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Abstract. This paper presents a one-dimensional-in-space mathematical model of
an amperometric biosensor. The model is based on the reaction-diffusion equations
containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic
reactions. The stated problem is solved numerically by applying the finite difference
method. Several types of finite difference schemes are used. The numerical results for the
schemes and couple mathematical software packages are compared and verified against
known analytical solutions. Calculation results are compared in terms of theprecision
and computation time.
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1 Introduction

The interest in biosensors is constantly growing as the range of practical applications of
electrochemistry increases. Biosensors are small analytical devices capable of detecting
specific compounds and therefore they are often applied in the fields of clinical, industrial,
environmental and agricultural analyses [1–3]. A biosensor device is composed of bio-
logically responsive material, mostly enzymes, and the electrode. Enzyme interacts with
the target substance yielding the product. This process is usually described by Michaelis-
Menten kinetics of the enzymatic reactions [4–6]. Amperometric biosensors are based on
the measurement of the Faradaic current when a constant potential is kept. The current on
electrode results due to the direct oxidation or reduction of an electroactive spieces.

Analytical solutions for mathematical models of the biosensors are obtainable exclu-
sively in special cases [7,8]. In common case the models haveto be solved numerically [9,
10]. Finite difference method is one of the most popular approximation techniques [11].
Numerous types of finite difference schemes can be considered for the solution of non-
linear reaction-diffusion systems [4, 11]. Three major factors must be taken into account
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when choosing the technique for simulation: the accuracy ofthe solution, computation
time needed to solve the problem and ease of use of the technique. This work is focused on
the analysis of several most commonly known finite difference schemes using computer
simulation.

2 Mathematical model

An amperometric biosensor can be considered as an amperometric electrode, having a
layer of enzyme immobilized onto the surface of the electrode. We assume the symmetri-
cal geometry of the electrode and homogeneous distributionof the immobilized enzyme
in the enzyme membrane.

We consider the following enzyme-catalysed reaction

S + E � ES → E + P. (1)

In this scheme the substrate (S) combines reversibly with an enzyme (E) to form a com-
plex (ES). The complex then dissociates into a product (P) and the enzyme is regenerated.
Assuming the quasi steady state approximation, the concentration of the intermediate
complex (ES) do not change and may be neglected when simulating the biochemical
behaviour of biosensors [1,2]. The scheme (1) reduces to a simplified model of enzyme-
catalyzed reaction, where the enzyme (E) binds to the substrate (S) producing the product
(P) is considered,

S
E

−→ P. (2)

Coupling the enzyme-catalyzed reaction with the one-dimensional-in-space diffusion,
described by Fick’s second law, leads to the following system of equations [8,9]:

∂S

∂t
= DS

∂2S

∂x2
−

VmaxS

KM + S
,

∂P

∂t
= DP

∂2P

∂x2
+

VmaxS

KM + S
, 0 < x < d, t > 0,

(3)

whereS(x, t) andP (x, t) are the substrate and product concentrations, respectively, t
stands for time andx – for space,DS and DP are the diffusion coefficients of the
substrate and product, respectively,KM is the Michaelis-Menten constant,Vmax is the
maximal enzymatic rate attainable when the enzyme is fully saturated with substrate,d is
the thickness of the enzyme membrane.

Let x = 0 represents the electrode surface, whilex = d represents the bulk solution-
membrane interface. The biosensor operation starts when some substrate appears on the
surface of the enzyme layer,

S(x, 0) = 0, 0 ≤ x < d,

S(d, 0) = S0,

P (x, 0) = 0, 0 ≤ x ≤ d,

(4)
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whereS0 stands for the concentration of substrate in the bulk solution.
In the case of amperometric biosensors, due to the electrodepolarization, the con-

centration of the reaction product at the electrode surfaceis being permanently reduced
to zero. The substrate does not react at the electrode surface. If the substrate is well-
stirred and in powerful motion, then the diffusion layer (0 < x < d) remains at a constant
thickness ofd during the biosensor operation. This is used in the boundaryconditions
given by:

∂S

∂x

∣

∣

∣

x=0

= 0,

S(d, t) = S0,

P (0, t) = P (d, t) = 0.

(5)

The measured current is accepted as a response of an amperometric biosensor in a physical
experiment. The current depends upon the flux of the reactionproduct at the electrode
surface, i.e. at the borderx = 0. Consequently, the densityI(t) of the anodic current at a
time t can be obtained explicitly from Faraday’s and second Fick’slaws using the flux of
the product concentration at the surface of the electrode,

I(t) = neFDP

∂P

∂x

∣

∣

∣

x=0

, (6)

wherene is a number of electrons, involved in charge transfer at the electrode surface,
andF is the Faraday constant.

We assume that the system (3)–(5) approaches a steady state as t → ∞,

Ip = lim
t→∞

I(t), (7)

whereIp is the density of the steady state current.

3 Solution of the problem

The analytical solutions for nonlinear partial differential equations generally do not exist.
Equations (3)–(5) describing the action of an amperometricbiosensor do not have ones
either, so numerical approximation must be used. We appliedfinite difference technique
to solve (3)–(5) the boundary value problem numerically [10,11].

3.1 Analytical solutions

A non-linear term in equations (3) turns to linear one in special cases of the substrate
concentration,

VmaxS

KM + S
≈

Vmax

KM

S, when S � KM , (8)

VmaxS

KM + S
≈ Vmax, when S � KM . (9)
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The analytical solutions are known for the boundary value problem (3)–(5) in the
cases of linear reaction terms [7, 8]. Exact solutions are helpful in testing models and
assessing accuracy of the solution.

If inequality S0 � KM is satisfied, then the biosensor steady state current can be
calculated as follows [8]:

Il = neFDP S0

1

d

(

1 −
1

cosh σ

)

, (10)

whereσ2 is a dimensionless diffusion modulus, Damköhler number,

σ2 =
Vmaxd2

DSKM

. (11)

The biosensor response is known to be under mass transport control if the enzymatic
reaction in the enzyme layer is faster than the mass transport process [4, 8, 9]. The
diffusion modulus essentially compares the rate of enzymatic reaction (Vmax/KM ) with
the diffusion through the enzyme layer (DS/d2). If σ2 � 1 then the enzyme kinetics
controls the biosensor response. The response is under diffusion control whenσ2 � 1.

At the high concentration of the substrate (S0 � KM ), the biosensor steady state
current does not depend on the concentrationS0 of the analyte [7],

Ig =
neFVmaxd

2
. (12)

However, in the intermediate concentration cases, i.e. ifS0 ≈ KM , the analytical
solutions are unknown and numerical methods are used to solve the problem [4,9,10].

3.2 Finite difference schemes

We introduce an uniform discrete gridωh × ωτ to simulate the biosensor using finite
difference method,

ωh = {xi : xi = ih, i = 0, . . . , N ; hN = d},
ωτ = {tj : tj = jτ, j = 0, . . . ,M ; τM = T},

(13)

whereT stands for the duration of the process analysis.
The differential equations are discretized in that domain assuming the following

definitions:

Sj
i = S(xi, tj), P j

i = P (xi, tj), Ij = I(tj),

i = 0, . . . , N ; j = 0, . . . ,M.
(14)
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3.2.1 Explicit finite difference scheme

Using explicit finite difference scheme for the substrate and product concentrations (3)
we obtain the following finite difference equations [9–11]:

Sj+1

i − Sj
i

τ
= DS

(

Sj
i+1

− 2Sj
i + Sj

i−1

h2

)

−
VmaxSj

i

KM + Sj
i

,

P j+1

i − P j
i

τ
= DP

(

P j
i+1

− 2P j
i + P j

i−1

h2

)

+
VmaxSj

i

KM + Sj
i

,

i = 1, . . . , N − 1; j = 1, . . . ,M.

(15)

The initial conditions (4) in numerical model has the following form

S0
i = 0, 0 ≤ i < N,

S0
N = S0,

P 0
i = 0, 0 ≤ i ≤ N.

(16)

For the boundary conditions (5) we obtain:

Sj
0 = Sj

1,

Sj
N = S0,

P j
0 = P j

N = 0, 1 ≤ j ≤ M.

(17)

The formulae for calculation of current density (6) becomesthus (0 < j ≤ M ):

Ij = neFDP

P j
1

h
. (18)

We consider the densityIR of the steady state current calculated at the momentTR

IR = I(TR) ≈ Ip, TR = min
j>0, Ij>0

{

tj :
Ij − Ij−1

Ijτ
< ε

}

, T ≈ TR. (19)

We usedε = 10−5 for the calculations.
One of the most important features of the scheme is the stability [11]. The prereq-

uisite for the stability of the explicit finite difference scheme (15)–(17) is the following
condition:

τ ≤ min

{

h2

2DS

,
h2

2DP

}

. (20)

Because of these stability conditions, a number of the time steps must be magnified
strongly as the number of the space steps is increased. This leads to the inefficient
calculations.
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3.2.2 Implicit 1 finite difference scheme

Mathematical model of a biosensor can be solved using several implicit finite difference
schemes [9–11]. Let us name first of them “Implicit 1 finite difference scheme” and
compose its equations.

The model governing equation for the substrate concentration in (3) is replaced by
the following finite difference equation:

Sj
i − Sj−1

i

τ
= DS

(

Sj
i+1 − 2Sj

i + Sj
i−1

h2

)

−
VmaxSj−1

i

KM + Sj−1

i

. (21)

Known concentration values of the substrate at the upper layer can be used for calculation
of the product concentration. Hence, governing equation for the product concentration
can be approximated with:

P j
i − P j−1

i

τ
= DP

(

P j
i+1 − 2P j

i + P j
i−1

h2

)

+
VmaxSj

i

KM + Sj
i

. (22)

The rest equations (4)–(6) take the same form as those of the explicit scheme.

3.2.3 Implicit 2 finite difference scheme

The model equation for the substrate concentration in (3) may be approximated with a
more implicit scheme than equation (21). At a numerator of reaction term the concentra-
tion of substrate can be used in a upper level,

Sj
i − Sj−1

i

τ
= DS

(

Sj
i+1

− 2Sj
i + Sj

i−1

h2

)

−
VmaxSj

i

KM + Sj−1

i

. (23)

Present numerical equation is linear, same as (21). The other equations match those
obtained using the explicit scheme.

3.2.4 Crank-Nicolson scheme

Using Crank-Nicolson [6, 11] method the reaction-diffusion equations (3) are approxi-
mated by linear finite difference equations,

Sj
i − Sj−1

i

τ
=

DS

2h2

(

Sj
i+1−2Sj

i +Sj
i−1+Sj−1

i+1 −2Sj−1

i +Sj−1

i−1

)

−
VmaxSj−1

i

KM + Sj−1

i

,

P j
i − P j−1

i

τ
=

DP

2h2

(

P j
i+1−2P j

i +P j
i−1+P j−1

i+1 −2P j−1

i +P j−1

i−1

)

+
VmaxSj

i

KM + Sj
i

.

(24)

The rest equations (4)–(6) are approximated like in the explicit scheme.
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3.2.5 Hopscotch scheme

Using Hopscotch scheme unknown grid points are obtained at two phases [11]. On the
first phase, even grid points (S[e]j+1

i , P [e]j+1

i ) are calculated explicitly using known
lower layer values (Sj

i , P j
i ),

S[e]j+1

i − Sj
i

τ
= DS

(

Sj
i+1

− 2Sj
i + Sj

i−1

h2

)

−
VmaxSj

i

KM + Sj
i

,

P [e]j+1

i − P j
i

τ
= DP

(

P j
i+1 − 2P j

i + P j
i−1

h2

)

+
VmaxSj

i

KM + Sj
i

.

(25)

On the second phase, odd grid points (S[o]j+1

i , P [o]j+1

i ) are calculated using odd
values of the lower level and already known even values of theupper layer,

S[o]j+1

i − Sj
i

τ
= DS

(

S[e]j+1

i+1
− 2S[o]j+1

i + S[e]j+1

i−1

h2

)

−
VmaxSj

i

KM + Sj
i

,

P [o]j+1

i − P j
i

τ
= DP

(

P [e]j+1

i+1
− 2P [o]j+1

i + P [e]j+1

i−1

h2

)

+
VmaxSj+1

i

KM + Sj+1

i

.

(26)

Computation continues alternating the calculation order of the odd and even points.
Hopscotch scheme is fully explicit yet unconditionally stable for Vmax = 0 and

therefore it can operate with any size of time and space steps.

3.3 Mathematical software packages

The major mathematical software packages provide tools forsolving systems of the par-
tial differential equations. However, a greater ease of useand wider range of solvable
problems often comes at the expense of lower precision or less efficiency.

We used Maple (Maplesoft, Inc.) version 10 general-purposesolver “pdsolve” to
find numerical solution for the system of the partial differential equations [13]. This
solver uses finite difference method and can be configured with eleven classical schemes,
calculation step size and other parameters.

The biosensor action was also simulated with MATLAB (The MathWorks, Inc.)
software package [14]. The problem was solved using built-in solver“pdepe”, which
provides a numerical solution for systems of differential equations in single spatial di-
mension and time.

4 Results and discussion

Computer simulation was used to compare accuracy and performance of the solution
techniques. Since the system of linear algebraic equationsis tridiagonal it can be solved
efficiently [11]. Calculation results are compared in termsof precision and computation
time. We define the relative errorE as the absolute difference of the steady state current
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density estimated by analytical and numerical solutions divided by the steady state current
density of analytical solution.

E =
|IR − Ia|

Ia

, Ia =

{

Il, S0 � KM ,

Ig, S0 � KM ,
(27)

whereIR is the numerical solution defined by (19) whileIl andIg are analytical solutions
defined by (10) and (12), respectively.

The following values of the model parameters were employed:

KM = 100 µM, S0 ∈ {10−3KM ; 103 KM}, Vmax = 100 µM/s,

DS = DP = 300 µm2/s, ne = 2, T = 10 s, d = 100 µm.
(28)

The routines of the finite difference method were implemented in Java programming
language [12]. For performance reasons, we executed programs of the mathematical
software packages using command-line approach. The experiments were performed on
the 2 GHz Intel Core 2 Duo Processor with 1GB of RAM.

As a first test problem, relative errors of the finite difference schemes and mathe-
matical software packages were examined using two known analytical solutions (10) and
(12). We appliedM = 102 for the calculations using implicit 1, implicit 2 and Crank-
Nicolson schemes andM = 105 using explicit and Hopscotch schemes because of the
stability constraints on the time step. All the considered finite difference schemes yield
very similar precision, therefore only explicit scheme results are presented in Fig. 1 as the
example. The smallest relative errors are obtained using finite difference schemes. Maple
package calculates the steady state biosensor current moreaccurately than MATLAB. In
cases of high substrate concentration (12) Maple’s resultsare as precise as those obtained
by explicit scheme. The numbers of steps used in calculations do not influence the
accuracy of the MATLAB solution.

(a) (b)

Fig. 1. Dependence of relative errorE on the number of space stepsN for two values
of S0: 10

−3KM (a) and10
3KM (b). 1 – explicit scheme (M = 10

5), 2 – Maple
(M = 10

2), 3 – MATLAB (M = 10
2).
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In Fig. 2 the finite difference schemes are compared to the explicit scheme. The Hop-
scotch scheme differs very slightly from the explicit scheme in both analytical solution
cases, whereas the implicit schemes showed the maximal difference of approximately
0.8 % when the number of space stepsN equals to 160 (Fig. 2). The relative errors
computed using the analytical solution (12) atS0 � KM are by a few orders of magnitude
larger than the corresponding errors atS0 � KM calculated using (10). This could
be explained by less accuracy of the analytical solution (12) compared to the solution
(10) [7,8]. Considered schemes yield more similar results using analytical solution (12).

In the next test problem, we consider the computation time asa function of the rela-
tive error (Fig. 3). Introducing different limitsε for the relative errorE, the computation

(a) (b)

Fig. 2. The percentage ratio of the relative errorE of the finite difference schemes to
the errorE of the explicit scheme for two values ofS0: 10

−3KM (a) and10
3KM (b). 1

– implicit 1 scheme, 2 – implicit 2 scheme, 3 – Crank-Nicolson scheme, 4 - Hopscotch
scheme.

Fig. 3. The computation timeTE versus the relative errorε, N, M ∈ {20, 40, 80,

160, 320, 640, 1280, 2560, 5120, 10240}. 1 – explicit scheme, 2 – implicit 1 scheme,
3 – implicit 2 scheme, 4 – Crank-Nicolson scheme, 5 – Hopscotch scheme, 6 – Maple,

7 – MATLAB.
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timeTE(ε) is given by:

TE(ε) = min
N,M

{TN,M : E ≤ ε} , (29)

whereTN,M is the time of calculation at given numbers of grid stepsN andM . TE(ε)
is the minimal time of computation needed to achieve the relative errorE not greater
thanε. The calculations were performed for very different valuesof space and time steps,
N, M ∈ {20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240}.

As one can see in Fig. 3, the implicit and Hopscotch are the fastest schemes to
achieve the required relative error. Despite being very computationally intensive, partial
differential equation solvers in mathematical software packages cannot accurately calcu-
late the results. The MATLAB solver does not obtain higher precision than 0.1.

Finally, the computation times for different grid steps arereported in Tables 1, 2. The
Table 1 shows that there is a very small difference between schemes implicit 2 and Crank-
Nicolson and they are the most computationally intensive schemes. Explicit scheme is the
fastest computation technique. Mathematical software packages are significantly more
computationally intensive, particularly Maple, see Table2.

Table 1. Computation time [ms] by the finite difference schemes,N = 100

M Explicit Implicit 1 Implicit 2 Crank-Nicolson Hopscotch
10000 284 555 996 1064 659
20000 398 1108 1967 2090 1356
40000 755 2232 3974 4205 3062
80000 1480 4450 8080 8853 5563

160000 2957 8866 16542 16829 10623

Table 2. Computation time [s] by the mathematical software packages,N = 100

M Maple MATLAB
100 695 0.64
200 2480 0.74
400 9379 0.85

5 Conclusions

In this article, several finite difference schemes were applied for modelling an amperomet-
ric biosensor. Using all the considered schemes quite satisfactory results were obtained
when sufficient number of steps of the discrete grid is employed.

The best accuracy is achieved using implicit calculation and Hopscotch approaches.
For the problems where accuracy is not a significant factor but the speed is, the simplest
explicit scheme should be used.
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General-purpose solvers of Maple and MATLAB are less precise to simulate the
biosensor action and need more computation time. Those solvers can be applied for basic
problems while taking advantage of the simplicity.
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