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Abstract. Small area estimation techniques are used in sample surveys, where direct estimates
for small domains are not reliable due to small sample sizes in the domains. We estimate
the domain means by generalized linear compositions of the weighted sample means and the
synthetic estimators that are obtained from the regression-synthetic model of fixed effects, based
on the domain level auxiliary information. In the proposed method, the number of parameters
of optimal compositions is reduced to a single unknown parameter, which is further evaluated
by minimizing an empirical risk function. We apply various composite and related estimators to
estimate proportions of the unemployed in a simulation study, based on the Lithuanian Labor
Force Survey data. Conclusions on advantages and disadvantages of the proposed compositions
are obtained from this empirical comparison.

Keywords: small area estimation, synthetic estimator, composite estimator, domain level model,
Labor Force Survey.

1 Introduction

The overall sample size of a survey is usually designed to produce reliable estimates
of parameters for the whole survey population and for some of its domains, where the
reliability is understood as the acceptability of errors of the estimators. However, if there
are additional needs to get estimates under more detailed subdivisions of the population,
traditional direct estimation methods are not suitable because the direct estimators are
based only on the domain sample and the obtained sample sizes can be too small in
some of the new domains. For example, in the Lithuanian Labor Force Survey (LFS), the
estimated errors of the domain-specific direct estimates of proportions of the unemployed
are acceptable at the county level, but the accuracy of the direct estimates is poor at
a lower municipality level. It seems that this problem can be solved by allocating the
sample according to the subdivision by municipalities, but then the total sample size is
too large for the budget of the survey.
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Domains or areas of the population are called small if the unbiased or approximately
unbiased direct estimators of parameters have unacceptably large variances in these do-
mains. In the small area estimation (SAE) theory, see [24], alternative indirect estimators,
based on implicit or explicit linking models, are considered. Through auxiliary infor-
mation available from administrative sources or the previous surveys, these estimators
borrow sample information from neighbor domains that increase an effective sample size
and hence reduce the variances of estimators in the small domain. To efficiently link the
additional sample data to the domain of interest, good auxiliary information at the domain
or unit level is essential for the underlying models.

Two important classes of the indirect estimators can be distinguished: synthetic and
composite estimators. The traditional synthetic estimators are based on the implicit link-
ing models, which rely on the assumptions that small domains resemble the whole popu-
lation or larger domains. That is, as defined in [10, 24], an estimator is called a synthetic
estimator if a reliable direct estimator for a large domain, covering several small domains,
is used to derive an estimator for a small domain under the assumption that the small
domains have the same characteristics as the large domain. For example, assuming that
the true proportions of the unemployed are the same for all municipalities covered by
a single county, the direct estimator of that county is a synthetic estimator for each of these
municipalities. We consider a different example of the synthetic estimator in Section 2.2,
called as a regression-synthetic estimator. The synthetic estimation techniques have been
used historically since about the 1970s [10, 11], and they are still popular because of
their simplicity and wide applicability [24]. Unfortunately, such an estimation is biased
if the implicit model is not approximately true. Therefore, in order to find a trade-off
between a bias of the synthetic estimator and a large variance of the direct estimator,
the synthetic estimator is linearly combined with the direct estimator as started to be
considered in [8, 22] and also in [9], among others. So the specificities of estimation
domains are reflected by the direct components of the composite estimators. Many of
the estimators, proposed in the later literature, are also linear combinations [24]. There
are also new developments as well as generalizations in the synthetic estimation, for
instance, [23, 28]. More complex composite estimators are constructed in [15].

Assuming that the auxiliary information is available only at the domain level, we focus
ourselves on the estimation of coefficients in composite estimators of domain means.
In Section 2.3, we discuss the known empirical approximations to the optimal linear
combination, where the direct component is represented by the weighted sample mean
from Section 2.1 and the synthetic part is the regression-synthetic estimator, and we offer
an adaptive approach to the approximation method of [8]. In [12], estimators are defined
using the values of parameters, minimizing the estimated mean square errors (MSEs)
that are called the empirical risk functions. Following that idea, our adaptation is based
on the minimization of an empirical risk function. We also consider generalized linear
compositions and propose analogous adaptive estimators of their coefficients. That is, in
Section 2.4, we extend the estimation method of [4]. The regression-synthetic model of
fixed effects, which we incorporate in all the compositions, is a special case of the famous
Fay–Herriot (FH) domain level model [9]. The FH model is an example of the explicit
linking models, and its developments are reviewed in [5]. Estimating additional domain-
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specific parameters, the authors of [9] derived the empirical best linear unbiased predictors
(EBLUPs) of the domain means, see Section 2.5. Since these indirect estimators are
expressed as composite estimators, we include them in further comparisons.

To compare the presented synthetic and composite estimators, the Lithuanian LFS
data are used in Section 3. It is clear from a survey of literature that quite various SAE
techniques have been analyzed and applied in LFSs of different countries. We shall men-
tion only several instances, related to our context of the study. Earlier examples of [11]
and [8] on the estimation of unemployment rates are based on the United States and
Canada data, respectively. In the more recent study in [1] of the Italian LFS data, the
traditional synthetic estimation is applied. Using the Spanish data, the authors of [19]
applied much more complex SAE models, and the paper [26] compared various methods,
also including the composite estimation of [8]. The synthetic and composite estimators
have been analyzed using the Iranian data in [13]. Among other estimators, EBLUP,
based on the FH model, is applied to the Dutch [2], Lithuanian [14], and Swiss [21]
unemployment data. The conclusions of our comparative simulation study are discussed
in Section 4.

2 Synthetic and composite estimation

2.1 Basic notation

The set U = {1, . . . , N} consists of the labels of elements of the finite survey population.
Let y be a continuous or discrete study variable with the fixed values y1, . . . , yN , assigned
to the corresponding elements. In order to estimate the means or proportions in the
population and its subsets, the sample s = {k1, . . . , kn} ⊂ U of size n < N is drawn
according to the sampling design, denoted by the function p(·), with the values p(s)
specifying the probabilities of drawing all possible samples. The inclusion into the sample
probabilities

πk = Pp{k ∈ s} =
∑
s: k∈s

p(s), k ∈ U ,

are assumed strictly positive. Here the symbol Pp, and hereafter Ep, varp, and MSEp

denote probability, expectation, variance, and MSE according to the sampling design,
respectively. That is, the probability distribution of any estimator, calculated from the
sample s, is induced by the given sampling design p(·). Therefore, the characteristic
varp(·) is called the sampling variance or design variance, and the like.

Let U = U1 ∪ · · · ∪ UM be a partition of the population into M domains, where
Ui ∩ Uj = ∅ as i 6= j. There are Ni elements in the domain Ui, and

∑M
i=1Ni = N . In

general, if p(·) generates samples without replacement, the sample si = s ∩ Ui is of the
random size 0 6 ni 6 Ni. Here s = s1 ∪ · · · ∪ sM and

∑M
i=1 ni = n. We consider the

means

µi =
1

Ni

∑
k∈Ui

yk, i = 1, . . . ,M, (1)
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as target parameters, whereNi are assumed to be known. In the cases where the sampling
design p(·) was not constructed in order to ensure samples of fixed sizes in the domains,
small (or even zero) ni can be obtained. Then the accuracy of direct estimators of (1),
such as the weighted sample means

µ̂H
i =

1

N̂i

∑
k∈si

yk
πk
, where N̂i =

∑
k∈si

1

πk
, i = 1, . . . ,M, (2)

is questionable because their variances are large.

2.2 Synthetic estimator

We assume that, for the domain Ui, the auxiliary information is available as the vector
of characteristics xi = (xi1, . . . , xiP )′. This assumption narrows a choice of direct esti-
mators to that similar to (2), however one can expect to improve the weighted sample
means by borrowing sample information for the domains through the given auxiliary
information. It can be done by applying the regression-synthetic estimators (similar to
that in [24, Sect. 3.2.2]), which are constructed following the next two steps. First, let us
model the direct estimate µ̂H

i as a random variable Yi of the form

Yi = x′iβ + εi, i = 1, . . . ,M, (3)

where β = (β1, . . . , βP )′ are unknown parameters. Here, assuming the deterministic
relation µi ≈ x′iβ, the random variable εi is treated as a sampling error in the do-
main. Thus, we write Ep(εi) = 0 and varp(εi) = varp(µ̂H

i ) = v2
i . Despite that the

sampling errors may not be independent if the domains cut across the sampling design,
the model is usually simplified further assuming that the errors are independent and
normally distributed, that is, εi ∼ N (0, v2

i ), and we fix these assumptions, too. Similar
assumptions are used in the more general domain level model [24, Sect. 4.2], and we
consider its special case including only the fixed effects. Having consistent estimators v̂2

i

of the sampling variances v2
i , denote by

β̂ = (β̂1, . . . , β̂P )′ =

(
M∑
i=1

xix
′
i

v̂2
i

)−1 M∑
i=1

xiµ̂
H
i

v̂2
i

the feasible generalized least squares estimator of the parameter β, obtained from the data
(µ̂H
i ,xi), i = 1, . . . ,M . Second, the synthetic estimators of (1) are defined as

µ̂S
i = x′iβ̂, i = 1, . . . ,M. (4)

These estimators rely on the synthetic assumption that the parameter β is the same across
all domains. Therefore, though their variances are generally small, compared to that of
direct estimators (2), contributions of biases to MSEs of (4) can be substantial if the
synthetic assumption is not realistic. Moreover, the biases not necessarily decrease as the
sample sizes ni increase.
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2.3 Composite estimators

To find a compromise between larger variances of approximately unbiased estimators (2)
and biases of synthetic estimators (4), their linear compositions

µ̃C
i = biµ̂

H
i + (1− bi)µ̂S

i , i = 1, . . . ,M, (5)

with M unknown coefficients 0 6 bi 6 1, are a very common approach considered in
the literature. Further, following [12], we use the notion “risk function” when dealing
with MSE functions or their combinations. Minimizing the risk function MSEp(µ̃C

i ) with
respect to bi, the optimal weight is expressed as the population characteristic [24]

b∗i =
MSEp(µ̂S

i )− Ep(µ̂H
i − µi)(µ̂S

i − µi)
MSEp(µ̂H

i ) + MSEp(µ̂S
i )− 2 Ep(µ̂H

i − µi)(µ̂S
i − µi)

≈ 1− v2
i

v2
i + MSEp(µ̂S

i )
,

(6)

where the approximation is based on the assumptions that Ep(µ̂H
i − µi)(µ̂

S
i − µi) �

MSEp(µ̂S
i ) and that µ̂H

i is nearly unbiased. However, even using the last standard approx-
imation, evaluation of (6) from the sample data is seldom efficient because it is difficult to
construct stable estimators of MSEp(µ̂S

i ) without additional assumptions on similarities
among domains as originally proposed in [20], see [24], or an additional modeling like
in [16]. Straightforward estimators of MSEs of (4) are [24, Sect. 3.2.5]

mse
(
µ̂S
i

)
=
(
µ̂S
i − µ̂H

i

)2 − σ̂2
(
µ̂S
i − µ̂H

i

)
+ σ̂2

(
µ̂S
i

)
, (7)

where σ̂2(·) stands for an estimator of the design variance varp(·), and their approxima-
tions

mse
(
µ̂S
i

)
≈
(
µ̂S
i − µ̂H

i

)2 − v̂2
i (8)

derived using the assumption varp(µ̂S
i ) � v2

i . However, these estimators are unstable
for small sample sizes because they include direct estimators (2) of the domain means.
Therefore, applying the approximation from (6) and simplified formula (8), the resulting
estimators

b̂∗i = 1− v̂2
i

(µ̂S
i − µ̂H

i )2
(9)

of optimal coefficients (6) are unstable as well, and the efficiency of compositions may be
lost.

To get robust estimators of compositions (5), convenient for automatic applications,
one can reduce the number M of unknown parameters. One of the known methods,
proposed in [22], is to assume a common weight bi = φ in (5) and minimize the risk
function R1(φ) =

∑M
i=1 MSEp(µ̃C

i ) with respect to φ. Replacing unknown popula-
tion characteristics by (8) in the expression of minimizer of the approximated risk [24,
Sect. 3.4.1], the result

φ̂∗ = 1−
∑M
i=1 v̂

2
i∑M

i=1(µ̂S
i − µ̂H

i )2
(10)
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should be more stable as compared to (9). The second method is sample size dependent
(SSD) estimation. According to the proposal of [8], the weights bi = φi(δ) in (5) also
depend on the single parameter δ, that is,

φi(δ) =

{
1 if N̂i/Ni > δ,

N̂i/(δNi) otherwise.
(11)

In this case, the problem of explicit minimization of the risk function R2(δ) =∑M
i=1 MSEp(µ̃C

i ) with respect to δ is complicated. Therefore, subjective choices of the
parameter, such as general δ = 1, are proposed in the literature. On the other hand, the
empirical risk function

r2(δ) =

M∑
i=1

((
µ̃C
i − µ̂H

i

)2 − σ̂2
(
µ̃C
i − µ̂H

i

)
+ σ̂2

(
µ̃C
i

))
, (12)

based on estimators (7) of MSEs, where the compositions µ̃C
i = µ̃C

i (δ) are treated as
synthetic estimators, can be minimized numerically. The use of simplification (8) is not
suitable here because then the empirical risk would be minimized for values of δ close
to zero. The solution δ̂∗ = arg minδ>0 r2(δ) should give more efficient weights φ̂∗i =
φi(δ̂

∗) than that, based on a predefined value of δ. We examine the latter estimation
method in the simulation study.

2.4 Adaptive generalized composite estimator

Since parameters (11) of compositions (5) are estimated, as well as (9) and (10) are
based on the given sample, the resulting estimated compositions are viewed as adaptive
estimators. Consider the adaptive estimation of generalized compositions of (2) and (4)
of the form

M∑
i=1

aij µ̂
S
i +

M∑
i=1

bij µ̂
H
i , j = 1, . . . ,M, (13)

with the coefficients 0 6 aij , bij 6 1, satisfying
∑M
i=1(aij + bij) = 1. Similar com-

binations are discussed in [18], pointing that simple compositions are improved in this
way, due to the larger flexibility when combining estimators. However, straightforward
evaluations of optimal coefficients of general compositions lead to instabilities, similar to
that in the case of simple combinations (5), and a large number of parameters adds more
complexity. Indeed, there are two matrices of unknown weights in (13). Our idea is to
construct estimators of the weights aij and bij , dependent on a single unknown parameter
for all i, j = 1, . . . ,M , similarly as in SSD estimation of [8], and to evaluate the optimal
value of this parameter by minimizing an empirical risk function.

Given the sample s, let us create two sets of size 2M that contain the known numbers.
The first set is P = {τ̂1, . . . , τ̂M , τ̂M+1, . . . , τ̂2M}, where τ̂i = µ̂S

i , i = 1, . . . ,M , are the
synthetic estimates, and the elements τ̂i+M = τ̂i, i = 1, . . . ,M , are their replications.
The second set is R = {µ̂H

1 , . . . , µ̂
H
M , τ̂M+1, . . . , τ̂2M}. Arrange both sets according to
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the values in the set P , so that we could obtain P = {τ̂k1 , τ̂k1+M , . . . , τ̂kM , τ̂kM+M}with
the ordering τ̂k1 = τ̂k1+M 6 · · ·6 τ̂kM = τ̂kM+M , and thenR = {µ̂H

k1
, τ̂k1+M , . . . , µ̂

H
kM
,

τ̂kM+M}. To simplify the notation of permuted indices, temporarily change the numera-
tion of domains from {k1, . . . , kM} to the set of odd indices IH = {1, . . . , 2M − 1}, and
let the remaining indices {k1 + M, . . . , kM + M}, changed to the set of even numbers
IS = {1, . . . , 2M}\IH, be an alternative (auxiliary) numeration of all the domains. Next,
we apply the transformation

µ̃HS
i =

{
τ̂i + θ1/2(µ̂H

i − τ̂i) if i ∈ IH,

τ̂i if i ∈ IS

to the values of set R, where θ > 0 is a new parameter. Using the fixed estimates v̂2
i ,

taken from (4), write the stochastic model

Ỹi = τ̂i + ε̃i, where ε̃i ∼

{
N (0, θv̂2

i ) if i ∈ IH,

N (0, 0) if i ∈ IS

(14)

are independent random components, which simulates the dependence between the trans-
formed value µ̃HS

i , modeled as the random variable Ỹi, and the corresponding value
τ̂i, taken from the set P . Here N (0, 0) denotes the degenerate distribution with zero
mean. Model (14) is an estimated and extended regression (3), which generates synthetic
estimates (4) and their randomized analogues. For the value θ = 1 and the set of in-
dices IH, this model imitates direct estimates (2). Introduce the characteristics of random
variables (14):

p̃i;j = p̃i;j(θ) = Pp{R̃i = j}, i, j = 1, . . . , 2M, (15)

where R̃1, . . . , R̃2M are ranks of Ỹ1, . . . , Ỹ2M . Treating the synthetic estimate τ̂i as the
initial size (of the parameter µi) of the domain Ui, where i ∈ IH or i ∈ IS, this domain
takes the ith position in the sequence U1, . . . ,U2M of all domains and their duplicates.
Then the collection {p̃i;j , j = 1, . . . , 2M} of probabilities models a change of the ith
initial position to the new jth position. A similar interpretation is that the probability
p̃i;j describes the distance from the domain Ui to the domain Uj of interest by means
of the difference in their sizes τ̂i and τ̂j , taking into account the distances among all
domains. A relatively large value of this probability suggests that both these domains
are similar, that is, relatively more information can be borrowed from the domain Ui to
increase the effective sample size in the domain Uj . Therefore, we use characteristics (15)
as the weights in the new family of estimators of means (1), defined as

µ̃HR
kj = µ̃HR

kj (θ) =

2M∑
i=1

p̃i;2j µ̃
HS
i , j = 1, . . . ,M, (16)

which depends on the parameter θ. Here k1, . . . , kM are the original labels of domains.
Since these estimators are alternatively expressed as∑

i∈IH

((
1− θ1/2

)
p̃i;2j(θ) + p̃i+1;2j(θ)

)
µ̂S
i + θ1/2

∑
i∈IH

p̃i;2j(θ)µ̂
H
i , (17)
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j = 1, . . . ,M , they are partially estimated generalized compositions (13). That is, there
is a single unknown parameter θ in estimators (16) instead of 2M2 unknown coefficients
in the general combinations. Probabilities (15) also depend on the estimated sampling
variances (variabilities) v̂2

i , i ∈ IH, of the direct estimators. A domain with a relatively
large variability tends to borrow sample information from a larger number of neighbor
domains. The tuning constant θ controls this number of neighbors through model (14).
The probabilities p̃i;j(θ) tend to I(i = j) as the smoothing parameter θ → 0, and then
(16) reduces to regression-synthetic estimators (4). Here I(·) is the indicator function. In
the latter case, all the domains have no neighbors according to our interpretation.

Due to the complexity of weights (15), dependent on the sample, it is difficult to get
expressions of the risk function R3(θ) =

∑M
j=1 MSEp(µ̃HR

kj
). The minimizer θ∗ of this

function can be estimated by minimizing the sample-based risk function

r3(θ) =

M∑
j=1

((
µ̃HR
kj − µ̂

H
kj

)2 − σ̂2
(
µ̃HR
kj − µ̂

H
kj

)
+ σ̂2

(
µ̃HR
kj

))
, (18)

just like we proposed for SSD estimation of [8], or its approximation

r̄3(θ) =

M∑
j=1

((
µ̃HR
kj − µ̂

H
kj

)2 − v̂2
kj

)
. (19)

Given the sample, function (18) is minimized numerically with respect to θ. Here, in
each iteration, for the fixed value of θ, the matrix of probabilities (15) is evaluated by
independently simulating a large number of samples of size 2M from (14). That is, for
each of these samples ỹ(t)

1 , . . . , ỹ
(t)
2M , t = 1, . . . , T , we find the ranks r̃(t)

1 , . . . , r̃
(t)
2M , and

then we apply the approximation

p̃i;j ≈
1

T

T∑
t=1

I
(
r̃

(t)
i = j

)
, i, j = 1, . . . , 2M.

Denote the solution by θ̂∗ = arg minθ>0 r3(θ). The use of (19) instead of (18) lets us
avoid repetitive calculations of possibly complex (for instance, bootstrap) estimates σ̂2(·).
The obtained estimate θ̂∗ of the smoothing parameter θ is plugged into (16) to define the
applicable estimators

µ̂HR
kj = µ̃HR

kj (θ̂∗), j = 1, . . . ,M,

of the domain means, which are estimated generalized composite estimators (13) with the
weights

âkikj =
(
1− θ̂∗1/2

)
p̃2i−1;2j(θ̂

∗) + p̃2i;2j(θ̂
∗), i, j = 1, . . . ,M,

and
b̂kikj = θ̂∗1/2p̃2i−1;2j(θ̂

∗), i, j = 1, . . . ,M,
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according to expression (17). It is easy to check that the identity
∑M
i=1(âkikj + b̂kikj ) = 1

holds.
Let us return back to the previous numeration of domains. To estimate MSEs of the

proposed adaptive estimators µ̂HR
j , the general method of [20] can be applied, where

squared design-biases of estimators are assumed approximately equal in the domains.
The application leads to the estimators of MSEp(µ̂HR

j ), having the expressions

mseM

(
µ̂HR
j

)
= σ̂2

(
µ̂HR
j

)
+

1

M

M∑
i=1

((
µ̂HR
i − µ̂H

i

)2 − σ̂2
(
µ̂HR
i − µ̂H

i

))
, (20)

j = 1, . . . ,M . In the case of minimizer θ̂∗ obtained from (19), the formulas

mseM

(
µ̂HR
j

)
= σ̂2(µ̂HR

j ) +
1

M

M∑
i=1

((
µ̂HR
i − µ̂H

i

)2 − v̂2
i − σ̂2

(
µ̂HR
i

))
, (21)

j = 1, . . . ,M , would be more relevant. However, as noticed in [24, Sect. 3.2.5], such an
estimation of MSE may be inefficient if the assumption on similar squared biases is not
suitable or the variance term does not dominate the bias term in (20) and (21).

2.5 EBLUP under the Fay–Herriot model

Recall model (3) and its assumptions. Including domain-specific random effects ai, i =
1, . . . ,M , assumed independent of the sampling errors, into that model, FH model [9]

Y ∗i = x′iβ + ai + εi, i = 1, . . . ,M, (22)

is obtained, where the random variable Y ∗i models the direct estimate µ̂H
i . Here the

random effects are supposed independent and identically distributed with E(ai) = 0 and
var(ai) = τ2 in respect of a distribution, different from that generated by the sampling
design.

Then, treating the estimates v̂2
i as given numbers, EBLUPs of means (1), according

to [9], are the compositions

µ̂FH
i = γ̂iµ̂

H
i + (1− γ̂i)x′iβ̂

(
τ̂2
)
, i = 1, . . . ,M, (23)

with

γ̂i =
τ̂2

v̂2
i + τ̂2

and β̂(τ̂2) =

(
M∑
i=1

xix
′
i

v̂2
i + τ̂2

)−1 M∑
i=1

xiµ̂
H
i

v̂2
i + τ̂2

,

where τ̂2 is an estimator of the variance τ2 of the domain-specific random effects.

3 Applications in Labor Force Survey

To compare efficiencies of the discussed direct, synthetic, and composite estimators, also
including EBLUPs (23), we carry out the simulation experiments using the Lithuanian
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Figure 1. The true proportions of the unemployed µi, the auxiliary proportions of the unemployed xi2, and the
sizes Ni of municipalities, represented by the areas of bubbles.

LFS data of the first quarter of 2018. A part of these sample data is public [17], and
Statistics Lithuania granted the permission to use some other variables according to the
agreement No. STAT-132(2019). We have narrowed the sample to individuals from age
interval 15–70, and we also removed a part of municipalities from the data because of too
small fractions of the unemployed.

The fixed artificial population, created by replicating the remaining sample data
6 times, consists of N = 51226 persons. The study variable y is binary: yk = 1 if the
kth individual is unemployed according to the survey definition, and yk = 0 otherwise,
k ∈ U . Therefore, the target means µi, i = 1, . . . ,M , are proportions of the unemployed
in M = 36 municipalities. To create model (3), auxiliary variables were selected using
a stepwise regression, similarly as in [14], where the true values µi were taken as the
values of a dependent variable. The obtained model has the coefficient of determination
equal to 0.52, and it is based on the known auxiliary vectors xi = (1, xi2, xi3, xi4, xi5)′,
where xi2 is the proportion of unemployed (registered unemployed individuals) derived
from the administrative Lithuanian Labor Exchange data, xi3 is the proportion of urban
population, and xi4 and xi5 are the proportions of individuals from age intervals 15–25
and 41–55, respectively. Figure 1 shows the relation between the true proportion of the
unemployed µi and the auxiliary proportion xi2, which is the best regressor in model (3),
and it might be used alone for the prediction. It is seen that both proportions of the
unemployed tend to be larger for smaller municipalities.
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In the real survey, the sample of households is drawn with probabilities proportional to
the number of their members, and then entire households are surveyed. For simplicity, we
consider the simple random sampling without replacement p(·), which is also sufficient
to get reliable direct estimates of the proportions for the subdivision of U by counties
according to the primary aim of the survey, but the expected sample sizes are too low
for a part of municipalities. For the given sampling design, weighted sample means (2)
reduce to the unbiased estimators

µ̂H
i =

1

ni

∑
k∈si

yk, i = 1, . . . ,M,

of µi, with the sampling variances [25]

v2
i =

Ni − ni
Ni − 1

µi(1− µi)
ni

, i = 1, . . . ,M.

The design-unbiased estimators

v̂
2(H)
i =

(
1− ni

Ni

)
µ̂H
i (1− µ̂H

i )

ni − 1
, i = 1, . . . ,M, (24)

of the parameters v2
i are consistent as the population and sample sizes approach the

infinity in some way. However, they are unstable for small sample sizes as well as their
components. We apply a generalized variance function method [27] in order to smooth
estimators (24). More specifically, since the direct estimators µ̂H

i of domains with smaller
sizes Ni have larger sampling variances v2

i because of smaller sample sizes, and due
to the mentioned allocation of the domains by their sizes Ni in Fig. 1, we choose the
assumption v2

i ≈ KNγ
i , such as in [7]. We estimate the parameters K > 0 and γ ∈ R

using the regression equation

log V 2
i = logK + γ logNi + ηi with ηi ∼ N (0, ζ2),

assumed as independent errors, where the random variables V 2
i model estimates (24). In

practice, from the pairs of data (v̂
2(H)
i , Ni), satisfying v̂2(H)

i > 0, we obtain ordinary least
squares estimates of the regression parameters, and then

v̂2
i = K̂N γ̂

i , i = 1, . . . ,M,

are smoothed estimates of v2
i , which we apply to derive regression-synthetic estima-

tors (4). The estimators µ̂H
i and µ̂S

i are components of the variants of compositions (5)
and (16), compared in the numerical survey:

(i) µ̂opt
i = µ̃C

i (b∗i ), based on optimal weights (6);
(ii) µ̂uns

i = µ̃C
i (b̂∗i ) with possibly unstable coefficients (9);

(iii) µ̂PKopt
i = µ̃C

i (φ∗), where φ∗ is a minimizer of the true risk R1(φ);
(iv) µ̂PK

i = µ̃C
i (φ̂∗) with sample-based minimizer (10);
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(v) µ̂DSCopt
i = µ̃C

i (φi(δ
∗)), where δ∗ is a minimizer of the risk R2(δ);

(vi) µ̂DSCfix
i = µ̃C

i (φi(1.5)) at the fixed value δ = 1.5;
(vii) µ̂DSC

i = µ̃C
i (φi(δ̂

∗)) with the minimizer δ̂∗ of empirical risk (12);
(viii) µ̂HRopt

i = µ̃HR
i (θ∗), where θ∗ is a minimizer of the function R3(θ);

(ix) µ̂HR
i = µ̃HR

i (θ̂∗) with the minimizer θ̂∗ of simplified empirical risk (19).

Here the optimal values b∗i , φ∗, δ∗, and θ∗ of theoretical interest are obtained by evaluating
the corresponding estimators for a large number of samples drawn from the population,
and searching for the minimum of the respective true risk function. To compute the
variances σ̂2(·) in the empirical risk of case (vii), we apply a resampling procedure
from [3]. That is, the number of artificial populations of size N is reconstructed from
the given sample, and a larger number of bootstrap samples is drawn from each of them
using original p(·). Then the bootstrap variance is the variance of values of the required
estimator, that are calculated from all the samples, multiplied by the finite population
correction factor (N−n)/(N−1). If risk (18) were used in (ix), the bootstrap is applicable
as well.

In formula (23) of the estimators µ̂FH
i , we use the iterative FH moment estimator τ̂2

of the variance τ2 as proposed in [9]. The choice is based on the analysis made in [6].
We compare the efficiencies of estimators by evaluating them for each of R = 104

independent samples, selected from the survey population, and then estimating their root
mean squared errors (RMSEs) and absolute biases (ABs). That is, we use the accuracy
measures

RMSE(µ̂i) =

(
1

R

R∑
r=1

(µ̂
(r)
i − µi)

2

)1/2

and AB(µ̂i) =

∣∣∣∣∣ 1

R

R∑
r=1

µ̂
(r)
i − µi

∣∣∣∣∣, (25)

where µ̂(r)
i is a realization of the specific estimator µ̂i of µi, based on the rth Monte Carlo

sample.
The estimators µ̂H

i , µ̂S
i , (i)–(ix), and µ̂FH

i of interest are denoted hereafter by their
respective superscripts. We compute their characteristics (25) for two different overall
sample sizes: n = 2000 and n = 5000. In each of these two situations, the domains
are classified by the expected domain sample size into three classes of equal size, and the
average of RMSEs as well as ABs is calculated over domains of each class. These results
for different n are reported in Tables 1 and 2, respectively, where the averages of (25)
over all domains are also presented as common measures of accuracy.

In the tables, estimator H acts as a reference. It is seen that such a direct estimation
is not reliable at the municipality level of the survey. In contrast, regression-synthetic
estimator S is much more efficient in both tables, despite that its ABs are compara-
tively large. Treating RMSE as a principal measure of accuracy, optimal composition
opt would be the best choice in all the classes of domains. Then the respective errors of
other theoretical estimators PKopt, DSCopt, and HRopt inform us what we lose due to
reduction of the number of parameters to the single unknown parameter. If to compare
the errors of empirical analogues PK, DSC, and HR with respect to that of synthetic

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Adaptive composite estimation in small domains 353

Table 1. Average RMSEs and ABs of estimators in domain size classes as n = 2000.

Estimator Average RMSE (×102) Average AB (×102)
Expected domain sample size Expected domain sample size

All < 33 [33, 51] > 51 All < 33 [33, 51] > 51

H 4.0276 5.9865 3.7721 2.3241 0.2260 0.3808 0.1903 0.1069
S 1.8480 2.6500 1.7314 1.1627 1.4619 2.2122 1.3343 0.8391
opt 1.6311 2.3591 1.5085 1.0257 1.0678 1.6836 0.9262 0.5937
uns 2.7552 4.0172 2.5458 1.7028 0.7516 1.1202 0.6796 0.4551
PKopt 1.7953 2.5708 1.6790 1.1360 1.1937 1.8252 1.0839 0.6720
PK 2.0290 3.0094 1.8336 1.2442 1.1373 1.6728 1.0603 0.6789
DSCopt 1.7987 2.5705 1.6889 1.1367 1.1858 1.8076 1.0815 0.6684
DSCfix 2.8260 4.1180 2.6794 1.6807 0.5883 0.8952 0.5314 0.3384
DSC 2.1774 3.1783 2.0246 1.3294 0.9697 1.4208 0.9147 0.5736
HRopt 1.8175 2.6248 1.6821 1.1457 1.4382 2.1987 1.2974 0.8184
HR 1.8203 2.6043 1.6039 1.2525 1.4119 2.1596 1.2279 0.8483
FH 1.8909 2.6112 1.7105 1.3509 1.2069 1.9840 1.0663 0.5704

Table 2. Average RMSEs and ABs of estimators in domain size classes as n = 5000.

Estimator Average RMSE (×102) Average AB (×102)
Expected domain sample size Expected domain sample size

All < 84 [84, 130] > 130 All < 84 [84, 130] > 130

H 2.4999 3.6542 2.4902 1.3553 0.1336 0.2080 0.1118 0.0811
S 1.6162 2.3696 1.5120 0.9672 1.4624 2.2141 1.3389 0.8342
opt 1.2029 1.7572 1.1109 0.7405 0.7826 1.2103 0.6766 0.4607
uns 1.9410 2.8784 1.9267 1.0180 0.5863 0.7938 0.5918 0.3735
PKopt 1.5026 2.1599 1.4699 0.8779 0.9070 1.3517 0.8419 0.5276
PK 1.6667 2.4585 1.6149 0.9266 0.8183 1.1877 0.7843 0.4830
DSCopt 1.5004 2.1514 1.4744 0.8755 0.9062 1.3571 0.8333 0.5282
DSCfix 1.8067 2.5911 1.8159 1.0132 0.5423 0.7961 0.5066 0.3242
DSC 1.7573 2.5937 1.7192 0.9590 0.6712 0.9652 0.6431 0.4052
HRopt 1.5717 2.3131 1.4581 0.9439 1.4159 2.1512 1.2870 0.8096
HR 1.5883 2.3347 1.4060 1.0243 1.3682 2.0690 1.2348 0.8009
FH 1.5949 2.2530 1.5324 0.9994 0.8915 1.6003 0.7689 0.3053

estimator S, composition HR improves S in two classes of smaller domains in both tables,
while compositions PK and DSC are worse than S in almost all the classes of domains.
Adaptive composition DSC is a significantly better choice than simple case DSCfix,
but with alternative PK more stable results are obtained, despite that all the accuracy
characteristics of corresponding DSCopt and PKopt are very similar. On the other hand,
ABs of DSC are lower than that of PK in both tables. Naive composition uns improves
direct estimator H, but yields similar results to that of composition DSCfix. Comparing
more reliable and applicable estimators S, PK, DSC, HR, and FH, compositions PK
and DSC appear relatively good only in the largest domains, and estimator FH is better
than S in smaller domains. Generalized composition HR outperforms FH as n = 2000,
and the accuracy of both these compositions is similar for a larger overall sample size
(Table 2).

In the case of smaller n, a worse performance of compositions PK and DSC may
be explained by a relatively small contribution of the direct components as seen from
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Figure 2. Boxplots of RMSEs of estimators in domain size classes as n = 2000.

Table 3. Values of optimal parameters.

n b∗ φ∗ δ∗ θ∗

2000 0.15 0.20 4.88 0.01
5000 0.26 0.40 2.50 0.03

the values of the summary characteristic b∗ = M−1
∑M
i=1 b

∗
i and the values of optimal

parameters φ∗ and δ∗ in Table 3. In this case, errors of the estimated optimal parameters
are large compared to the sizes of the true values. The values of δ∗ are larger than the
blindly chosen value δ = 1.5 in DSCfix.

To get a deeper insight into differences among reliable estimators S, PK, DSC, HR,
and FH, we also present the distributions of their RMSEs in the classes of domains.
The situations n = 2000 and n = 5000 are shown in Fig. 2 and 3, respectively. One
can conclude from both figures that RMSEs of estimators PK, DSC, and FH are more
homogeneous across the domains than that in the case of estimators S and HR. On the
other hand, the latter two estimators tend to yield good estimation results for a part of
domains in their different classes. That is, the prediction by regression-synthetic estima-
tor S is efficient for large domains, and it is well explained by the scattering in Fig. 1,
and adaptive generalized composition HR is effective for a large part of domains from
the middle class because there is a larger number of similarly small domains (Fig. 1), and
therefore sample information is flexibly shared among them according to the construction
of the estimator.
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Figure 3. Boxplots of RMSEs of estimators in domain size classes as n = 5000.

4 Conclusions

The adaptive version of the composite estimation of [8] may be useful for routine appli-
cations, where there is a larger number of survey variables. For repeated surveys, non-
adaptive alternatives to the proposed composite estimator could be constructed. In that
case, the unknown parameter would be estimated treating a sample of the previous period
as an independent data source. Comparing our simulation results with that of [8, 26], the
present conclusion is that there is no universal prior choice of the parameter value even
for similar surveys.

The new adaptive composite estimators, introduced in Section 2.4, strongly depend on
the underlying regression model. Therefore, the accuracy of these generalized composi-
tions should be similar to that of the regression-synthetic estimators. Indeed, considering
the simulation results, we observe the improvement of the synthetic estimators, but a com-
mon gain does not become significant if the synthetic estimators are relatively inefficient.

From additional simulation tests we conclude that both empirical risk functions give
similar results in the case of the generalized composition, and thus, the use of the simpli-
fied risk is sufficient, while the evaluation of the empirical risk function is computationally
intensive in the adaptive SSD estimation. On the other hand, the construction of weights
of the generalized compositions is complex itself.

The choices of (empirical) risk functions are not unique. The functions should be con-
sistent with the accuracy characteristics of estimators we are interested in. For instance, if
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inferences are based on the relative RMSEs, then the considered empirical risk functions
should be properly normalized by the corresponding estimators.

Applying the composite estimators in Lithuanian LFS, their success depends on the
overall sample size. The results of the proposed generalized composite estimator are very
good for smaller domains and where other composite estimators, including EBLUP, are
less efficient due to the small overall sample size. In some situations, EBLUP of [9]
yields quite reliable estimates for smaller domains, while the synthetic estimation appears
efficient for large domains.

An efficient estimation of MSEs of the considered synthetic and composite estima-
tors is complicated in general. There exist only several universal proposals and it seems
that there are no new ones in recent literature, except the case of popular EBLUP. The
simulation of LFS shows that the biases of estimators are neither negligible nor similar
across the domains. Therefore, the empirical MSEs like (20) and (21) may be insufficient
for applications. We believe that the estimation of errors can be improved by applying
data-specific modeling, but it is outside the scope of the paper.
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