Joint universality of some zeta-functions. I

Santa Račkauskienė^{1,2}, Darius Šiaučiūnas²

¹ Institute of Mathematics and Informatics Akademijos 4, LT-08663 Vilnius

² Šiauliai University
P. Višinskio 19, LT-77156 Šiauliai
E-mail: santa.rackauskiene@gmail.com; siauciunas@fm.su.lt

Abstract. In the paper, the joint universality for the Riemann zeta-function and a collection of periodic Hurwitz zeta functions is discussed and basic results are given.

Keywords: joint universality, limit theorem, periodic Hurwitz zeta-function, Riemann zeta-function, space of analytic functions.

Let $\mathfrak{a} = \{a_m : m \in \mathbb{N}_0\}, \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, be a periodic with minimal period $k \in \mathbb{N}$ sequence of complex numbers, and α , $0 < \alpha \leq 1$, be a fixed number. The periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{a}), s = \sigma + it$, is defined, for $\sigma > 1$, by

$$\zeta(s,\alpha;\mathfrak{a}) = \sum_{m=0}^{\infty} \frac{a_m}{(m+\alpha)^s},$$

and by analytic continuation elsewhere. If

$$a = \frac{1}{k} \sum_{l=0}^{k-1} a_l = 0,$$

then $\zeta(s, \alpha; \mathfrak{a})$ is an entire function. If $a \neq 0$, then the point s = 1 is a simple pole with residue a.

The universality of the function $\zeta(s, \alpha; \mathfrak{a})$ with transcendental parameter α has been obtained in [2]. Let K be a compact subset of the strip $D = \{s \in \mathbb{C} : \frac{1}{2} < \sigma < 1\}$ with connected complement, and let f(s) be a continuous function on K which is analytic in interior of K. Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] \colon \sup_{s \in K} \left| \zeta(s + i\tau, \alpha; \mathfrak{a}) - f(s) \right| < \varepsilon \right\} > 0.$$

Here and in the sequel, meas{A} denotes the Lebesgue measure of a measurable set $A \subset \mathbb{R}$.

The joint universality of periodic Hurwitz zeta-functions was considered in a series of papers [5, 6, 7, 3, 9] and [8]. The most general result in this field is contained in [8]. For $j = 1, \ldots, r$, let $\alpha_j, 0 < \alpha_j \leq 1$, be fixed parameter, and $l_j \in \mathbb{N}$. Moreover, for $j = 1, \ldots, r$ and $l = 1, \ldots, l_j$, let $\mathfrak{a}_{jl} = \{a_{mjl}: m \in \mathbb{N}_0\}$ be a periodic with minimal period

 $k_{jl} \in \mathbb{N}$ sequence of complex numbers, and $\zeta(s, \alpha_j; \mathfrak{a}_{jl})$ be corresponding periodic Hurwitz zeta-function. Define

$$L(\alpha_1,\ldots,\alpha_r) = \left\{ \log(m+\alpha_j): m \in \mathbb{N}_0, \ j=1,\ldots,r \right\}.$$

Moreover, let k_j be the least common multiple of the periods $k_{j1}, k_{j2}, \ldots, k_{jl_j}, j = 1, \ldots, r$, and

$$B_{j} = \begin{pmatrix} a_{1j1} & a_{1j2} & \dots & a_{1jl_{j}} \\ a_{2j1} & a_{2j2} & \dots & a_{2jl_{j}} \\ \dots & \dots & \dots & \dots \\ a_{k_{j}j1} & a_{k_{j}j2} & \dots & a_{k_{j}jl_{j}} \end{pmatrix}, \quad j = 1, \dots, r$$

Theorem 1. (See [8].) Suppose that the set $L(\alpha_1, \ldots, \alpha_r)$ is linearly independent over the field of rational numbers \mathbb{Q} and that $\operatorname{rank}(B_j) = l_j, j = 1, \ldots, r$. For every $j = 1, \ldots, r$ and $l = 1, \ldots, l_j$, let K_{jl} be a compact subset of the strip $D = \{s \in \mathbb{C}: \frac{1}{2} < \sigma < 1\}$ with connected complement, and let $f_{jl}(s)$ be a continuous on K_{jl} function which is analytic in interior of K_{jl} . Then, for every $\varepsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \operatorname{meas} \left\{ \tau \in [0, T] : \sup_{1 \leqslant j \leqslant r} \sup_{1 \leqslant l \leqslant l_j} \sup_{s \in K_{jl}} \sup_{s \in K_{jl}} \left| \zeta(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) - f_{jl}(s) \right| < \varepsilon \right\} > 0.$$

The aim of this note is to give basics for the proof of the joint universality of the functions $\zeta(s)$ and $\zeta(s + i\tau, \alpha_j; \mathfrak{a}_{jl}), j = 1, \ldots, r, l = 1, \ldots, l_j$. Here, as usual, $\zeta(s)$ denotes the Riemann zeta-function, that is $\zeta(s) = \zeta(s, 1; \mathfrak{a}_1)$ with $\mathfrak{a}_1 = \{a_m = 1: m \in \mathbb{N}_0\}$.

Theorem 2. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , and that other hypotheses of Theorem 1 hold. Moreover, let K be a compact subset of the strip D with connected complement, and let f(s) be a continuous non-vanishing on K function which is analytic in interior of K. Then, for every $\varepsilon > 0$,

$$\begin{split} \liminf_{T \to \infty} \frac{1}{T} \max & \left\{ \tau \in [0, T]: \sup_{s \in K} \left| \zeta(s + i\tau) - f(s) \right| < \varepsilon, \\ \sup_{1 \leq j \leq r} \sup_{1 \leq l \leq l_j} \sup_{s \in K_{jl}} \left| \zeta(s + i\tau, \alpha_j; \mathfrak{a}_{jl}) - f_{jl}(s) \right| < \varepsilon \right\} > 0 \end{split}$$

The proof of Theorem 2 is based on a joint limit theorem in the space of analytic functions for the functions $\zeta(s)$ and $\zeta(s, \alpha_j; \mathfrak{a}_{jl}), j = 1, \ldots, r, l = 1, \ldots, l_j$.

Denote by H(D) the space of analytic on D functions equipped with the topology of uniform convergence on compacta, and let

$$H^{\kappa}(D) = \underbrace{H(D) \times \cdots \times H(D)}_{\kappa},$$

where

$$\kappa = \sum_{j=1}^{r} l_j + 1$$

Moreover, let $\gamma = \{s \in \mathbb{C} : |s| = 1\}$ be the unit circle on the complex plane. Define

$$\hat{\Omega} = \prod_{p} \gamma_{p}$$
 and $\Omega = \prod_{m=0}^{\infty} \gamma_{m}$,

where $\gamma_p = \gamma$ and $\gamma_m = \gamma$ for all primes p and all $m \in \mathbb{N}_0$, respectively. Then, by the Tikhonov theorem, the tori $\hat{\Omega}$ and Ω are compact topological groups. Denote by $\mathcal{B}(S)$ the class of Borel sets of a space S. Then we obtain two probability spaces $(\hat{\Omega}, \mathcal{B}(\hat{\Omega}), \hat{m}_H)$ and $(\Omega, \mathcal{B}(\Omega), m_H)$, where \hat{m}_H and m_H are probability measures on $(\hat{\Omega}, \mathcal{B}(\hat{\Omega}))$ and $(\Omega, \mathcal{B}(\Omega))$, respectively. Now let

$$\Omega^{r+1} = \Omega \times \Omega_1 \times \cdots \times \Omega_r,$$

where $\Omega_j = \Omega$ for $j = 1, \ldots, r$. By the Tikhonov theorem again, Ω^{r+1} is a compact topological Abelian group, and this leads to the probability space $(\Omega^{r+1}, \mathcal{B}(\Omega^{r+1}), m_H^{r+1})$, where m_H^{r+1} is the probability Haar measure on $(\Omega^{r+1}, \mathcal{B}(\Omega^{r+1}))$. Denote by $\hat{\omega}(p)$ the projection of $\hat{\omega} \in \hat{\Omega}$ to γ_p , and by $\omega(m)$ the projection of $\omega \in \Omega$ to γ_m . For brevity, let $\underline{\alpha} = (\alpha_1, \ldots, \alpha_r)$, $\underline{\mathfrak{a}} = (\mathfrak{a}_{11}, \ldots, \mathfrak{a}_{1l_1}, \ldots, \mathfrak{a}_{r1}, \ldots, \mathfrak{a}_{rl_r})$, and let $\underline{\omega} = (\hat{\omega}, \omega_1, \ldots, \omega_r)$ be an element of Ω^{r+1} . On the probability space $(\Omega^{r+1}, \mathcal{B}(\Omega^{r+1}), m_H^{r+1})$, define the $H^{\kappa}(D)$ -valued random element $\underline{\zeta}(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$ by the formula

$$\underline{\zeta}(s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) = \left(\zeta(s,\hat{\omega}),\zeta(s,\alpha_1,\omega_1;\mathfrak{a}_{11}),\ldots,\zeta(s,\alpha_1,\omega_1;\mathfrak{a}_{1l_1})\ldots,\zeta(s,\alpha_r,\omega_r;\mathfrak{a}_{rl_r}),\ldots,\zeta(s,\alpha_r,\omega_r;\mathfrak{a}_{rl_r})\right),$$

where

$$\zeta(s,\hat{\omega}) = \prod_{p} \left(1 - \frac{\hat{\omega}(p)}{p^s}\right)^{-1}$$

and

$$\zeta(s,\alpha_j,\omega_j;\mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}\omega_j(m)}{(m+\alpha_j)^s}, \quad j = 1,\dots,r, \ l = 1,\dots,l_j.$$

Denote by $P_{\underline{\zeta}}$ the distribution of the random element $\underline{\zeta}(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$, and let $\underline{\zeta}(s, \underline{\alpha}; \underline{\mathfrak{a}}) = (\zeta(s), \zeta(s, \alpha_1; \mathfrak{a}_{11}), \dots, \zeta(s, \alpha_1; \mathfrak{a}_{1l_1}), \dots, \zeta(s, \alpha_r; \mathfrak{a}_{r1}), \dots, \zeta(s, \alpha_r; \mathfrak{a}_{rl_r}))$

Theorem 3. Suppose that $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} . Then the probability measure

$$P_T(A) \stackrel{\text{def}}{=} \frac{1}{T} \operatorname{meas} \{ \tau \in [0, T] : \underline{\zeta}(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}) \in A \}, \quad A \in \mathcal{B}(H^{\kappa}(D)),$$

converges weakly to $P_{\underline{\zeta}}$ as $T \to \infty$.

Taking into account a limited size of this note, we give only a sketch of the proof of Theorem 3. The proof of Theorem 2 as well as full proof of Theorem 3 will be given elsewhere.

Denote by \mathcal{P} the set of all prime numbers.

1. Since the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , we have that the set

$$L \stackrel{\text{def}}{=} \left\{ (\log p; p \in \mathcal{P}), \left(\log(m + \alpha_j); m \in \mathbb{N}_0, j = 1, \dots, r \right) \right\}$$

Liet. mat. rink. LMD darbai, 51:45-50, 2010.

is linearly independent over \mathbb{Q} . Consider the probability measure

$$Q_T(A) = \frac{1}{T} \operatorname{meas} \{ \tau \in [0, T] \colon \left(\left(p^{-i\tau} \colon p \in \mathcal{P} \right), \left((m + \alpha_1)^{-i\tau} \colon m \in \mathbb{N}_0 \right), \ldots, \\ \left((m + \alpha_r)^{-i\tau} \colon m \in \mathbb{N}_0 \right) \right) \in A \}, \quad A \in \mathcal{B}(\Omega^{r+1}).$$

Then, using the above remark on the set L and applying the Fourier transform method, we find that the measure Q_T converges weakly to the Haar measure m_H^{r+1} as $T \to \infty$.

2. Let $\sigma_1 > \frac{1}{2}$ be a fixed number, and

$$v_n(m) = \exp\left\{-\left(\frac{m}{n}\right)^{\sigma_1}\right\}, \quad m, n \in \mathbb{N},$$
$$v_n(m, \alpha_j) = \exp\left\{-\left(\frac{m+\alpha_j}{n+\alpha_j}\right)^{\sigma_1}\right\}, \quad m, n \in \mathbb{N}_0, \ j = 1, \dots, r.$$

Then by a standard way can be proved that the series

$$\zeta_n(s) = \sum_{m=1}^{\infty} \frac{v_n(m)}{m^s}, \qquad \zeta_n(s, \alpha_j; \mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}v_n(m, \alpha_j)}{(m+\alpha_j)^s}, \quad j = 1, \dots, r,$$

are absolutely convergent for $\sigma > \frac{1}{2}$. For $m \in \mathbb{N}$, define

$$\hat{\omega}(m) = \prod_{p^l \parallel m} \hat{\omega}^l(p),$$

where $p^{l} || m$ means that $p^{l} | m$ but $p^{l+1} \nmid m$, and let

$$\zeta_n(s,\hat{\omega}) = \sum_{m=1}^{\infty} \frac{v_n(m)\hat{\omega}(m)}{m^s},$$
$$\zeta_n(s,\alpha_j,\omega_j;\mathfrak{a}_{jl}) = \sum_{m=0}^{\infty} \frac{a_{mjl}\omega_j(m)v_n(m,\alpha_j)}{(m+\alpha_j)^s}, \quad j = 1,\dots,r.$$

The latter series, clearly, also are absolutely convergent for $\sigma > \frac{1}{2}$. Let, for brevity,

$$\underline{\zeta}_n(s,\underline{\alpha};\underline{\mathfrak{a}}) = \left(\zeta_n(s), \zeta_n(s,\alpha_1;\mathfrak{a}_{11}), \dots, \zeta_n(s,\alpha_1;\mathfrak{a}_{1l_1}), \dots, \zeta_n(s,\alpha_r;\mathfrak{a}_{rl_r}), \dots, \zeta_n(s,\alpha_r;\mathfrak{a}_{rl_r})\right),$$

and

$$\underline{\zeta}_n(s,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) = \left(\zeta_n(s,\hat{\omega}),\zeta_n(s,\alpha_1,\omega_1;\mathfrak{a}_{11}),\ldots,\zeta_n(s,\alpha_1,\omega_1;\mathfrak{a}_{1l_1}),\ldots,\zeta_n(s,\alpha_r,\omega_r;\mathfrak{a}_{rl_r}),\ldots,\zeta_n(s,\alpha_r,\omega_r;\mathfrak{a}_{rl_r})\right).$$

Then the next step of the proof of Theorem 3 consists of the proof that the probability measures

$$\frac{1}{T} \mathrm{meas}\big\{\tau \in [0,T] \colon \underline{\zeta}_n(s+i\tau,\underline{\alpha};\underline{\mathfrak{a}}) \in A\big\}, \quad A \in \mathcal{B}\big(H^{\kappa}(D)\big),$$

and

$$\frac{1}{T} \operatorname{meas} \left\{ \tau \in [0,T] \colon \underline{\zeta}_n(s+i\tau,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) \in A \right\}, \quad A \in \mathcal{B} \left(H^{\kappa}(D) \right),$$

both converge weakly to the same probability measure P on $(H^{\kappa}(D), \mathcal{B}(H^{\kappa}(D)))$ as $T \to \infty$. For this, the weak convergence of measure Q_T to m_H^{r+1} as well as the invariance of m_H^{r+1} and properties of weak convergence of probability measures are applied.

3. Now we approximate in the mean $\zeta(s, \underline{\alpha}; \underline{\mathfrak{a}})$ by $\zeta_n(s, \underline{\alpha}; \underline{\mathfrak{a}})$ and $\zeta(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$ by $\zeta_n(s, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}})$.

Let $\{K_m : m \in \mathbb{N}\}$ be a sequence of compact subsets of the strip D such that

$$\bigcup_{m=1}^{\infty} K_m = D$$

 $K_m \subset K_{m+1}$ for all $m \in \mathbb{N}$, and, for every compact $K \subset D$, there exists m such that $K \subset K_m$. For $f, g \in H(D)$, let

$$\rho(f,g) = \sum_{m=1}^{\infty} 2^{-m} \frac{\sup_{s \in K_m} |f(s) - g(s)|}{1 + \sup_{s \in K_m} |f(s) - g(s)|}$$

Then ρ is a metric on H(D) which induces its topology of uniform convergence on compacta. Now if $\underline{f} = (f_0, f_{11}, \ldots, f_{1l_1}, \ldots, f_{r1}, \ldots, f_{rl_r}), \underline{g} = (g_0, g_{11}, \ldots, g_{1l_1}, \ldots, g_{r1}, \ldots, g_{rl_r}) \in H^{\kappa}(D)$, and

$$\rho_{\kappa}(\underline{f},\underline{g}) = \max\bigg(\max_{1 \leqslant j \leqslant r} \max_{1 \leqslant l \leqslant l_j} \rho(f_{jl},g_{jl}), \rho(f_0,g_0)\bigg),$$

then ρ_{κ} is a metric on $H^{\kappa}(D)$ with induces its topology of uniform convergence on compacta.

In this step, we prove the following equalities:

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_\kappa \left(\underline{\zeta}(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}), \underline{\zeta}_n(s + i\tau, \underline{\alpha}; \underline{\mathfrak{a}}) \right) d\tau = 0, \tag{1}$$

and if $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q} , then, for almost all $\underline{\omega} \in \Omega^{r+1}$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho_\kappa \left(\underline{\zeta}(s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}), \underline{\zeta}_n(s + i\tau, \underline{\alpha}, \underline{\omega}; \underline{\mathfrak{a}}) \right) d\tau = 0.$$
(2)

The proof of the above equalities easily follows from their one-dimensional versions in [2] and [4].

4. Additionally to P_T , define one more probability measure

$$\hat{P}_T(A) = \frac{1}{T} \operatorname{meas}\{\tau \in [0,T] : \underline{\zeta}(s+i\tau,\underline{\alpha},\underline{\omega};\underline{\mathfrak{a}}) \in A\}, \quad A \in \mathcal{B}(H^{\kappa}(D)).$$

Using the limit theorems stated in Step 2, the approximation in the mean (1) and (2) as well as Theorem 4.2 from [1], we prove that both the measures P_T and \hat{P}_T converge weakly to the same probability measure P on $(H^{\kappa}(D), \mathcal{B}(H^{\kappa}(D)))$ as $T \to \infty$.

5. It remains to show that $P = P_{\underline{\zeta}}$. For this, the ergodicity of the group of transformations $\{\Phi_{\tau} : \tau \in \mathbb{R}\}$ on Ω^{r+1} defined by $\Phi_{\tau}(\underline{\omega}) = a_{\tau}\underline{\omega}, \underline{\omega} \in \Omega^{r+1}$, where $a_{\tau} = \{(p^{-i\tau} : p \in \mathcal{P}), ((m + \alpha_1)^{-i\tau} : m \in \mathbb{N}_0), \dots, ((m + \alpha_r)^{-i\tau} : m \in \mathbb{N}_0)\}, \quad \tau \in \mathbb{R},$ as well as the classical Birkhoff–Khinchine theorem is applied.

References

- [1] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.
- [2] A. Javtokas and A. Laurinčikas. The universality of the periodic Hurwitz zeta-function. *Integral Transforms and Special Functions*, 17(10):711–722, 2006.
- [3] A. Javtokas and A. Laurinčikas. A joint universality theorem for periodic Hurwitz zetafunctions. Bull. Austral. Math. Soc., 78(1):13–33, 2008.
- [4] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer, Dordrecht, 1996.
- [5] A. Laurinčikas. The joint universality for periodic Hurwitz zeta-functions. Analysis, 26(3):419–428, 2006.
- [6] A. Laurinčikas. Voronin-type theorem for periodic Hurwitz zeta-functions. Mat. Sb., 198(2):91–102, 2007 (in Russian).
- [7] A. Laurinčikas. On joint university of periodic Hurwitz zeta-functions. Lith. Math. J., 48(1):79–91, 2008.
- [8] A. Laurinčikas and S. Skerstonaitė. Joint universality for periodic Hurwitz zetafunctions. II. In R. Steuding and J. Steuding(Eds.), New Directions in Value-Distribution Theory of Zeta and L-Functions. Wurzburg Conference, October 6–10, 2008, pp. 161–169. Shaker Verlag, Aachen, 2009.
- [9] A. Laurinčikas and S. Skerstonaitė. A joint universality theorem for periodic Hurwitz zeta-functions. *Lith. Math. J.*, 49(3):287–296, 2009.

REZIUMĖ

Keleto dzeta funkcijų jungtinis universalumas. I

S. Račkauskienė ir D. Šiaučiūnas

Straipsnyje nagrinėjamas Rymano dzeta funkcijos ir periodinių Hurvico dzeta funkcijų rinkinio jungtinis universalumas.

Raktiniai žodžiai: analizinių funkcijų erdvė, jungtinis universalumas, periodinė Hurvico dzeta-funkcija, ribinė teorema, Rymano dzeta funkcija.