Title Novel Yttria-Stabilized Zirconium Oxide and Lithium Disilicate Coatings on Titanium Alloy Substrate for Implant Abutments and Biomedical Application /
Authors Maminskas, Julius ; Pilipavičius, Jurgis ; Staišiūnas, Edvinas ; Baranovas, Gytis ; Alksne, Milda ; Daugela, Povilas ; Juodzbalys, Gintaras
DOI 10.3390/ma13092070
Full Text Download
Is Part of Materials.. Basel : MDPI AG. 2020, vol. 13, no. 9, art. no. 2070, p. 1-19.. ISSN 1996-1944. eISSN 1996-1944
Keywords [eng] coatings ; focal adhesions ; implant abutments ; roughness ; zirconium oxide
Abstract [eng] This study aimed to create novel bioceramic coatings on a titanium alloy and evaluate their surface properties in comparison with conventional prosthetic materials. The highly polished titanium alloy Ti6Al4V (Ti) was used as a substrate for yttria-stabilized zirconium oxide (3YSZ) and lithium disilicate (LS2) coatings. They were generated using sol-gel strategies. In comparison, highly polished surfaces of Ti, yttria-stabilized zirconium oxide (ZrO2), polyether ether ketone (PEEK) composite, and poly(methyl methacrylate) (PMMA) were utilized. Novel coatings were characterized by an X-ray diffractometer (XRD) and scanning electron microscope (SEM). The roughness by atomic force microscope (AFM), water contact angle (WCA), and surface free energy (SFE) were determined. Additionally, biocompatibility and human gingival fibroblast (HGF) adhesion processes (using a confocal laser scanning microscope (CLSM)) were observed. The deposition of 3YSZ and LS2 coatings changed the physicochemical properties of the Ti. Both coatings were biocompatible, while Ti-3YSZ demonstrated the most significant cell area of 2630 μm2 (p 0.05) and the significantly highest, 66.75 4.91, focal adhesions (FAs) per cell after 24 h (p 0.05). By contrast, PEEK and PMMA demonstrated the highest roughness and WCA and the lowest results for cellular response. Thus, Ti-3YSZ and Ti-LS2 surfaces might be promising for biomedical applications.
Published Basel : MDPI AG
Type Journal article
Language English
Publication date 2020
CC license CC license description