Exposedness in Bernstein spaces

Saulius NORVIDAS (MII)

e-mail: norvidas@gmail.com

Abstract. The Bernstein space B_{σ}^{p} , $\sigma > 0$, $1 \leq p \leq \infty$, consists of those $L^{p}(\mathbb{R})$ -functions whose Fourier transforms are supported on $[-\sigma, \sigma]$. Every function in B_{σ}^{p} has an analytic extension onto the complex plane \mathbb{C} which is an entire function of exponential type at most σ . Since B_{σ}^{p} is a conjugate Banach space, its closed unit ball $\mathcal{D}(B_{\sigma}^{p})$ has nonempty sets of both extreme and exposed points. These sets are nontrivially arranged only in the cases p = 1 and $p = \infty$. In this paper, we investigate some properties of exposed functions in $\mathcal{D}(B_{\sigma}^{1})$ and illustrate them by several examples.

Keywords: Bernstein spaces, entire functions of exponential type, sine-type functions, exposed points.

1. Introduction

An entire function f is said to be of exponential type at most σ ($0 \le \sigma < \infty$) if for every $\varepsilon > 0$, there exists an $M_{\varepsilon} > 0$ such that

$$|f(z)| \leq M_{\varepsilon} e^{(\sigma+\varepsilon)|z|}, \quad z \in \mathbb{C}$$

Certainly, the greatest lower bound of those σ coincides with the type σ_f of f. For $1 \leq p \leq \infty$ and $0 < \sigma < \infty$, the *Bernstein space* B^p_{σ} consists of all $f \in L^p(\mathbb{R})$ which can be extended from \mathbb{R} onto \mathbb{C} to an entire function of exponential type at most σ . The classes B^p_{σ} are Banach spaces under the $L^p(\mathbb{R})$ -norm. From the Paley–Wiener–Schwartz theorem and its inversion it follows that functions in B^p_{σ} can be described as those $L^p(\mathbb{R})$ -functions whose Fourier transform (considered as generalized functions) vanish outside $[-\sigma, \sigma]$. Therefore, B^p_{σ} consists of bandlimited functions: such functions are interpreted as signals with no frequencies outside "band" $[-\sigma, \sigma]$.

Let $\mathcal{D}(B_{\sigma}^{p})$ denote the closed unit ball in B_{σ}^{p} . Recall that $f \in \mathcal{D}(B_{\sigma}^{p})$ is *extreme* function (point) if for any $u, v \in \mathcal{D}(B_{\sigma}^{p})$, $f = \frac{1}{2}(u+v)$, implies that u = v = f. We call $f \in \mathcal{D}(B_{\sigma}^{p})$ exposed in $\mathcal{D}(B_{\sigma}^{p})$ if there exists a functional Φ on B_{σ}^{p} with $||\Phi|| = 1$ such that $\Phi(f) = 1$ and Re $\Phi(g) < 1$ for all $g \in \mathcal{D}(B_{\sigma}^{p})$, $g \neq f$. That Φ will be called an *exposing functional* for f. We shall denote by extr $\mathcal{D}(B_{\sigma}^{p})$ the set of extreme points in $\mathcal{D}(B_{\sigma}^{p})$, and the set of exposed points will be denoted by exp $\mathcal{D}(B_{\sigma}^{p})$. It is obvious that an exposed point of $\mathcal{D}(B_{\sigma}^{p})$ is necessarily extreme, but the converse need not hold in general (see Example 6).

The existence of extreme points in B_{σ}^{p} guarantees, by the Krein–Milman theorem, that B_{σ}^{p} are conjugate Banach spaces. Moreover, if $1 , then <math>B_{\sigma}^{p}$ is uniformly convex. In uniformly convex spaces, every point of the unit sphere is an extreme point of the unit ball. The cases B_{σ}^{1} and B_{σ}^{∞} are not so trivial. Consider the duality pair

 $(C_0(\mathbb{R}), M(\mathbb{R}))$, where $C_0(\mathbb{R})$ is the usual normed space of complex continuous functions on \mathbb{R} vanishing at infinity, and $M(\mathbb{R})$ is the Banach convolution algebra of all regular complex Borel measures on \mathbb{R} , equipped with the total variation norm. Let \mathfrak{I}_{σ} be the closed ideal of $M(\mathbb{R})$ consisting of those $\mu \in M(\mathbb{R})$ for which the Fourier–Stieltjes transforms $\hat{\mu}$ vanish for $|t| \ge \sigma$. Set $C_{0,\sigma} = \{f \in C_0(\mathbb{R}): \int_{\mathbb{R}} f(x) d\mu(x) = 0, \forall \mu \in \mathfrak{I}_{\sigma}\}$. Then B_{σ}^1 is the dual space to the quatient space $C_0/C_{0,\sigma}$ (see [2]). Therefore, in contrast to the unit ball of $L^1(\mathbb{R})$ the set $\mathcal{D}(B_{\sigma}^1)$ has large both sets extr $\mathcal{D}(B_{\sigma}^1)$ and exp $\mathcal{D}(B_{\sigma}^1)$. Second of these statements follows from the following Phelps theorem [3]: in a separable dual Banach space the closed unit ball coincides with the closed convex hull of its strongly exposed points. The set extr $\mathcal{D}(B_{\sigma}^1)$ can be described in terms of zeros of entire functions (see [2]).

THEOREM A. A function $f \in B^1_{\sigma}$, ||f|| = 1, belongs to extr $\mathcal{D}(B^1_{\sigma})$ if and only if f is an entire function of type $\sigma_f = \sigma$ and has no conjugate complex zeros.

Here we determine exp $\mathcal{D}(B^1_{\sigma})$ and illustrate them by several examples. A criterion and a sufficient condition of exposedness in $\mathcal{D}(B^1_{\sigma})$ are also given. Finally, we consider relations between the exposedness and sine-type function notion.

2. Exposed points of the unit ball in B_{σ}^{1}

Let Φ be a continuous linear functional on B_{σ}^1 , i.e., $\Phi \in (B_{\sigma}^1)^*$. Suppose that Φ attains its norm. We shall call a $f \in B_{\sigma}^1$, $f \neq 0$, an extremal for Φ if $\Phi(f) = ||\Phi|| ||f||$. It may be noted that $f \in \exp \mathcal{D}(B_{\sigma}^1)$ if and only if there exists $\Phi \in (B_{\sigma}^1)^*$ such that Φ has in $\mathcal{D}(B_{\sigma}^1)$ an unique extremal with the unit norm. By the Hahn–Banach theorem, every nonzero $f \in B_{\sigma}^1$ is an extremal for some functional in $(B_{\sigma}^1)^*$. We select among such functionals the following

$$\Phi_f(g) = \int_{\mathbb{R}} g(x) u_f(x) \, \mathrm{d}x, \quad g \in B^1_\sigma,$$

where $u_f(x)$ is the function $\overline{f(x)}/|f(x)| \in L^{\infty}(\mathbb{R})$ defined for almost all $x \in \mathbb{R}$. Thus, if $f \in \exp \mathcal{D}(B^1_{\sigma})$, then Φ_f is an exposing functional for f. Moreover, every $f \in \exp \mathcal{D}(B^1_{\sigma})$ has the unique exposing functional. Indeed, assume that $\Phi \in (B^1_{\sigma})^*$ expose $f \in \exp \mathcal{D}(B^1_{\sigma})$. By the Hahn–Banach theorem, Φ can be continued up to a functional Ψ on $L^1(\mathbb{R})$ without increase of its norm. Then there is $\psi \in L^{\infty}(\mathbb{R})$ with $\|\psi\| = 1$ such that $\Psi(a) = \int_{\mathbb{R}} a(t)\overline{\psi}(t) dt$ for all $a \in L^1(\mathbb{R})$. From this and from $\Psi(f) = \Phi(f) = 1$ it follows that $\psi(t)$ coincides with f(t)/|f(t)| for almost all $t \in \mathbb{R}$.

The theorem A shows that extremeness in $\mathcal{D}(B^1_{\sigma})$ can be described in terms of zeros of entire functions. We shall now restrict these conditions up to necessary and sufficient ones for the exposedness. Let $f \in B^1_{\sigma}$. Recall that an entire function of exponential type ϱ , $\varrho \not\equiv const$, is called the *multiplier* for $f \in B^1_{\sigma}$, if $\varrho f \in B^1_{\sigma}$.

THEOREM 1. A function $f \in \mathcal{D}(B^1_{\sigma})$ belongs to $\exp \mathcal{D}(B^1_{\sigma})$ if and only if: (i) ||f|| = 1, and f has no conjugate complex zeros. (ii) Every real zero of f is simple. (iii) f has no nonnegative on \mathbb{R} multipliers.

We say that a function $f \in B^1_{\sigma}$ is real if $f(z) = \overline{f(\overline{z})}, z \in \mathbb{C}$. A real function $f \in B^p_{\sigma}$ takes on \mathbb{R} only real values, and every its complex zero necessarily is conjugate zero, i.e. if $f(z_0) = 0, z_0 \in \mathbb{C} \setminus \mathbb{R}$, then $f(\overline{z}_0) = 0$.

COROLLARY 2. Any real function in exp $\mathcal{D}(B^1_{\sigma})$ has only real and simple zeros.

The following theorem gives a sufficient condition of exposedness in $\mathcal{D}(B^1_{\sigma})$. It allows to determine the large set of exposed functions in $\mathcal{D}(B^1_{\sigma})$ (see Examples 6–8).

THEOREM 3. Let $f \in \text{extr } \mathcal{D}(B^1_{\sigma})$. Suppose there exist $\tau \in (0, 3]$, and $y_0 \in \mathbb{R}$ such that

$$\inf_{x \in \mathbb{R}} \left(|x + iy_0|^\tau \left| f(x + iy_0) \right| \right) > 0.$$

$$\tag{1}$$

If f has no multiple real zeros, then $f \in \exp \mathcal{D}(B^1_{\sigma})$.

Remark 4. Suppose $g \in B_{\sigma}^{1}$. From the Plancherel–Polya theorem it follows that g belongs to $L^{1}(\mathbb{R})$ not only on \mathbb{R} , but also on each line $\mathbb{R} + ia = \{z \in \mathbb{C}: z = x + ia, x \in \mathbb{R}\}$, where $a \in \mathbb{R}$. Therefore, $g_{a}(x) := g(x + ia), x \in \mathbb{R}$, belongs to B_{σ}^{1} for all $a \in \mathbb{R}$. Thus $\lim_{x \to \pm \infty} g(x + ia) = 0, a \in \mathbb{R}$. Now if $g \in \exp \mathcal{D}(B_{\sigma}^{1})$, then theorem 1 implies that $z^{m}g(z) \notin L^{1}(\mathbb{R} + ia)$ for all $a \in \mathbb{R}$, and $m = 2, \ldots$. This means that each $f \in \exp \mathcal{D}(B_{\sigma}^{1})$ is a slowly decreasing function on every line $\mathbb{R} + ia$. Moreover, it is not difficult to show that if $f \in \exp \mathcal{D}(B_{\sigma}^{1})$, and $\sup_{\mathbb{R}} |x|^{s} |f(x)| < \infty$, then s < 3. Next Theorem 5 shows that this estimation is exact. On the other hand, by this theorem, the requirement $\tau \leq 3$ in (1) is also exact.

We shall prove that each sine-type function determines a large set in exp $\mathcal{D}(B_{\sigma}^{1})$ in a sense defined below by Theorem 5. Recall that an entire function F of exponential type is called σ -sine-type function (or simple sine-type function), if there are positive numbers c_1, c_2 , and K such that

$$c_1 \leq |F(x+iy)| e^{-\sigma|y|} \leq c_2, \quad x, y \in \mathbb{R}, \ |y| \geq K,$$

(see [1]). These functions compose the wide class. For example, it contain any function

$$F(z) = \int_{-\sigma}^{\sigma} \mathrm{e}^{-itz} \,\mathrm{d}\mu(t),$$

where μ is any finite complex measure such that $\mu(\{-\sigma\}) \neq 0$, and $\mu(\{\sigma\}) \neq 0$. Finally, every σ -sine-type function *F* has the type $\sigma_F = \sigma$ and belongs to B^{∞}_{σ} . Let us denote by N_f the set of all zeros (roots) of $f \in B^1_{\sigma}$ in \mathbb{C} with multiplicities counted.

THEOREM 5. Let F be a σ -sine-type function, and let $F(z) \neq ce^{\pm i\sigma z}$, $c \in \mathbb{C}$. Suppose that F has neither complex-conjugate nor multiple real zeros. Let p be a polynomial such that $N_p \subset N_F$. Put

$$f_p(z) = \alpha \frac{F(z)}{p(z)},\tag{2}$$

where $\alpha \in \mathbb{C}$ is such that $||f_p||_{L^1} = 1$. If deg $p \ge 2$, then $f_p \in \text{extr } \mathcal{D}(B^1_{\sigma})$. The function f_p belongs to $\exp \mathcal{D}(B^1_{\sigma})$ if and only if $2 \le \deg p \le 3$.

We shall indicate a few examples, which explain relation between notion of the exposed function in $\mathcal{D}(B^1_{\sigma})$ and certain other properties of entire functions.

EXAMPLE 6. We shall begin from an example, which proves that

$$\exp \mathcal{D}(B^1_{\sigma}) \subseteq \operatorname{extr} \mathcal{D}(B^1_{\sigma}).$$

To this end, we put

$$f(z) = \alpha \frac{\sin(\sigma z)}{(\sigma^2 z^2 - \pi^2)(\sigma^2 z^2 - 4\pi^2)},$$
(3)

where α is a complex normalizing constant, i.e., α is such that $||f||_{L^1} = 1$. For example, it is easily verified that it is possible to take

$$\alpha = 3\sigma \pi^3 \left(3\mathrm{Si}(\pi) + 2\mathrm{Si}(2\pi) - \mathrm{Si}(3\pi) - \mathrm{Si}(4\pi) \right)^{-1}, \quad \mathrm{Si}(x) = \int_0^x \frac{\sin t}{t} \, \mathrm{d}t.$$

Let $p(z) = (\sigma^2 z^2 - \pi^2)(\sigma^2 z^2 - 4\pi^2)$. Since $F(z) = \sin(\sigma z)$ is a σ -sine-type function, and $N_p \subset N_F$, then by virtue of theorem 5, we conclude that $f \in \text{extr } \mathcal{D}(B^1_{\sigma})$, but $f \notin \exp \mathcal{D}(B^1_{\sigma})$.

Although the set extr $\mathcal{D}(B^1_{\sigma})$ is completely described in terms of zeros of entire functions, the following two examples show that the problem of such a description of exposedness can be rather difficult.

EXAMPLE 7. Let $c \in \mathbb{C} \setminus \mathbb{R}$, and let $f_p(z) = \beta(z-c)^2 f(z)$, where f is the function (3), and β is a normalizing constant. Then f_p may be represented as in (2), where

$$F(z) = \frac{(z-c)^2 \sin(\sigma z)}{\sigma^2 z^2 - \pi^2},$$

and $p(z) = \sigma^2 z^2 - 4\pi^2$. Since such *F* is σ -sine-type function, then $f_p \in \exp \mathcal{D}(B^1_{\sigma})$ by Theorem 5. This example shows that a function in $\exp \mathcal{D}(B^1_{\sigma})$ can have multiple complex zeros (in contrast to its real zeros).

S. Norvidas

The following example shows that there are functions in exp $\mathcal{D}(B^1_{\sigma})$, which have not separated zeros. Recall that a sequence $\Lambda = \{\lambda_k\}$ of complex numbers is called separated, if there is $\delta > 0$ such that

$$\inf_{\substack{\lambda_k,\lambda_m\in\Lambda\\\lambda_k\neq\lambda_m}}|\lambda_k-\lambda_m|\geqslant\delta.$$

EXAMPLE 8. Let

$$f_p(z) = \alpha \frac{\cos\left(\sigma \frac{z}{2}\right)\cos\sqrt{\left(\sigma \frac{z}{2}\right)^2 + \varepsilon^2}}{\sigma^2 z^2 - \pi^2},$$

where $0 < \varepsilon < \pi/2$, and α is a normalizing f_p in B_{σ}^1 constant. From $0 < \varepsilon < \pi/2$ it follows that the σ -sine-type function $F(z) = \cos(\sigma \frac{z}{2})\cos\sqrt{(\sigma \frac{z}{2})^2 + \varepsilon^2}$ has only real and simple zeros. Therefore, $f_p \in \exp \mathcal{D}(B_{\sigma}^1)$ by Theorem 5. The set of roots $N_{f_p} = \left\{\frac{2}{\sigma}(\frac{\pi}{2} + \pi k), \ k \in \mathbb{Z}\right\} \cup \left\{\pm \frac{2}{\sigma}\sqrt{(\frac{\pi}{2} + \pi l)^2 - \varepsilon^2}, \ l \in \mathbb{Z}\right\}$, is obviously not separated.

References

- 1. B.Ya. Levin, Lectures on entire functions, in: *Translations of Mathematical Monographs*, vol. 150, American Math. Soc. (1996).
- 2. S. Norvidas, Majorants and extreme points of unit balls in Bernstein spaces, *Lith. Math. J.*, **44**(1), 78–84 (2004).
- 3. R.R. Phelps, Dentability and extreme points in Banach space, J. Funct. Anal., 16, 78–90 (1974).

REZIUMĖ

S. Norvidas. Eksponavimas Bernšteino erdvėse

Bernšteino erdvę B^p_{σ} , $\sigma > 0$, $1 \le p \le \infty$, sudaro tokios $L^p(\mathbb{R})$ klasės funkcijos, kurių Furje transformacijų atramos priklauso $[-\sigma, \sigma]$. Kiekvieną funkciją iš B^p_{σ} galima pratęsti analiziškai į visą komplekcinę plokštumą \mathbb{C} , kur ji apibrėžia sveikąją eksponentinio tipo $\le \sigma$ funkciją. Kadangi kiekviena B^p_{σ} yra jungtinė Banacho erdvė, tai jos uždarame vienetiniame rutulyje $\mathcal{D}(B^p_{\sigma})$ egzistuoja netušti ekstreminių ir eksponuotųjų taškų poaibiai. Šios aibės yra netrivialios tik, kai p = 1 ir $p = \infty$. Šiame darbe mes nagrinėjame eksponuotąsias rutulio $\mathcal{D}(B^1_{\sigma})$ funkcijas ir jų pavyzdžius.