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Abstract. In [5] a simple, data-driven and computationally efficient procedure of (non-
parametric) testing for high-dimensional data have been introduced. The procedure is based
on randomization and resampling, a special sequential data partition procedure, and χ

2-type
test statistics. However, the χ

2 test has small power when deviations from the null hypoth-
esis are small or sparse. In this note test statistics based on the nonparametric maximum
likelihood and the empirical Bayes estimators
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Introduction

Let X := (X(1), . . . , X(N)) be a sample of the size N of iid observations of a random
vector X having a distribution P on R

d. We are interested in testing (nonparametric)
properties of P in case the dimension d of observations is large.

Thus far, there is no generally accepted methodology for the multivariate non-
parametric hypothesis testing. Traditional approaches to multivariate nonparametric
hypothesis testing are based on empirical characteristic function [1], nonparamet-
ric distribution density estimators and smoothing [3, 4], multivariate nonparametric
Monte Carlo tests [12], and classical univariate nonparametric statistics calculated for
data projected onto the directions found via the projection pursuit [11, 7].

More advanced technique is based on Vapnik–Chervonenkis theory, the uniform
functional central limit theorem and inequalities for large deviation probabilities [9, 2].
Recently, especially in applications, the Bayes approach and Markov chain Monte
Carlo methods are widely used (see, e.g., [10] and references therein).

In [5] a simple, data-driven and computationally efficient procedure of nonpara-
metric testing for high-dimensional data have been introduced. The procedure is
based on randomization and resampling (bootstrap), a special sequential data parti-
tion procedure, and χ2-type statistics.

The goal of this note is to propose more efficient than χ2 test statistics based on the
nonparametric maximum likelihood (NML) and the empirical Bayes (EB) estimators
in an auxiliary nonparametric mixture model.
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1 Simple testing procedure

Let P0 and P1 be two disjoint classes of d-dimensional distributions, P := P0 ∪ P1.
Consider a nonparametric hypothesis testing problem:

H0: P ∈ P0 versus H1: P ∈ P1. (1)

Suppose that there exists a continuous (in some topology) mapping Ψ : P → P0 such
that P0 = {P ∈ P : Ψ(P ) = P}. One can take, for example, Ψ(P ) =
argminQ∈P0

̺(Q,P ) where ̺ is a distance in P .

Let P̂ denote the empirical distribution based on the sample X and define P̂0 :=
Ψ(P̂ ). Under the null hypothesis the empirical distributions P̂ and P̂0 for large N
should be close since they both are the approximations to the same distribution P0.
Thus, any measure of discrepancy between P̂ and P̂0 can be taken as a test statistic
for (1). In [5] the following discrepancy measure T0 has been calculated.

Generate two independent random samples XP and X0 of size N from the distri-
butions P̂ and P̂0, respectively. Let X

∗ denote the joint sample of XP and X0,

X
∗ := XP ‖X0 =

(

XP (1), . . . , XP (N), X0(1), . . . , X0(N)
)

.

Further, let S := {Sk, k = 1, . . . ,K}, be a sequence of partitions of X∗ with |Sk| = k
elements produced by some binary partition algorithm. Initially S1 := {X∗}, and for
k = 2, . . . ,K the next partition Sk is obtained from the previous Sk−1 by splitting
some set from Sk−1 into two disjoint subsets.

For a fixed partition Sk = {Sk
1 , . . . , S

k
k} and Q ∈ {P, 0}, define

YQ = YQ(k) :=
(

YQ(1), . . . , YQ(k)
)⊤

:=
(∣

∣Sk
j ∩XQ

∣

∣, j = 1, . . . , k
)⊤

. (2)

Thus, YQ is a k-dimensional vector with jth component equal to the number of
elements of XQ in the set Sk

j (j = 1, . . . , k). Denote

η0 := (YP − Y0)/
√

YP + Y0 ∈ R
k, (3)

here the operations are performed coordinatewise. When the number of observations
YP (j) + Y0(j) in the each set Sk

j , j = 1, . . . , k, is large and the null hypothesis H0

holds, the distribution of the vector η0 can be approximated by (k − 1)-dimensional
standard normal distribution. Therefore it is natural to take χ2 statistic |η0|

2 as
the discrepancy measure between P̂ and P̂0 and to use it as a test statistic for (1).
Actually, with the the statistic |η0|

2, the null hypothesis

Hη
0 : Eη0 = 0k versus Hη

1 : Eη0 6= 0k

is tested instead (here 0k stands for the null vector in R
k).

The approximate covariance matrix of the statistics T0, however, depends on the
alternative HP . Therefore variance-stabilizing transformation is used giving a new
discrepancy vector

η :=
√

YP + Y0

(

arcsin

(

√

YP

YP + Y0

)

− arcsin

(

√

Y0

YP + Y0

))

. (4)
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Moreover, χ2 test has a small power when the dimension n of η is large and either
each component of the mean θ := Eη only slightly differs from 0n or only a few θ
components are nonzero. In the next section we apply the nonparametric maximum
likelihood estimator and the nonparametric empirical Bayes method to construct a
more powerful criterion to test Hη

0 and hence H0.

2 Auxiliary testing problem and empirical Bayes

Let us consider an auxiliary testing problem

Hη
0 : Eη = 0n versus Hη

1 : Eη 6= 0n, (5)

where η ∼ Normaln(θ, In) and θ ∈ R
n is an unknown mean vector. In the (empirical)

Bayes approach, the unknown parameter θ is treated as random. Thus, we consider
a nonparametric Gaussian mixture model with a mixture distribution G

η = θ + z, θ and z are independent, (6)

z ∼ Normaln(0n, In), (7)

θi ∼ G, {θi, i = 1, . . . , n} are iid. (8)

For ν > 0, by µν(y | G) we denote the posterior ν-moment of θ1 given η1 = y

µν(y | G) :=
ϕν(y | G)

ϕ0(y | G)
, (9)

ϕℓ(y | G) :=

∫

R

uℓϕ(y − u) dG(u), ℓ > 0. (10)

Here ϕ denotes the standard normal distribution density.
The homogeneity hypothesis (5) states that in fact there is no mixture, G is the

degenerated at 0 distribution. Since E|η|2 = nEθ21 +n, a criterion for testing the null
hypothesis Hη

0 can be based on an estimator of the functional

µ2 = µ2(G) :=

∫

R

u2 dG(u) = Eθ21 . (11)

Alternatives to the direct estimator (µ̂2)χ2 := n−1|η|2 − 1 are the nonparametric
maximum likelihood estimator (NMLE)

(µ̂2)ML := µ2(ĜML), (12)

and the nonparametric empirical Bayes (NEB) estimator

(µ̂2)EB :=
1

n

n
∑

j=1

µ2(ηj | ĜML). (13)

Here Ĝ = ĜML is the NMLE of the mixture distribution G. For Gaussian mixtures,
it does exist and is strongly consistent (see, e.g., [8]). We consider also the NEB
statistic

(µ̂2
1)EB :=

1

n

n
∑

j=1

µ2
1(ηj | ĜML). (14)

which is a biased toward 0 estimator of µ2.
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Jiang and Zhang [6] have proved that the NEB estimator

θ̂ :=
(

µ1(ηj | ĜML), j = 1, . . . , n
)

of θ asymptotically achieves the minimial in the class of separable statistics mean
square error R∗

n provided

(logn)9/2 min
(
√

logn, ‖θ‖∞
)

= o
(

nR∗
n

)

(n → ∞).

They also have shown via simulations that in some cases θ̂ significantly outperforms
other known counterparts including James–Stein estimator. Since θ̂ is location in-
variant, this suggests that the criterion for testing (5) based on the statistics (µ̂2

1)EB

might be more powerful especially for close alternatives.
The asymptotic properties of (µ̂2

1)EB can be derived from that of |θ̂ − θ|2. In this
paper we are interested in finite sample properties of (µ̂2

1)EB and present simulation
results for some natural alternatives.

3 Simulation experiment and concluding remarks

The following three alternatives of θi distribution are considered:

(a1) θi = aui, ui ∼ Normal (0, 1);

(a2) θi = a(2zi − 1), zi ∼ Binomial (1, 1/2);

(a3) θi = a(−1)i · 1{i 6 m}, 1 < m < n.

For various combinations of the parameters a, n and m, simulations with 1000
replications have been performed. The parameter a > 0 represents the difficulty of
the testing problem. The simulations show some improvements in power of NEB test
in comparison with χ2 test. Figs. 1–3 illustrate the typical results. Here power plots
for the test statistic (µ̂2

1)EB and for χ2 test versus a are given for n = 50 and m = 8.

Fig. 1. The Power of the tests for alternative (a1).

Liet. mat. rink. LMD darbai, 51:402–407, 2010.
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Fig. 2. The Power of the tests for alternative (a2).

Fig. 3. The Power of the tests for alternative (a3).

The NMLE ĜML is calculated by making use of the EM algorithm for a finite
Gaussian mixture with prespecified and fixed centers of the mixture components (see,
e.g., [6]). The number of the components m = 15. This means that actually the
restricted NMLE is substituted for ĜML.

Concluding remarks

The initial nonparametric testing problem (1) for high-dimensional data is reduced to
the auxiliary testing problem (5) using the method proposed in [5]. In the empirical
Bayes setting the null hypothesis Hη

0 can be restated as G = δ0, where G is the prior
distribution of the unknown parameters θi, i = 1, . . . , n, and δ0 is the degenerate at 0
distribution. Thus, any discrepancy measure between the δ0 and NMLE ĜML of G
can be used for testing (5), in particular, χ2 test or nonparametric likelihood ratio
criterion. In the paper the finite sample properties of the test based on the NEB
statistic (µ̂2

1)EB (see (14)) are investigated by means of simulations.
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Preliminary simulation results show some improvements of NEB test as compared
with χ2. Since NMLE ĜML calculation is an iterative and time consuming procedure
the results can depend on the calculation method and the number of iterations.
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REZIUMĖ

Empirinio Bajeso metodo taikymas didelio matavimo duomenų neparametri-
niams testams
G. Jakimauskas, J. Sušinskas

Straipsnyje [5] buvo pasiūlyta paprasta, adaptyvi ir skaitiškai efektyvi procedūra didelio matavimo
duomenų (neparametrinėms) hipotezėms tikrinti. Procedūra remiasi randomizacija, saviranka, spe-
cialia duomenų rinkinio suskaidymo procedūra ir χ2 tipo testais. Tačiau χ2 testas turi mažą galią,
kai nukrypimai nuo nulinės hipotezės yra maži arba išsklaidyti. Šiame darbe vietoje jo siūlomas kitas
testas, kuris remiasi neparametriniu didžiausio tikėtinumo empiriniu Bajeso įvertiniu pagalbiniame
neparametriniame skirstinių mišinių modelyje.

Raktiniai žodžiai: empirinis Bajeso metodas, chi-kvadrat testas, didelio matavimo duomenys, nepa-
rametrinis didžiausio tikėtinumo įvertinys, neparametriniai testai, aposteriorinis vidurkis, imitacinis
modeliavimas.
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