
AJS

Austrian Journal of Statistics
April 2020, Volume 49, 27–34.

http://www.ajs.or.at/

doi:10.17713/ajs.v49i4.1122

Performance Evaluations of Gaussian Spatial Data

Classifiers Based on Hybrid Actual Error Rate

Estimators

Kestutis Ducinskas
Klaipeda University
Vilnius University

Lina Dreiziene
Lithuanian Maritime Academy
LCC International University

Abstract

Discrimination and classification of spatial data has been widely mentioned in the sci-
entific literature, but lacks full mathematical treatment and easily available algorithms
and software. This paper fills this gap by introducing the method of statistical classifi-
cation based on Bayes discriminant function (BDF) and by providing original approach
for the classifier performance evaluation. Supervised classification of spatial data with
response variable modelled by Gaussian random fields (GRF) with continuous or discrete
spatial index is studied. Populations are assumed to be with different regression parame-
ters vectors. Classification rule based on BDF with inserted ML estimators of regression
and scale parameters is studied. We focus on the derived actual error rate (AER) and the
approximation of the expected error rate (AEER) for both types of models. These are used
in the construction of hybrid actual error rate estimators that are spatial modifications of
widely applicable D and O estimators applied in cases of independent observations.

Simulation experiments are used for comparison of proposed AER estimators by the
minimum of unconditional mean squared error criterion for both types of GRF models.

Keywords: spatial index, Bayes discriminant function, probability of misclassification, actual
error rate.

1. Introduction

Statistical classification and discriminant analysis of spatial data has been mentioned in the
scientific literature, but lacks full mathematical treatment and easily available algorithms and
software. This paper fills this gap by proposing the method of Gaussian spatial models eval-
uation and comparison based on classification error rate estimators and by providing novel
formulas and algorithms, which allows to evaluate the influence of spatial information to the
performance of proposed classifier. The actual and expected error rates for supervised classi-
fication of Gaussian random field (GRF) observations via plug-in Bayes discriminant function
(PBDF) in partial parametric uncertainty case are studied by Ducinskas (2009) and in com-
plete parametric uncertainty case by Ducinskas and Dreiziene (2011). Given training sample,
the explored classifier is obtained by substituting model parameters with their estimators in
the well-known Bayes rule. Spatial discrimination based on PBDF for feature observations
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having elliptically contoured distributions is implemented by Batsidis and Zografos (2011).
Numerical comparison of the performances for different spatial classification rules is performed
by Berrett and Calder (2016). In the above mentioned papers, the main attention is paid to
the so-called geostatistical models (GS) with continuous spatial index and directly specified
covariance functions belonging to Matern type or other parametric models. However, many
researchers intesivelly explored spatial Gaussian data observed over the lattice. Two classes
of spatial linear models for lattice data are used in practice: conditional autoregressive model
(CAR) and simultaneous regression model (SAR) following a neighbourhood structure on
lattice. In spatial statistics literature CAR models are the most often used for the analysis
of lattice/areal data since majority of authors declare that CAR models being subclass of
Markov random fields are more general than SAR models (see, e.g., Sain and Cressie 2007).
Recall that CAR models are a subclass of Markov random fields such that the spatial depen-
dence is induced by conditional distributions of random errors at individual locations (sites).
The practical use of Gaussian Markov random field (GMRF) (see, e.g., Rue and Held 2005)
for modelling large scale spatial phenomena has significantly increased after recent advances
on the efficient simulation. Without insignificant loss of generality, we restrict our atten-
tion to homogenious CAR (HCAR) lattice models (Song and De Oliveira 2012) with original
parametric structure proposed by De Oliveira and Ferreira (2011). These are well-suited to
the case of small samples, and ensures good frequentist properties of ML estimators of drift
and scale parameters. Spatial classification based on PBDF for univariate HCAR models,
imposed by the mentioned above structure, is recently explored by Ducinskas and Dreiziene
(2018).

In the present paper we focus on linear classification problem of GRF observation for GS
models as well as for HCAR models by using PBDF. The main theoretical objective of this
study is to study the properties of two types actual error rate estimators based on previously
derived analytic expressions for AER and AEER. The proposed hybrid estimators, say SD and
SO, are formed by replacing theoretical parameters with their estimators in AER and AEER,
respectively. This is a spatial modification of D and O estimators applied for classification
problems of independent Gaussian observations (see, e.g., Lachenbruch and Mickey 1968;
Snapinn and Knoke 1984; Egbo 2016). Comparison of the geostatical models for ecological
data based on correct classification rates is performed by Ducinskas and Dreiziene (2019) and
Dreiziene and Ducinskas (2020).

This paper is organized as follows: the problem description, definitions of classifiers based
on BDF are displayed in the next section; specification of the actual error rates and their
estimators are presented in Section 3. Section 4 illustrates the proposed methods by simulation
experiments and, finally, the conclusions are in the last section.

2. Main concepts and definitions

In this paper we focus on classification of spatial data that can be considered as realization of
random field {Z(s) : s ∈ S ⊂ R2}. The universal kriging model belonging to the subclass of
spatial linear models is explored. The model of observation Z(s) for s ∈ S is (Haining 1990;
Cressie and Wikle 2011)

Z(s) = x′(s)βl + ε(s),

where x(s) is a q × 1 vector of non-random regressors and βl is a q × 1 vector of unknown
parameters, l = 1, 2, β1 6= β2. The error term ε(s) is zero-mean GRF {ε(s) : s ∈ S} with
known covariance function σ(s, t) = cov(ε(s), ε(t)), s, t ∈ S.

In this paper we have considered geostatistical model (GS) of random fields for which spatial
index s is assumed to vary continuously throughout S.

Suppose that {si ∈ S, i = 0, 1, ..., n} is the set of spatial sites where the observations of GRF
are taken. Denote the set of training sites by Sn = S(1) ∪ S(2), where S(1) = {s1, s2, ..., sn1}
and S(2) = {sn1+1, ..., sn1+n2}, n = n1 + n2. Suppose that S(l) are the subsets of Sn that
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contains nl observations of Z(s) from Ωl, l = 1, 2. The site of the observation to be classified
is denoted by s0 and will be called a focal location (see, e.g., Berrett and Calder 2016). Set
S0
n = Sn ∪ {s0}.

Put β′ = (β′1, β
′
2), α0 = Σ−1c0, and denote byXl the nl×q matrix of regressors for observations

from Ωl, l = 1, 2. Then n × 2q design matrix of the training sample Z is specified by
X = X1

⊕
X2, where symbol

⊕
denotes the direct sum of matrices and Xl is the nl × q

matrix of regressors for observations from Ωl, l = 1, 2.

In what follows we use the following notations for i, j = 0, ..., n: Z(si) = Zi, ε(si) = εi, x(si) =
xi, σij = cov(Zi, Zj). Setting Z = (Z1, ..., Zn)′ we have c0 = cov(Z0, Z) = (σ01, σ02, ..., σ0n)′

and Σ = V ar(Z) = (σij , i, j = 1, ..., n). So the training sample Z has multivariate Gaussian
distribution

Z ∼ Nn(Xβ,Σ).

The problem considered in this paper is the following: for given training sample Z classify
Z0 into one of two described below populations. Let z denote the realization of Z. Then the
conditional distribution of Z0 given Z = z in population Ωl is Gaussian

Z0|Z = z,Ωl ∼ N1(µ
2
zl, σ

2
0z), (1)

µ2zl = x′βl + α′0(z −Xβ), (2)

σ20z = σ00 − c′0Σ−1c0. (3)

First consider GS model for spatial data. For this model we consider stationary random
error case. Assume that covariance function is directly specified parametric function σ(s, t) =
σ2r(s− t), where r(•) is the spatial correlation function and σ2 = σii, i = 0, ..., n.

Let r0 = (r(s0 − s1), ..., r(s0 − sn)) and R = (r(si − sj), i, j = 1, ..., n). Then α0 = R−1r0 and
σ20z = σ2ρ0, where ρ0 = (1− r′0R−1r0).
Next consider the lattice data − HCAR model. Assume that lattice S0

n = Sn∪{s0} is endowed
with a neighbourhood system N0 = {N0

i : i = 0, 1, ..., n}, and lattice Sn is endowed with a
neighbourhood system N = {Ni : i = 1, ..., n}, where Ni denotes the collection of sites that
are neighbours of site si.

Define spatial weight wij > 0 as a measure of similarity between sites si and sj , and put
wij = wji, h

0
i =

∑
j∈N0

i

wij , i, j = 0, 1, ..., n and hi =
∑
j∈Ni

wij , i, j = 1, ..., n.

Suppose

hij =


hi if i = j
−wij if i ∈ Nj

0 otherwise

and

h0ij =


h0i if i = j
−wij if i ∈ N0

j .

0 otherwise

Then consider the (n + 1) × (n + 1) matrix H0 = (h0ij : i, j = 0, 1, ..., n) and n × n matrix
H = (hij : i, j = 1, ..., n). Let w′0 = (w01, ..., w0n), w′i = (wi1, ..., wii−1, ..., win), i = 1, ..., n. So
for HCAR model the covariance matrix is Σ = σ2R with R = (In + αH)−1.

Define Z+ = (Z0, Z
′)′ and assume var(Z+) = σ2(In+1+αH0)−1 (see, De Oliveira and Ferreira

2011). Here α ≥ 0 is a spatial dependence parameter and σ > 0 is a scale parameter. Then
α′0 = αw′0/(1 + αh0), ρ0 = 1/(1 + αh0).
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In the following for brevity we will use Ψ = (β′, σ2)′. Set the squared marginal Mahalanobis
distance by ∆2

0 = (x′0(β1 − β2))
2/σ2. Then the squared conditional Mahalanobis distance

between conditional distributions of Z0 given Z = z is specified by ∆2
0z = ∆2

0/ρ0. Recall that
in the GS case ρ0 = (1− r′0R−1r0) and in the HCAR case ρ0 = 1/(1 + αh0).

Under the assumption of complete parametric certainty, the Bayes discriminant function
(BDF) minimizing the probability of misclassification (PMC) is formed by log ratio of condi-
tional likelihoods.

Denote by π01, π
0
2, (π01 + π02 = 1) the prior probabilities of the populations Ω1 and Ω2, respec-

tively, for observation at focal location s0, given training sample Z.

Then for Z = z, BDF is specified by (see, McLachlan 2004)

Wz(Z0,Ψ) =
(
Z0 −

1

2
(µ01z + µ02z)

)
(µ01z − µ02z)/σ20z + γ0,

where γ0 = ln(π01/π
0
2). So BDF allocates the observation in the following way: classifies

observation Z0 given Z to the population Ω1 if Wz(Z0,Ψ) ≥ 0, and to the population Ω2,
otherwise.

Recall that by definition squared Mahalanobis distance between populations specified above
at location s0 is ∆2

0z = (µ01z − µ02z)2/σ20z = (x′0(β1 − β2))2/σ20z. The explicit expression of the
PMC associated with BDF for GRF is derived in Ducinskas (2009). Hence for above specified
classifier PMC has the following form:

P (Ψ) =
2∑
l=1

(
π0l Φ(−∆0z/2 + (−1)lγ0/∆0z)

)
,

where Φ(•) is the standard Gaussian distribution function.

3. Actual error rates and their estimators

Let µ̂1z, µ̂2z and σ̂20z be the estimators of µ1z, µ2z and σ20z, respectively, obtained by replacing
β and σ2 in equations (2) and (3) with their estimators β̂ and σ̂2 based on Z. Put Ψ̂ = (β̂′, σ̂2).
Then using (1)-(3) we get the estimator of conditional mean and conditional variance

µ̂0lz = x′0β̂l + α̂′0(z −Xβ̂), l = 1, 2,

σ̂20z = σ2ρ0.

In the present paper we use ML estimator of regression parameters:

β̂ = (X ′R−1X)−1X ′R−1Z ∼ N2q(β,Σβ),

and bias adjusted ML estimator of scale parameter

σ̂2 = (Z −Xβ̂)′R−1(Z −Xβ̂)/(n− 2q),

where Σβ = σ2Rβ with Rβ = (X ′R−1X)−1. By replacing the parameters with their estimators
in (5) we form PBDF

Wz(Z0, Ψ̂) =
(
Z0 − α̂′0(z −Xβ̂)− 1

2
x′0F

+β̂
)
(x′0F

−β̂)/σ̂20z + γ0

with F+ = (Iq, Iq) and F− = (Iq,−Iq), where Iq denotes the identity matrix of order q.

Let for l = 1, 2, al = x′0βl − α′0Xβ, b = α′0X − x′0F+/2.
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Lemma 1. The actual error rate (AER) for PBDF Wz(Z0; Ψ̂) is

P (Ψ̂) =
2∑
l=1

(
π0l Φ(Q̂l)

)
,

where Q̂l = (−1)l
(
(al + bβ̂)sgn(x′0F

−β̂)/σ0z + γ0σ̂
2
0z/(σ0z|x′0F−β̂|)

)
.

Proof of Lemma 1 is presented in Ducinskas (2009).

Note that Ql(Ψ) = −∆0z/2 + (−1)lγ0/∆0z.

The expectation of the actual error rate with respect to the distribution of Z is called the
expected error rate (EER). The EER is useful in providing a guide to the performance of
the plug-in classification rule before it is actually formed from the training sample. It can
be considered as the performance measure to the PBDF similar as the mean squared predic-
tion error (MSPE) is the performance measure to the plug-in kriging predictor (see, Diggle,
Ribeiro, and Christensen 2003). These facts strengthen the motivation for deriving the AEER
associated with PBDF.

AER is a function of discriminant function, but the distribution of PBDF based on unknown
parameters is quite complicated and thus an analytical expressions for the error rates becomes
difficult. Therefore AER should be estimated by different error rate estimators, which will
be explained below. One type of AER estimators is based on approximation of AER (see,
Ducinskas 2009).

In the present paper we use AEER that will be derived in Lemma 2.

Lemma 2. The approximation of EER for PBDF Wz(Z0, Ψ̂) is

AEER = P (Ψ) + π01ϕ(−∆0z/2− γ0/∆0z)
(
∆0zKβ/2 + γ20/(n− 2q)∆0z

)
,

where Kβ = Λ′RβΛ and Λ′ = α′0X − x′0(F+/2 + γ0F
−/∆2

0z).

Proof. The proof of Lemma 2 is based on the second order Taylor expansion of P (Ψ̂) about
the point Ψ̂ = Ψ, and is implemented by mimicking the proof of the Theorem from Ducinskas
paper (2009).

Here we propose spatial modification of the widely used error rate estimators D and O and
denote them by SD and SO. Note, that each of the methods of error rate estimation described
in this section is given a symbol to identify it. The estimators are referred to by symbol as a
superscript.

Definition 1. The actual error rate estimator, SD, is obtained by replacing ∆2
0z with the

estimator

D2
0z = (µ̂1z − µ̂2z)2/σ̂20z

in PMC. Therefore

P̂SD =
2∑
l=1

(
π0l Φ(−D0z/2 + (−1)lγ0F

−/D0z)
)
. (4)

Definition 2. The actual error rate estimator, SO, is obtained by replacing ∆2
0 with ∆̂2

0 in
AER, i.e.

P̂SO = P̂SD + π01ϕ(D0z/2 + γ0/D0z)(D0zK̃β/2 + γ20/D0z(n− 2q)), (5)

where K̃β = Λ̃′RβΛ̃ with Λ̃′ = α′0X − x′0(F+/2 + γ0F
−/D2

0z).
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Let P̂ represent an arbitrary estimator of actual error rate. As it follows, we call them error
rate estimators.

For effectiveness, criteria of these estimators is based on the unconditional mean squared error
(UMSE) i.e.

UMSE(P̂ ) = E(P̂ − P (Ψ̂))2. (6)

4. Simulation experiments

In order to illustrate the results of previous section, a numerical example is considered. Com-
parison of the proposed AER estimators with respect to the minimum of UMSE for GS
and HCAR models is demonstrated. We consider the empirical estimators of the error rates
incurred by the rule based on the proposed PBDF for stationary GRF.

Assume that data are sampled on the 11 × 11 regular unit spacing lattice with the focal
location in the centre of the lattice (see Figure 1). Equal-sized training samples with equal
prior probabilities are considered, that is n1 = n2 = 60 and π01 = π02 = 1/2.

Figure 1: Sample training sites. The points indicated by • belong to S(1), and the points
indicated by ◦ belong to S(2). The central point • denotes s0 (focal location).

Spatial correlation for GS case is modelled by isotropic exponential covariance function given
by σ(h) = σ2exp(−h/α). 100 replications (M = 100) were performed with true parameters
σ2 = 1, α = 2 using geoR, package included into the R project for statistical computing.

Table 1: Actual error rate estimators for different Mahalanobis distance ∆0 in GS case

∆0 P̂SD P̂SO UMSESD UMSESO ∆(UMSE)
0.25 0.39846 0.398462 0.011071 0.011071 0.00000047
0.5 0.357336 0.357339 0.008786 0.008785 0.00000040
0.75 0.269909 0.269915 0.008140 0.008139 0.00000073
1 0.218281 0.218289 0.006300 0.006299 0.00000057
1.25 0.167597 0.167607 0.004703 0.004703 0.00000060
1.5 0.113626 0.113639 0.005681 0.005679 0.00000111
1.75 0.076875 0.076890 0.004482 0.004481 0.00000110
2 0.061583 0.061600 0.001693 0.001693 0.00000050

For HCAR case the simulations were performed according to the algorithm based on Cholesky
factorisation proposed by Rue and Held (2005). Spatial weights wij typically reflect the spatial
influence of observation from site si on observation from site sj . Here we use power distance
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weights of the form wij = d−2ij , where dij refers to the Euclidean distance between sites si and
sj .

Table 2: Actual error rate estimators for different Mahalanobis distance ∆0 in HCAR case

∆0 P̂SD P̂SO UMSESD UMSESO ∆(UMSE)
0.25 0.363667 0.363682 0.005282 0.005284 0.00000180
0.5 0.247142 0.247176 0.014470 0.014476 0.00000607
0.75 0.145962 0.146021 0.040068 0.040087 0.00001874
1 0.083951 0.084034 0.049309 0.049337 0.00002805
1.25 0.040081 0.040193 0.052304 0.052341 0.00003684
1.5 0.019177 0.019312 0.084212 0.084269 0.00005714
1.75 0.007670 0.007830 0.077168 0.077229 0.00006118
2 0.003044 0.003227 0.086850 0.086920 0.00007023

The values of the proposed actual error rate estimators (4), (5) and their UMSE (6) for both
GRF types are presented in Table 1 and Table 2. The magnitude of UMSE for any given value
of Mahalanobis distance ∆0 show the advantage of SO estimator against SD estimator since
∆UMSE = UMSESD − UMSESO > 0. The tables show that the effect of separation level
between populations is evident, i.e., estimators and their UMSE decreases as ∆0 increases.

5. Conclusions

For the spatial data modelled by two types of GRF the novel actual error rate estimators
for classifiers based on PBDF are proposed and explored. Performances of the proposed
estimators are evaluated by UMSE criterion via simulation experiments.

The simulation study with a moderate size of training samples shows that for both types
of GRF models SO estimator has an advantage against SD estimator with respect to the
minimum UMSE criterion.

Hence, adding the supplementary term to the P̂SD slightly improves the effectiveness of esti-
mator. That fact confirms the usefulness of deriving the expected error rate approximations
for classifiers of spatial data modelled by GRF.
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