicates was constructed.

Sequences of A. phagocytophilum and Babesia spp. obtained in this study have been deposited in GenBank under the accession numbers MH687349 - MH687360 and MH697657 - MH697663, respectively.

3. Results

Both A. phagocytophilum and Babesia spp. DNA was detected in examined red deer and roe deer spleen samples (Table 2). Based on real time PCR assays, 88.1% roe deer were positive for A. phagocytophilum and 83.6% were positive for Babesia spp. A total 81.1% red deer were positive for A. phagocytophilum and 64.9% were positive for Babesia spp. Co-infections were detected in 79.9% roe deer and 62.2% red deer (Table 2). Lower infection rates were observed using nested PCR. A. phagocytophilum DNA was detected in 52.2% roe deer and 51.4% red deer, while Babesia DNA was detected in 52.2% roe deer and 32.4% red deer. Co-infections were observed in 29.9% roe deer and 21.6% red deer (Table 2).

Sequencing of the partial (~380 bp) msp4 gene of A. phagocytophilum showed 11 different sequence types among the 25 samples derived from roe deer (n = 15) and red deer (n = 10). Five different variants (two sequence variants were derived from red deer MH687349, MH687350, two other sequence variants derived from roe deer MH687351, MH687352 and one sequence variant was common to both species, roe deer MH687353 and red deer MH687354) with 100% identity to sequences deposited in the GenBank database, and six new sequence variants (MH687355 - MH687360) were identified (Table 3). Ambiguous nucleotides were observed in msp4 sequences of A. phagocytophilum derived from 3 roe deer. In all cases ambiguous nucleotides were detected at positions where in other sequences either one of the two possible nucleotides was found, possibly indicating double infections.

A total of 31 sequences of the partial 18S rRNA gene (~300 bp) of
Phylogenetic analysis demonstrates genetic variability of the America clade formed a separate group in the phylogenetic tree.

I. Razanske et al.

Table 3
Babesia spp. were analyzed. Sequences derived from roe deer (n = 25) showed 99–100% similarity with Babesia capreoli (n = 18) (e.g. Genbank accession nos. KT279880, KP15558, KU351824), 100% nucleotide identity to Babesia divergens (n = 3) (e.g. Genbank accession nos. HQ395757, GQ304525, KY242398) and Babesia venatorum (n = 4) (e.g. Genbank accession nos. KY945505, MG052939, KP773722). Sequences derived from red deer (n = 6) were 100% identical to B. divergens (n = 1). Other sequences isolated in this study from red deer (n = 5) clustered with Babesia odocoi and B. cf. odocoi strains detected in cervids and I. ricinus ticks in Europe (KM657254, KU550687, JX679176, KU351828, KT279886, JN543180) and together with B. odocoi sequences from the North America clade formed a separate group in the phylogenetic tree. Phylogenetic analysis demonstrates genetic variability of B. odocoi strains from different geographic regions (Fig. 1).

4. Discussion

During the last two decades, the emergence of anaplasmosis has become more frequently diagnosed as the cause of human infections (Ismail et al., 2010). This may be partly influenced by increased numbers of animal reservoirs and tick vectors in areas now inhabited by humans, as well as increased public awareness of infection diseases. In western Norway, a part of the healthy adult population was tested by an indirect immunofluorescence assay (IFA) and 16.2% (49/301) of tested individuals were found exposed to Anaplasma spp. (Hjetland et al., 2015). Antibodies against different Anaplasma variants have shown to persist in sheep, horses, dogs, cattle, moose and red deer (Stuen et al.,

Table 2
Detection of Anaplasma phagocytophilum, Babesia spp. in spleens of roe and red deer using nested PCR^a and real time PCR^b.

<table>
<thead>
<tr>
<th>Species</th>
<th>No. Total</th>
<th>No. positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anaplasma phagocytophilum<sup>b</sup></td>
<td>Babesia spp.<sup>a</sup></td>
</tr>
<tr>
<td>Roe deer</td>
<td>67</td>
<td>35 (52.2%)</td>
</tr>
<tr>
<td>Red deer</td>
<td>37</td>
<td>19 (51.4%)</td>
</tr>
</tbody>
</table>

Note: ^anested PCR targeting the msp4 region; ^breal time PCR targeting the 16S rRNA region.

Table 3
Differences in the msp4 nucleotide sequences among A. phagocytophilum strains. Strains detected in this study are bolded. Abbreviations: DE - Germany, FR - France, NO - Norway, PL - Poland, SK - Slovakia, SL - Slovenia, SP - Spain.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Nucleotide positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU857672 Ovis aries FR</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>EU857673 Ovis aries FR</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>EU180062 Capreolus capreolus SK</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>KM205420 Rupicapra rupicapra SL</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>MH687349 Cervus elaphus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>KT070837 Alces alces NO</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>EU857665 Bos taurus FR</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>AH706389 Bison bonasus PL</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME87350 Cervus elaphus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>AY829457 Capreolus capreolus SP</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME87351 Capreolus capreolus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>EF067343 Capreolus capreolus SP</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>JX841250 Rangifer tarandus FR</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>KM205428 Cervus elaphus SL</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>KM205437 Capreolus capreolus SL</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>KM205439 Ixodes ricinus NO</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>KT070830 Alces alces NO</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME87352 Capreolus capreolus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>AY706386 Capreolus capreolus DE</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>HX661611 Ixodes ricinus SK</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME87353 Capreolus capreolus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>MH687354 Cervus elaphus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME867355 Cervus elaphus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME87356 Cervus elaphus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME87357 Cervus elaphus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME87358 Capreolus capreolus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME87359 Capreolus capreolus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
<tr>
<td>ME87360 Capreolus capreolus</td>
<td>G C T G C A T G A A C C T A C T C T G T G T A T C G C T G C T T A A T</td>
</tr>
</tbody>
</table>
Stuen et al. (2002a) reported significantly higher seroprevalence for granulocytic *Ehrlichia* spp. found in roe deer (96%) than in moose (43%) and red deer (55%) from *I. ricinus* infested counties in Norway. A high prevalence of antibodies for *A. phagocytophilum* in moose serum (79%) from tick-infested areas in southern Norway has been detected by Milner and van Beest (2013).

A. phagocytophilum infections result in fevers that vary according to the age of animals, the variant of *A. phagocytophilum* involved, and immunological status of the host (Stuen et al., 2013b). In early studies it was observed that sheep and cattle with TBF displayed a range of clinical signs that were attributable to secondary infections (reviewed in Woldehiwet, 2008). Studies conducted in the UK and Scandinavia have clearly established that TBF variants of *A. phagocytophilum* are immunosuppressive, resulting in several disease syndromes including tick pyaemia, pasteurellosis and septicaemic listeriosis (Woldehiwet, 2008).

The epidemiology of *A. phagocytophilum* in wildlife is still poorly understood. Although clinical tick-borne fever among wild cervids is difficult to diagnose, it has been diagnosed in a moose calf, and in one roe deer calf from southern Norway. Both animals died from septicemic infections with bacteria regarded as opportunistic pathogens (Jenkins et al., 2001; Stuen et al., 2001a). A possible effect of *A. phagocytophilum* infections on the body weights of lamb and moose calves have been suggested (Grøva et al., 2011; Stuen et al., 2002b; Puraite et al., 2015a). Clinical and hematological reactions depend on the strains of the bacterium involved and the hosts (Stuen et al., 2013b). There is evidence from experimental study (Stuen et al., 2001b) that an ovine isolate of *A. phagocytophilum* causes a subclinical persistent infection in red deer, while a red deer isolate causes clinical response in lambs (Stuen et al., 2001b).

Fig. 1. Phylogenetic tree of *Babesia* isolates and samples of this study (●), based on fragments of 18S rDNA, generated using the Maximum-Likelihood clustering method in MEGA 6 software (1000 replicates; bootstrap values indicated at the nodes). Abbreviations: AU - Austria, BE - Belgium, CA - Canada, DE - Germany, FR - France, HU - Hungary, IT - Italy, JP - Japan, LT - Lithuania, NO - Norway, PL - Poland, RU - Russia, SK - Slovakia, SP - Spain, TU - Turkey, US - United States.
In the present study, we observed a high incidence of *A. phagocytophilum* in roe deer and red deer. However, the different results were obtained by nested and real-time PCR, the prevalence of bacteria detected by real-time PCR was higher compared with that by nested PCR. Different target genes were used for detection of *A. phagocytophilum* in real-time (msp2 gene coding for major surface protein 2, MSP2) and nested PCR (msp4 gene coding for major surface protein 4, MSP4) assays. The genome of *A. phagocytophilum* may contain > 80 copies of msp2 paralogs, including full-length genes, while *msp4* gene present in a single copy (Cortney et al., 2004; Dunning Hotopp et al., 2006). Primers used in real-time PCR in this study were designed to amplify the conserved coding region of the *msp2* gene and the multiple copies of the gene in the *A. phagocytophilum* genome, thereby increasing the sensitivity of the assay (Table 1). *A. phagocytophilum* DNA was detected in 88.1% roe deer and 81.1% red deer by real-time *msp2* gene PCR, and in 52.2% roe deer and 51.4% red deer by nested *msp4* PCR. Thus, real-time *msp2* gene PCR had higher sensitivity compared with nested *msp4* PCR.

A previous study demonstrated the high incidence of *A. phagocytophilum* infections among moose (42.9%) in tick-infested area, whereas no infected animals were found in an area where ticks were absent or rare (Puraite et al., 2015a). In Norway, the infection rate of *A. phagocytophilum* in *I. ricinus* ranged from 2.1% to 20% (Rosel et al., 2009; Tveten, 2014; Henningson et al., 2013). The highest prevalence of *A. phagocytophilum* in *I. ricinus* occurred in locations with the highest cervid density (Rosel et al., 2009; Mysterud et al., 2013). A great abundance of potential hosts (cervids) is an important factor for tick expansion and a potential for the spread of anaplasmosis (Gilbert, 2010).

A total of eleven *msp4* gene sequence variants of *A. phagocytophilum* were identified in this study. One variant was common in both species of cervids. The most frequent variant MH687352 (detected in 7 different individuals of roe deer) according to GenBank data was detected in roe deer, red deer, moose, reindeer and *I. ricinus* ticks from different European countries (e.g. France, Slovenia, Spain, and Norway) (de la Fuente et al., 2008; Strašek Smrdel et al., 2015). Three *msp4* sequence variants that share 100% identity to sequences deposited in the GenBank database and three new (unique) sequences were detected in roe deer. Three *A. phagocytophilum* *msp4* sequence variants derived from red deer in this study had been previously described in chamois, sheep, roe deer and ticks in Slovenia (Strašek Smrdel et al., 2015), France (EU857673), Slovakia (Stefanidesova et al., 2008) and Norway (Paulauskas et al., 2012), while the other three *msp4* sequences had unique nucleotide polymorphisms and therefore differed from other *A. phagocytophilum* sequences previously submitted to GenBank. Two *A. phagocytophilum* genetic variants identified in this study in roe deer and red deer were identical to sequences derived from moose in Norway (Puraite et al., 2015a).

A. phagocytophilum strains detected in roe deer and red deer are heterogenic. However, based on gene targets used in this study, there were no correlations observed among host species and *A. phagocytophilum* genetic variants (Table 3).

Previous studies have suggested that *A. phagocytophilum* strains circulating in different ruminant species, possibly having distinct transmission cycles in nature, independent of each other and that there are biological, ecological, and pathological differences between different *A. phagocytophilum* genetic variants (Massung et al., 2002; Stuen et al., 2003, 2013a). Several 16S rDNA sequence types of *A. phagocytophilum* have been identified in sheep and red deer in Norway (Stuen et al., 2013a). High sequence heterogeneity is observed among *A. phagocytophilum* strains in *msp4* gene by comparing with 16S rDNA gene sequences: twenty-four different *msp4* sequence types were found circulating in a Norwegian sheep flock (Ladbury et al., 2008); high diversity of *msp4* sequences of *A. phagocytophilum* was detected among Australian wild ungulates (Silaghi et al., 2011a). Bown et al. (2007) reported high variability of *msp4* sequences (11 variants) derived from 20 *A. phagocytophilum* strains found in different hosts from several European countries and the USA. Several *A. phagocytophilum* *msp4* gene variants were detected in red deer populations of Norway (Stuen et al., 2013a).

Sequence analysis of 16S rRNA and ankaA gene demonstrated similarities of *A. phagocytophilum* strains detected in sympatric populations of red deer and sheep (Stuen et al., 2001b), and it was suggested, that red deer could act as the main wildlife reservoir of the *A. phagocytophilum* genetic variants that caused TBF in sheep (Stuen et al., 2013a). However, Stuen et al. (2013a) found that, based on *msp4* gene sequence analysis, *A. phagocytophilum* strains detected in roe deer were genetically distinct from those infected sheep. In the present study, two *msp4* sequence variants identified in red deer (MH687349, MH68735) were identical to those previously detected in sheep (EU857672, EU857673) and cows (EU857665, EU857666, EU857666). The red deer is currently expanding its distribution in Norway, which may lead to the increased risk of anaplasmosis in new regions (Mysterud et al., 2017).

Although *A. phagocytophilum* chronic infection has not been confirmed yet in any host, persistent infections have been found to occur in several mammalian species such as sheep, horse, dog, red deer, and cattle (Stuen et al., 2013b). The time of infection may differ according to *A. phagocytophilum* genetic variants and host species involved (Stuen et al., 2013b). In immune-competent sheep *A. phagocytophilum* is able to survive and propagate for several months or even years (Stuen et al., 2008; Granquist et al., 2010).

In this study, we used two PCR methods for detection of *Babesia* parasites in cervids: real-time PCR and nested PCR. Both PCR assays amplify the partial region of 18S rRNA gene and able to detect a broad range of known and emerging *Babesia* spp. The results of this study showed, that real-time PCR was more sensitive in detection of *Babesia* DNA in spleen samples of cervids than nested PCR (Table 2): out of 80 Babesia-positive samples by real-time PCR, only 47 (58.7%) were positive by using nested PCR. Based on these findings, we hypothesized that difference in prevalence obtained using different PCR methods, could be explained by different level of parasitaemia in examined samples and higher sensitivity of real-time PCR allowing to detect low levels of parasites DNA.

The results from this study show high prevalence 80/104 (76.9%) of *Babesia* spp. in roe deer and red deer sampled from South Norway. The high prevalence of *Babesia* DNA obtained in spleen samples of roe deer and red deer (83.6% and 64.9%, respectively) indicated a high degree of exposure to *Babesia* parasites in the study area (Table 2). Previously reported incidence of *Babesia* spp. in cervids varied in different European regions: high incidence of *Babesia* spp. in roe deer was detected in Germany (62.8%; Kauffmann et al., 2017) and Sweden (52%; Andersson et al., 2016), while lower infection rates were reported in other European countries, including France (23%; Bonnet et al., 2007), Switzerland (26.1% and 23.9%; Hoby et al., 2009; Michel et al., 2014) and Slovenia (21.6%; Duh et al., 2005). Prevalence of *Babesia* spp. in red deer reported in Europe is ranged from 5.1% in Austria (Cézanne et al., 2017), 11.1% and 17.3% in Switzerland (Hoby et al., 2009 in Switzerland; Michel et al., 2014), to 26% in Ireland (Zintl et al., 2011). For detection of *Babesia* DNA, in these studies different PCR methods (conventional, nested or semi-nested) based on 18S rRNA gene were used.

Our findings demonstrated that roe deer and red deer harbored multiple *Babesia* species: sequences derived from red deer were similar with *Babesia* cf. odocoilei, *B. odocoilei* and *B. divergens*, while in roe deer *B. capreoli, B. divergens* and *B. venatorum* were detected. A previous study conducted in Norway reported these *Babesia* species in questing *I. ricinus* ticks, and the most prevalent was *B. venatorum* found in 71% of the positive ticks (Øines et al., 2012). All ticks infected with *B. venatorum* were found in the southern part of Norway, while the *B. divergens* positive ticks were found in the western and southern parts of the country (Øines et al., 2012). In Norway, *B. venatorum* has been also reported from ticks on migratory birds (Hasle et al., 2011). Roe deer has...
been regarded as the main cervid host for *B. venatorum*. In the present study, we detected *B. venatorum* only in roe deer. In Europe, *B. divergens* and *B. venatorum* may result in a severe disease in humans, with most cases from spleenectomised patients in whom the disease has a high mortality (Herwaldt et al., 2003; Martinot et al., 2011), also some cases were attributed to *B. microti* which causes milder disease (Hildebrandt et al., 2007; Lempereur et al., 2015). Human babesiosis is a rare but potentially life-threatening parasitic disease. There are 39 published human cases in Europe which were clinically severe (ECDC). A severe case of human babesiosis due to *B. divergens* has only been diagnosed in one patient in Norway in 2007 (March et al., 2014). A fatal case of human *B. divergens* infection was reported from Finland in 2010, and one severe case in was reported in Sweden in 1992 (reviewed in March et al., 2014).

We detected *B. venatorum* and *B. divergens* in roe deer and *B. divergens* in red deer, which may be a potential reservoirs of these human pathogens. *Babesia cf. odocoieli* have been previously detected in moose (Puraite et al., 2015b) in Norway.

Fatal babesiosis, due to *B. divergens*, *B. capreoli* and *B. venatorum* infections were described in roe deer, reindeer and alpine chamois (Marco et al., 2000; Hoby et al., 2009; Kik et al., 2011; Michel et al., 2014). Severe infections due to *B. divergens* were observed in reindeer (Langton et al., 2003). However, clinical babesiosis in free-ranging wild ruminants appears to be rare, and asymptomatic babesiosis seems to be normal (Penzhorn, 2006). Babesiae may persist asymptotically within its host for several years. In cattle, *B. bovis* infected calves show few, if any clinical signs of disease, and may become persistently infected (Chauvin et al., 2009). Several studies have showed, that during infection of cattle with *B. bovis*, *B. bigemina* or *B. divergens*; of reindeer and other spleenectomized cervids with *B. divergens*; of sheep (spleenectomized or intact) with *B. divergens*; of ruminants appears to be rare, and asymptomatic babesiosis seems to be normal (Langton et al., 2003). However, clinical babesiosis in free-ranging wild ruminants appears to be rare, and asymptomatic babesiosis seems to be normal (Penzhorn, 2006).

We detected *B. venatorum* and *B. divergens* in roe deer and *B. divergens* in red deer, which may be a potential reservoirs of these human pathogens. *Babesia cf. odocoieli* have been previously detected in moose (Puraite et al., 2015b) in Norway.

We thank Øyvind Froland and deer hunters in Aust-Agder for providing spleen samples, and Aust-Agder fylkeskommune for financial support.

References

