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A. Goštauto str. 11, LT-01108 Vilnius, Lithuania

Received: 20.06.2008 Revised: 25.08.2008 Published online: 28.11.2008

Abstract. Front dynamics with delays in a spatially extended bistablesystem of the
reaction-diffusion type is studied by the use of nonlinear partial differential equation
(PDE) of the parabolic type. The response of the self-ordered front, joining two steady
states of the different stability in the system, to the multi-harmonic (step-like) force is
examined. The relaxation rate of the system, that characterizes the delayed response of
the front to the alternating current (ac) drive, is found to be sensitive to the peculiarities
(shape) of the rate function (nonlinearity) of the governing PDE. By using computer
simulations of the drift motion of the ac driven bistable front (BF) we are able to show
that the characteristic relaxation time of the system decreases with the increasing outer
slope parameters of the rate function and is not sensitive tothe inner one.

Keywords: dissipative systems, self-organization, spontaneously formed front-
structures, nonlinear partial differential equations, mathematical physics.

1 Introduction

Continuous bistable systems driven far beyond their thermal equilibrium have been widely
studied as the simplest examples of self-organization. Thebistable fronts, i.e. the sponta-
neously formed front-structures, joining two states of different stability in a spatially ex-
tended system out of thermal equilibrium, have been widely known in physically diverse
systems and have attracted increasing attention in many branches of physics, chemistry,
biophysics, etc [1,2]. The prototype evolution equation that describes the self-ordered BF
propagating in the ac driven system reads,

ut − uzz − cuz + R(u) = f(t), (1)
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where the functionu(z, t) denotes the step-like field of the front propagating at the
moment velocityc(t), z = x − ct is the traveling coordinate (t – time). The disturbing
forcef(t) describes the action of the external fields on the system. Therate (reaction)
function R(u), which characterizes the rate of the transient processes inthe system,
is given by theN -shapedR-u dependence with three zero-points atu = u1, u2, u3,
witch are found fromR(u) = 0. In addition, the free parametersui satisfy the relation
u1 < u2 < u3. In the considered case of the bistable system one has thatR′(u1,3) > 0
andR′(u2) < 0, where the prime denotes the derivative. The front-solution of the free,
undisturbed BFu0(z, t) is found from equation:

u0t − u0zz − cu0z + R(u0) = 0, (2)

It should be noted that general methods for the analytical solution of the governing
equation of BF are presently lacking; an analytic solution of the governing equation with
an arbitrary rate function is not feasible even in the case ofthe free, unperturbed (f(t)=0)
system. Free front-solutions of BFs are presently known only in few special cases of
the rate function approximated by the cubic polynomial, sinus-type and piecewise linear
dependencies (e.g., see [3–9]). On the other hand, the analytic treatment of the ac driven
BFs requires the use of the approximate approaches. The analytic techniques that are
frequently used in the studies of the ac driven BFs are of limited usefulness, namely,
they involve two very special cases of the forcing functionf(t) that describes the slightly
disturbed and the slowly (quasi-stationary) driven fronts.

Elementary self-ordered structures in bistable dissipative media simulated by both
versions of the stochastic (noisy driver) and deterministic (regular driver) external forces
relevant issues when researching self-organizantion phenomenon in physically diverse
systems [3–8, 10, 11]. Previous results showed [7, 8] that the unforced dc motion (the
ratchet-like transport) of BFs was sensitive to the symmetry properties of the considered
R-u dependence. In common case of bistable dissipative media there are two types of
rate functions with different symmetry properties: symmetric functions and asymmetric
ones [7,8]. Control of the front-structures by symmetric rate functionR(u), described by
the linear pieces (see Fig. 1), has been studied in the extensive literature analytically and
by numerical simulations [7,8,12,13].

R(u) = R0(u) + C, R0(u) =











a1(u + 1), u < uM ,

−a2u, uM < u < um,

a3(u − 1), u > um,

(3)

whereC is the free constant,ai – the slope coefficient of the rate function, and the
parametersuM and um – the extremes of the rate functionR(u). When a1 = a3,
then we have type ofsymmetric functions, and withasymmetric functionsa1 6= a3.
The analytical front solutions of this pseudolinear model have been presented in [9]. In
addition, in the case of symmetric rate functions, numerical methods to obtain the solution
of equation (1) have been used. It has been shown [12, 13], that parametersa1, a3 of the
rate function have influence on the dynamic properties of BF stimulated by zero-mean
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forcesf(t). The response of front-solution on the zero-mean force always delays: the
response delay time depends on the parametersa1 anda3, which describe the rate of
relaxation processes in the bistable system – the delay phenomenon reduces the effect of
the soliton ratchet and at the same time, decreases the ability to control fronts with the
help of zero-mean forces.

Fig. 1. The piecewise-linear rate function.

The present study investigates the dependence of the characteristic relaxation rates
on the strength (magnitude) of the driving force and the parametersa1, a3 of the asym-
metric rate function, using numerical methods to obtain thesolution of equation (1) and
pseudolinear “flexible” rate function (3). In this case, we approximate the driving force
by the step-like forcing function

f(t) = F0Θ(t − t0). (4)

The retardation effects in dynamics of the ac driven BFs generated by the asymmetri-
cal rate functions breaking the rigorous symmetry relationa1 = a3 have not been studied
as yet.

2 The mathematical model

The solution of the non-linear parabolic type partial differential equation (1) is obtained
in two steps. Firstly, homogeneous problem (2) is solved, when (f(t) = 0). The initial
conditions of the homogeneous equation (t = 0)

u0(z, t = 0) = a tanh(qz) + b, (5)

whena = q = 0.5(u3 − u1), b = 0.5(u3 + u1). Consequently, the boundary conditions
areu0(t; z → −∞) → u1 andu0(t; z → +∞) → u3.

In this step the front-solution of the free, undisturbed BFu0(z, t) are found. Sec-
ondly, the solution of homogeneous problem (2) is sustainedas the initial conditions of
the non-homogenous problem (1). Boundary conditions are obtained from the solution of
ut + R(u) = f(t) problem with the initial conditionsV1(t = t0) = u1, V3(t = t0) = u3,
whereu1,3 are the boundary conditions of the homogeneous (f(t) = 0) problem.
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The problem (1) with the initial condition (2) can be solved by two methods: analy-
tical and numerical ones. The perturbation theory can be applied to the analytical solution
but this method can be used only for very narrow set of the variables, therefore it can not
be applied to the common case. One of the methods to solve (1) with the initial condition
(2) is using numerical methods.

Seeking to obtain the results, the numerical method of the finite differences [14] was
employed. This method has been chosen due to its simplicity,high calculation speed, and
software unexceptionality. We use the discrete lattice having the steps∆t and∆x in the
area Q, where:

∆x = X/Nx, xi = i∆x, i = 0 . . .Nx,

∆t = X/Nt, xj = j∆t, i = 0 . . .Nt.

The definitions of the finite differences:utj

xi = u(xi, tj). Therefore the equation
using this definition takes the form:

u
tj+1

xi − u
tj

xi

∆t
−

u
tj

xi+1
− 2u

tj

xi + u
tj

xi−1

∆x2
− c

u
tj

xi+1
− u

tj

xi

∆x
+ R(utj

xi
) = f(tj). (6)

3 Results and discusion

The occurrence of delays (lag time) between the driving force and the propagation ve-
locity on the spurious drift of BF, applying the asymmetric rate function, has not been
considered as yet. We will use the introduced [7,8] auxiliary parameterτS , which charac-
terizes the rate of the temporal relaxation of the speed function s(t) of BF being under the
action of the step-like force (4). More specifically, its inverseτ−1

S , indicates the steepness
of the step-likes-t dependence. Using the following expression,

sτ (t) =

{

s0, t < t0

s0 + ∆S∞

[

1 − exp
(

− (t − t0)/τs

)]

, t > t0,
(7)

we were able to describe with good accuracy the numerically founds-t dependencies.
Both discusseds-t andsτ -t dependencies show that the approximation (7) is good enough
(see Fig. 2). This implies that the numerically found speed function s(t) follows the
exponential law in the case of theasymmetric piecewise-linear rate functionR(u).

Let us turn to the “speed relaxation” and investigate it in greater detail. Namely,
the response of BF to extremely fast driving force (4) was considered. The typicalτS-ai

dependencies that have been derived by the direct (numerical) solution of the governing
equation (1) are presented in Fig. 3. One can see that the presentedτS −a2 characteristics
shown by curves a, b and c demonstrate that the speed relaxation timeτS is independent
of the inner slope coefficienta2. Thus, the relaxation time derived within the perturbative
approach does not depend ona2. However, theτS-a3 dependencies obtained by changing
slope coefficientsa1,2 are presented by dashed curves A, B, C shows that the speed rela-
xation timeτS dependents on the outer slope coefficienta3 (or a1) when theasymmetric
rate functionR(u) is used.
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Fig. 2. The dependence of propagation velocity of the dragged front versus time. Solid
curves show the actual motion described by governing equation (1), and dashed curves
showsτ -t dependence described by expression (7). The parameter values are:a3 = 5,
s∞ = 0.256, τS = 0.93, τR = 1 (curves 1);a3 = 0.2, s∞ = 0.212, τS =

5.04, τR = 5 (curves 2);a3 = 1, s∞ = 0.296, τS = 1.23, τR = 1 (curves 3).
The remaining parameters are as follows:a1,2 = 1, F0 = −0.5fMx, t0 = 0,

DR = 1, gH = 1, s0 = 0.

Fig. 3. The dependence of the relaxation timeτS versus the slope coefficients of the
rate functionai. 1) The solid curves a, b, c showτS-a2 dependencies derived for the
different slope coefficientsa1,3. The parameter values are:gH = 1.2, F0 = −2fMx/3,
a1 = 1.0. The remaining parameters are as follows:a3 = 0.2 (curve a);a3 = 1.0
(curve b);a3 = 5.0 (curve c). 2) The dashed curves A, B, C showτS-a3 dependencies
derived for the different slope coefficientsa1,2.The parameter values are:gH = 1.2,
F0 = −2fMx/3, a2 = 1.0. The remaining parameters are as follows:a1 = 0.2

(curve A);a1 = 1.0 (curve B);a1 = 5.0 (curve C).
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4 Conclusions

Front dynamics with time delays, namely, the propagation ofthe BF, joining two states of
different stability in a bistable reaction-diffusion system under the action of fast driving
was considered within the asymmetric piecewise linear model of reaction kinetics. The
results presented show that (i) the numerically found frontspeed function follows the
exponential law in the case of theasymmetric piecewise rate function. (ii) The lag time
that describes the size of the retardation depends on the outer slope coefficients of the
asymmetric piecewise linear rate function. The lag time is found to be independent of
the inner slope coefficient of the rate function.
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