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1. Introduction and results

Let X be a complex Banach algebra with norm ‖ · ‖. A family S(t), t > 0 of ele-
ments of a Banach algebra X is called a semigroup if S(t + s) = S(t)S(s), for all
t, s > 0 (see[8]). We define the resolvent R(λ), λ ∈ C of the semigroup S(t) as the
Laplace transform R(λ) = ∫ ∞

0 e−λtS(t)dt. We also define the functions t �→ En(t) =
Rn(n/t)(n/t)n , n ∈ N, called the Euler approximations of semigroup S(t).

In [2] Bentkus obtained asymptotic expansions for Euler’s approximations of semi-
groups with explicit and optimal bounds for the remainder terms. The approach was
based on applications of the Fourier-Laplace transforms and a reduction of the problem
to the convergence rates and asymptotic expansions in the Law of Large Numbers.

In this paper we provide explicit formulas in asymptotic expansions for Euler’s
approximations of semigroups.

First we introduce some additional notation. Henceforth
∑

i1+...+in=k means sum-
mation over all distinct ordered n-tuples of positive integers i1, . . . , in whose elements
sum to k. Write

ck,j = 1

j !
∑

i1+...+ij=k+j

1

i1i2 . . . ij
, (1.1)

where i1, i2, . . . , ij � 2 and 1 � j � k. We also define

K = sup
t>0

∥∥tS′(t)
∥∥.

LEMMA 1.1. If a semigroup S is differentiable and K < ∞, then the Euler approx-
imations En(t) allow the asymptotic expansion

En(t) = S(t) + a1

n
+ · · · + ak

nk
+ rk, for n � 2, (1.2)

with

am =
2m∑

j=m+1

cm,j−mS(j)(t)tj , (1.3)
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for m = 1,2, . . ..

The asymptotic expansion (1.2) and the bounds for the remainder terms rk were
obtained by Bentkus (see Theorem 1.3 in [2]) using the Laplace transforms. In this
Lemma we obtained expressions (1.3) for the coefficients am.

In [10] we obtained another form of coefficients ck,j using an alternative (direct)
approach which is not based on Laplace transforms. Also it is easy to obtain the recur-
rence relations for ck,j . From (1.1) we get (this can be easily checked using induction)

cm,1 = 1

m + 1
, cm,j = 1

j

m−1∑
k=j−1

ck,j−1

m − k + 1
(1.1a)

for j = 2, . . . ,m and m = 1,2, . . .. From expression (1.10) in [10] we obtain one more
recurrence relation

cm,1 = 1

m + 1
, cm,j = 1

m + j

m−1∑
k=j−1

ck,j−1 (1.1b)

for j = 2, . . . ,m and m = 1,2, . . ..
We note that the derivatives E

(s)
n (t), s = 1,2, . . . allow the asymptotic expansion

similar to (1.2). In order to obtain these expansions one can term-wise differentiate
(1.2).

Now we provide explicit expressions for asymptotic expansions of the semigroup
S(t) in a series of powers of n−1 with coefficients bk depending on derivatives of
En(t), i.e., asymptotic expansions

S(t) = En(t) + b1

n
+ . . . + bk

nk
+ �k, for n � 2 (1.4)

In order to establish these expansions, we have to establish expansions for the deriva-
tives S(m)(t) as well, m = 1,2, . . . Then the coefficients in (1.4) are given by

b0 = En(t), bm = −
m∑

l=1

2l∑
j=l+1

cl,j−l t
j b

(j)
m−l , m = 1,2, . . . , (1.5)

where ci,j are given by (1.1). For example, we have

b1 = − t2

2
E(2)

n (t),

b2 = t2

2
E(2)

n (t) + 2t3

3
E(3)

n (t) + t4

8
E(4)

n (t),

b3 = − t2

2
E(2)

n (t) − 2t3E(3)
n (t) − 3t4

2
E(4)

n (t) − t5

3
E(5)

n (t) − t6

48
E(6)

n (t).
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We also denote

b
(s)
0 = E(s)

n (t), b
(s)
k = −

k∑
l=1

2l∑
j=l+1

cl,j−l

min(s,j)∑
i=0

j !
(j − i)!C

i
st

j−ib
(j+s−i)
k−l , (1.6)

for k = 1,2, . . . and s = 0,1,2, . . .. In case where s = 0 we obtain coefficients bm

given by (1.5).

LEMMA 1.2. If semigroup S is differentiable and K < ∞, then the derivatives of
S(t) allow the asymptotic expansions

t sS(s)(t) = t sE(s)
n (t) + t sb

(s)
1

n
+ . . . + t sb

(s)
k

nk
+ �

(s)
k , (1.7)

for s = 0,1,2, . . . and n � 2 (when s = 0, we have asymptotic expansion (1.4)). The
coefficients b

(s)
m are given by (1.6).

The bounds for the remainder terms were obtained in Theorem 1.8 in [2].
In case of the semigroups S(t) which satisfy the condition

S′(t) = S′(0)S(t), (1.8)

we obtain simpler expressions for coefficients bm. Here S′(0) is the derivative (in some
sense) of the semigroup at t = 0. For example, if S(t) = etA, t � 0, is strongly con-
tinuous semigroup of operators, then S′(0) = A is the infinitesimal generator of the
semigroup (see, for example, Chapter II in [7]).

We write

hm =
m∑

i=1

(−1)icm,i

(
S′(0)t

)m+i
, m = 1,2, . . . . (1.9)

LEMMA 1.3. If differentiable semigroup S satisfies condition (1.8) and K < ∞,
then it allows the asymptotic expansion (1.4), where the coefficients

b0 = En(t), bm = hmEn(t), m = 1,2, . . .

and the remainder term

�s = −rs −
s−1∑
k=0

hs−k

rk

ns−k
,

with hm given by (1.9).
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2. Proofs

Proof of Lemma 1.1. In the proof of Theorem 1.3 in [2] it was demonstrated that
coefficients am in (1.2) are linear combinations of t sS(s)(t) with some numerical coef-
ficients cm,s depending only on m and s. Since coefficients cm,s do not depend on con-
crete semigroup, we can determine them by taking, for example, semigroup S(t) = et ,
t > 0. We write

(1 − t/n)−n − et = et vn(t),

where vn(t) = e−t (1−t/n)−n−1. Using expansions expx=∑∞
k=0x

k/k! and ln(1+x) =∑∞
k=1(−1)k−1xk/k we get

vn(t) = exp
{

− t − n ln
(

1 − t

n

)}
− 1 = exp

{
− t − n

∞∑
k=1

(−1)k−1

k

(−t

n

)k
}

− 1

= exp
{
t

∞∑
k=1

1

k + 1

tk

nk

}
− 1 =

∞∑
j=1

tj

j !
( ∞∑

k=1

1

k + 1

tk

nk

)j

.

Raising to the j th power and changing the order of summation we obtain

vn(t) =
∞∑

j=1

tj

j !
∞∑

k=j

tk

nk

∑
i1+...+ij=k

1

(i1 + 1) . . . (ij + 1)
=

∞∑
k=1

1

nk

k∑
j=1

tk+j ck,j ,

where ck,j are given by (1.1). Replacing t s with S(s)(t)ts we obtain expression (1.3)
for am.

Proof of Lemma 1.2. We prove the theorem using induction with respect to k. In case
when k = 0 we have S(t) = b0 + �0, where b0 = En(t), �0 = −r0, and t sS(s)(t) =
t sb

(s)
0 + �

(s)
0 , for all s = 1,2, . . . When k = 1, from (1.2) we have

S(t) = En(t) − c1,1t
2S(2)(t)

n
− r1.

Substituting t2S(2)(t) = t2b
(2)
0 + �

(2)
0 we obtain

S(t) = En(t) + b1

n
+ �1,

where b1 = −c1,1t
2b

(2)
0 and �1 = −r1 − c1,1

n
�

(2)
0 . Differentiating we get

b
(s)
1 = −c1,1

min(s,2)∑
i=0

2!
(2 − i)!C

i
st

2−ib
(2+s−i)
0 ,

for s = 1,2, . . . .
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Assume, that (1.4) and (1.7) hold for 0,1, . . . , k − 1 and s = 1,2, . . .. Let us show
that (1.4) and (1.7) hold for k as well. From (1.2) we have

S(t) = En(t) − a1

n
− . . . − ak

nk
− rk, (2.1)

where

am

nm
= 1

nm

2m∑
s=m+1

cm,s−mtsS(s)(t) (2.2)

with cm,s given by (1.1). From (1.4) and (1.7) we have

S(t) = En(t) + b1

n
+ . . . + bk−m

nk−m
+ �k−m,

tsS(s)(t)=t sE(s)
n (t)+ t sb

(s)
1

n
+· · ·+ t sb

(s)
k−m

nk−m
+�

(s)
k−m

for s=m + 1, . . . ,2m, (2.3)

where m = 1,2, . . . , k − 1. Substituting (2.3) into expression (2.2) we obtain

am

nm
= 1

nm

2m∑
s=m+1

cm,s−mts
(
E(s)

n (t) + b
(s)
1

n
+ . . . + b

(s)
k−m

nk−m

)

+ 1

nm

2m∑
s=m+1

cm,s−m�
(s)
k−m, (2.4)

for m = 1,2, . . . , k. Substituting (2.4) into (2.1), then collecting terms with the same
powers of n and moving terms containing the remainder terms into total remainder
term �k we obtain expression (1.4) with bk given by (1.5). Differentiating bk with
respect to t we get expression (1.6) and from here we obtain asymptotic expansion
(1.7).

Proof of Lemma 1.3. We first note that if we take in mind the property (1.8),
then coefficients am in asymptotic expansion (1.2) take the form am = dmS(t), where
dm = ∑m

j=1 cm,j (S
′(0)t)m+j , for m = 1,2, . . .. This means that to obtain the inverse

expansion (1.4) we do not need to find the asymptotic expansions of the derivatives of
S(t) and En(t) as in Lemma 1.2. Using induction on k like in the proof of Lemma 1.2
we then obtain the following recurrence expressions for coefficients bm in (1.4) :

b0 = En(t), bm = −
m∑

j=1

djbm−j , m = 1,2, . . .

From here it is easy to obtain another form of these coefficients (this can be checked
using induction)

bm =
m∑

r=1

(−1)r
∑

i1+...+ir=m

di1 . . . dir b0, m = 1,2, . . . .



Explicit formulas in asymptotic expansions for Euler’s approximations of semigroups 69

We see that the coefficients bm have the form bm = hmb0, where hm are the linear
combinations of (S′(0)t)m+1, (S′(0)t)m+2, . . . , (S′(0)t)2m with some numerical coef-
ficients which do not depend on concrete semigroup. Therefore, in order to determine
them we can take, as in the proof of Lemma 1.1, the semigroup S(t) = et . Then we
write

et − (1 − t/n)−n = (1 − t/n)−nun(t),

where un(t) = et (1 − t/n)n − 1. It’s easy to see that un(t) = v−n(−t) (vn(t) was
defined in the proof of Lemma 1.1). From here (1.10) follows.
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REZIUMĖ

M. Vilkienė. Pusgrupi ↪u Eulerio aproksimacij ↪u asimptotini ↪u skleidini ↪u koeficient ↪u išraiškos

[2] straipsnyje Bentkus pateikė pusgrupi ↪u Eulerio aproksimacij ↪u asimptotinius skleidinius. Mes ši ↪u sklei-

dini ↪u koeficientus užrašėme išreikštinėje formoje.


