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Abstract: In this paper, a joint approximation of analytic functions by shifts of Dirichlet L-functions
L(s + ia1tτ , χ1), . . . , L(s + iartτ , χr), where a1, . . . , ar are non-zero real algebraic numbers linearly
independent over the field Q and tτ is the Gram function, is considered. It is proved that the set of
their shifts has a positive lower density.
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1. Introduction

Let χ : N → C be a Dirichlet character modulo q ∈ N. Note that χ(m) is periodic with period
q, completely multiplicative (i.e., χ(mn) = χ(m)χ(n) for all m, n ∈ N and χ(1) = 1), χ(m) = 0 for
(m, q) = 1 and χ(m) 6= 0 for (m, q) = 1. Let s = σ + it. In [1], L. Dirichlet introduced a function

L(s, χ) =
∞

∑
m=1

χ(m)

ms , (σ > 1), (1)

which is now called the Dirichlet L-function. In virtue of the complete multiplicativity of χ(m),
the function (1) can be written as an Euler product

L(s, χ) = ∏
p∈P

(
1− χ(p)

ps

)−1

,

where P is the set of all prime numbers and has a meromorphic continuation to the whole complex
plane with a unique simple pole at the point s = 1 (if χ is the principal character modulo q) with
residue ∏p|q(1− 1/p). Since then, the function (1) has become a subject of intensive investigation.
See, for instance, References [2–4] for some very recent papers on its zeros and moments. For q = 1,
the function L(s, χ) becomes the Riemann zeta-function ζ(s).

In Reference [5], S. M. Voronin established the universality of Dirichlet L-functions. He proved
that if f (s) is a continuous non-vanishing function on the disc |s| ≤ r with any fixed r, 0 < r < 1/4,
and analytic in the interior of that disc, then, for every ε > 0, there exists a real number τ = τ(ε)

such that
max
|s|≤r
|L(s + 3/4 + iτ, χ)− f (s)| < ε.

The Voronin theorem was extended to more general compact sets independently in References [6–8].
Denote by K the class of compact subsets of the strip D = {s ∈ C : 1/2 < σ < 1} with connected
complements, and by H0(K), where K ∈ K, the class of continuous non-vanishing functions on K that
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are analytic in the interior of K. Then the modern version of the Voronin theorem asserts that if K ∈ K
and f (s) ∈ H0(K), then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|L(s + iτ, χ)− f (s)| < ε

}
> 0,

where measA stands for the Lebesgue measure of a measurable set A ⊂ R (see, for example,
Reference [9]). The latter inequality shows that there are infinitely many shifts L(s + iτ, χ)

approximating a given function from the class H0(K).
In Reference [10], Voronin considered the joint functional independence of Dirichlet L-functions

using the joint universality. We recall that two Dirichlet characters are called non-equivalent if they are
not generated by the same primitive character. Thus, the following statement is valid [10,11]; see also
References [9,12,13].

Theorem 1. Let χ1, . . . , χr be pairwise non-equivalent Dirichlet characters. For j = 1, . . . , r, let Kj ∈ K,
and f j(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

1≤j≤r
sup
s∈Kj

|L(s + iτ, χj)− f j(s)| < ε

}
> 0.

The non-equivalence of the characters χ1, . . . , χr ensures a certain independence of the
functions L(s, χ1), . . . , L(s, χr) which is necessary for a simultaneous approximation of the collection
f1(s), . . . , fr(s). Later, it turned out that, in place of non-equivalent characters, different shifts can be
used. This was observed by Nakamura [14]. More precisely, he proved the following theorem.

Theorem 2. Let a1 = 1, a2, . . . , ar be real algebraic numbers linearly independent over the field of rational
numbers Q and χ1, . . . , χr be arbitrary Dirichlet characters. For j = 1, . . . , r, let Kj ∈ K, and let
f j(s) ∈ H0(Kj). Then, for every ε > 0 and a ∈ R \ {0},

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

1≤j≤r
sup
s∈Kj

|L(s + iaajτ, χj)− f j(s)| < ε

}
> 0.

In Reference [15], Pańkowski obtained the joint universality of Dirichlet L-functions using the
shifts L(s + iαjτ

aj logbj τ, χj), j = 1, . . . , r, where α1, . . . , αr ∈ R, a1, . . . , ar ∈ R+ are distinct, b1, . . . , br

are distinct and satisfy

bj ∈
{

R if aj 6∈ N,
(−∞, 0] ∪ (1 + ∞) if aj ∈ N.

The aim of this paper is to introduce new shifts of Dirichlet L-functions that approximate
collections of analytic functions from the class H0(K). Let, as usual, Γ(s) be the Euler gamma-function.
For t > 0, denote the increment θ(t) of the argument of the function π−s/2Γ (s/2) along the segment
connecting the points s = 1/2 and s = 1/2 + it. Then it is known (see, for example, Reference [16]
[Lemma 1.1]) that, for τ ≥ 0, the equation

θ(t) = (τ − 1)π

has the unique solution tτ satisfying θ′(tτ) > 0. For n ∈ N, the numbers tn are called the Gram
points. They were introduced and studied in Reference [17]. Therefore, we call tτ the Gram function.
A very interesting property of the Gram points is the relation tn ∼ γn as n → ∞, where γn > 0 are
imaginary parts of non-trivial zeros of the Riemann zeta-function. In the paper, we will consider the
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joint approximation of analytic functions by shifts of Dirichlet L-functions involving the Gram function.
More precisely, we will prove the following joint universality theorem.

Theorem 3. Suppose that a1, . . . , ar are real non-zero algebraic numbers linearly independent over Q, and
χ1, . . . , χr are arbitrary Dirichlet characters. For j = 1, . . . , r, let Kj ∈ K and f j(s) ∈ H0(Kj). Then, for every
ε > 0,

lim inf
T→∞

1
T − 2

meas

{
τ ∈ [2, T] : sup

1≤j≤r
sup
s∈Kj

|L(s + iajtτ , χj)− f j(s)| < ε

}
> 0.

Moreover, the limit

lim
T→∞

1
T − 2

meas

{
τ ∈ [2, T] : sup

1≤j≤r
sup
s∈Kj

|L(s + iajtτ , χj)− f j(s)| < ε

}
> 0

exists for all but at most countably many ε > 0.

For the proof of Theorem 3, we will use the probabilistic approach based on weakly convergent
probability measures in the space of analytic functions.

2. Lemmas

We start with a lemma on the functional properties of the function tτ . (Its proof can be found in
Reference [16] [Lemma 1.1].)

Lemma 1. Suppose that τ → ∞. Then

tτ =
2πτ

log τ

(
1 +

log log τ

log τ
(1 + o(1))

)
,

t′τ =
2π

log τ

(
1 +

log log τ

log τ
(1 + o(1))

)
and

t′′τ = − π

τ(log τ)2

(
1 +

log log τ

log τ
(2 + o(1))

)
.

The next lemma provides an estimate for certain trigonometric integral.

Lemma 2. Suppose that F(x) is a real differentiable function, the derivative F′(x) is monotonic and F′(x) ≥
λ > 0 or F′(x) ≤ −λ < 0 on the interval (a, b). Then∣∣∣∣∫ b

a
exp{iF(x)}dx

∣∣∣∣ ≤ 4
λ

.

The proof of the lemma is given, for example, in Reference [11].
We will also use Baker’s theorem on linear forms in logarithms of algebraic numbers

(see, for example, Reference [18]).

Lemma 3. Suppose that λ1, . . . , λr ∈ Q are such that their logarithms log λ1, . . . , log λr are linearly
independent over the field of rational numbers Q. Then, for any algebraic numbers β0, . . . , βr, not all zero,
we have

|β0 + β1 log λ1 + · · ·+ βr log λr| > H−C,

where H is the maximum of the heights of β0, β1, . . . , βr, and C is an effectively computable constant depending
on r, λ1, . . . , λr and the maximum of the degrees of β0, β1, . . . , βr.
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Let γ = {s ∈ C : |s| = 1}, and
Ω = ∏

p∈P
γp,

where γp = γ for all p ∈ P. With the product topology and pointwise multiplication,
the infinite-dimensional torus Ω is a compact topological Abelian group. Define

Ωr = Ω1 × · · · ×Ωr,

where Ωj = Ω for j = 1, . . . , r. Then Ωr is also a compact topological Abelian group. Therefore, denoting by
B(X) the Borel σ-field of the space X, we see that, on (Ωr,B(Ωr)), the probability Haar measure mr

H
exists. This gives the probability space (Ωr,B(Ωr), mr

H).
For A ∈ B(Ωr), define

QT(A) =
1

T − 2
meas

{
τ ∈ [2, T] :

((
p−ia1tτ : p ∈ P

)
, . . . ,

(
p−iartτ : p ∈ P

))
∈ A

}
.

Then the following limit theorem holds.

Lemma 4. Under hypotheses of Theorem 2 on the numbers a1, . . . , ar, QT converges weakly to the Haar measure
mr

H as T → ∞.

Proof. We apply the Fourier transform method. It is well known that the dual group of Ωr is
isomorphic to the group

r⊕
j=1

⊕
p∈P

Zjp,

where Zjp = Z for all j = 1, . . . , r, p ∈ P. Hence it follows that characters of the group Ωr are of
the form

r

∏
j=1

∏∗

p∈P
ω

kjp
j (p),

where ωj(p) is the pth component of an element ωj ∈ Ωj, j = 1, . . . , r, and the sign “ ∗ ” means that
only a finite number of integers k jp are distinct from zero. Therefore

∫
Ωr

(
r

∏
j=1

∏∗

p∈P
ω

kjp
j (p)

)
dµ (2)

is the Fourier transform of a measure µ on (Ωr,B(Ωr)).
Let gQT (k), k = (k1, . . . , kr), kj = (k jp : k jp ∈ Z, p ∈ P), j = 1, . . . , r, be the Fourier transform of

QT . In view of (2) we have

gQT (k)) =
∫

Ωr

(
r

∏
j=1

∏∗

p∈P
ω

kjp
j (p)

)
dQT .

Thus, by the definition of QT ,

gQT (k) =
1

T − 2

∫ T

2

r

∏
j=1

∏∗

p∈P
p−ikjpajtτ dτ

=
1

T − 2

∫ T

2
exp

{
−itτ

r

∑
j=1

∑∗

p∈P
ajk jp log p

}
dτ.

(3)
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Obviously, if k = (0, . . . , 0), then
gQT (k) = 1. (4)

Now suppose that k = (k1, . . . , kr) 6= (0, . . . , 0). Note that

Ak
de f
=

r

∑
j=1

∑∗

p∈P
ajk jp log p = ∑∗

p∈P
log p

r

∑
j=1

ajk jp.

Since kj 6= 0 for some j ∈ {1, 2, . . . , r}, there is a prime number p such that k jp 6= 0. For this p, the sum

βp
de f
= ∑r

j=1 ajk jp is non-zero, because the numbers a1, . . . , ar are linearly independent over Q. It is well
known that the set {log p : p ∈ P} is linearly independent over Q. Therefore, in view of Lemma 3,

Ak = ∑∗

p∈P
βp log p 6= 0. (5)

Now, (3) and Lemmas 1 and 2 show that, in the case k 6= (0, . . . , 0),

gQT (k)�
log T
TAk

.

This together with (4) and (5) give

lim
T→∞

gQT (k) =

{
1 if k = (0, . . . , 0),
0 if k 6= (0, . . . , 0).

Since the right-hand side of the latter equality is the Fourier transform of the Haar measure mr
H ,

the lemma follows by a continuity theorem for probability measures on compact groups.

H(D) denotes the space of analytic functions on the strip D endowed with the topology of
uniform convergence on compacta. Lemma 4 implies a limit theorem for probability measures on
(H(D),B(H(D))) defined by means of absolutely convergent Dirichlet series.

For a fixed number θ > 1/2 and m, n ∈ N, set

vn(m) = exp
{
−
(m

n

)θ
}

. (6)

Then we define the series

Ln(s, χj) =
∞

∑
m=1

χj(m)vn(m)

ms

and

Ln(s, ωj, χj) =
∞

∑
m=1

χj(m)ωj(m)vn(m)

ms ,

j = 1, . . . , r, where the functions ωj(p) are extended to the set N by the formula

ωj(m) = ∏
pl |m

pl+1-m

ωl
j(p), m ∈ N.

Denote the elements of Ωr by ω = (ω1, . . . , ωr). Put χ = (χ1, . . . , χr), and set

Ln(s, χ) = (Ln(s, χ1), . . . , Ln(s, χr)) (7)

and
Ln(s, ω, χ) = (Ln(s, ω1, χ1), . . . , Ln(s, ωr, χr)) .
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Moreover, let un : Ωr → Hr(D) be given by the formula

un(ω) = Ln(s, ω, χ).

The absolute convergence of the series for Ln(s, ωj, χj) implies the continuity of the mapping un.
Let Vn = mr

Hu−1
n , where, for A ∈ B(Hr(D)),

Vn(A) = mr
Hu−1

n (A) = mr
H(u

−1
n A). (8)

In view of (7) and (8) we conclude that Lemma 4, the continuity of un and the well-known property on
preservation of weak convergence under mapping lead to the following statement.

Lemma 5. Under hypothesis of Theorem 3 on the numbers a = (a1, . . . , ar), we have

PT,n(A)
de f
=

1
T − 2

meas
{

τ ∈ [2, T] : Ln(s + iatτ , χ) ∈ A
}

, A ∈ B(Hr(D)),

converges weakly to the measure Vn as T → ∞.

The probability measure Vn is very important for the proof of Theorem 3. Let

L(s, ω, χ) = (L(s, ω1, χ1), . . . , L(s, ωr, χr)) ,

where

L(s, ω, χ) = ∏
p∈P

(
1−

ωj(p)χj(p)
ps

)−1

, j = 1, . . . , r. (9)

Note that the latter products are uniformly convergent on compact subsets of the strip D for almost
all ωj ∈ Ωj, and define the H(D)-valued random elements on the probability space (Ωj,B(Ωj), mjH),
where mjH is the probability Haar measure on (Ωj,B(Ωj)). Therefore, L(s, ω, χ) is the Hr(D)-valued
random element on (Ωr,B(Ωr), mr

H). Denote by PL the distribution of the random element L(s, ω, χ),
that is,

PL(A) = mr
H

{
ω ∈ Ωr : L(s, ω, χ) ∈ A

}
, A ∈ B(Hr(D)).

We recall that the support of a probability measure P on (X,B(X)), where the space X is separable,
is a minimal closed set SP ⊂ X such that P(SP) = 1. The set SP consists of all elements x ∈ X such
that, for every open neighbourhood G of x, the inequality P(G) > 0 is satisfied.

The measure Vn is independent on any hypothesis. Therefore, from Reference [19] it follows that:

Lemma 6. The measure Vn converges weakly to PL as n→ ∞. Moreover, the support of PL is the set Sr, where

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Proof. To be precise, in Reference [19] it was proved that a certain measure PN converges weakly to
a certain probability measure P on (Hr(D),B(Hr(D))) (as N → ∞), and the measure P is the limit
measure of Vn as n→ ∞. Moreover, it was proved that P = PL.

It remains to prove that the support of PL is the set Sr. It is well known that the support of the
random element

∏
p∈P

(
1− ω(p)χ(p)

ps

)−1

, ω ∈ Ω, (10)
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is the set S for every Dirichlet character χ. Since the space Hr(D) is separable, we have

B(Hr(D)) = B(H(D))× · · · × B(H(D))︸ ︷︷ ︸
r

(see [20]). Therefore, it suffices to consider the measure PL on the sets

A = A1 × · · · × Ar, A1, . . . , Ar ∈ B(H(D)).

Since the Haar measure mr
H is the product of the Haar measures mjH on (Ωj,B(Ωj)), j = 1, . . . , r,

we deduce that

mr
H{ω ∈ Ωr : L(s, ω, χ) ∈ A} =

r

∏
j=1

mjH{ωj ∈ Ωj : L(s, ωj, χj) ∈ Aj}.

This equality and the minimality of the support together with remark on the support of the element
(10) show that the support of PL is the set Sr.

3. Mean Square Estimates

Define

L(s, χ) = (L(s, χ1), . . . , L(s, χr)) . (11)

To pass from Ln(s+ iatτ , χ) (defined by (7)) to L(s+ iatτ , χ), certain mean square estimates for Dirichlet
L-functions are necessary. Let χ be an arbitrary character modulo q.

Lemma 7. Suppose that σ, 1/2 < σ < 1, and a ∈ R \ {0} are fixed. Then, for t ∈ R,

∫ T

2
|L(σ + it + iatτ , χ)|2 dτ � T(1 + |t|).

Proof. It is well known that, for fixed σ > 1/2,∫ T

2
|L(σ + it, χ)|2 dt�σ T.

Therefore, in view of Lemma 1, for 1/2 < σ < 1,∫ T

2
|L(σ + it + iatτ , χ)|2 dτ =

1
a

∫ T

2

1
t′τ
|L(σ + it + iatτ , χ)|2 d(atτ)

=
1
a

∫ T

2

1
t′τ

d
(∫ t+atτ

2
|L(σ + iu, χ)|2 du

)
� log T

a

∫ |t|+|a|tT

2
|L(σ + iu, χ)|2 du

�σ,a log T
(
|t|+ |a| T

log T

)
�σ,a T(1 + |t|),

which is the required estimate.

For g1, g2 ∈ H(D), define

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
, (12)
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where {Kl} ⊂ D is a sequence of compact subsets such that

D =
∞
∪

l=1
Kl ,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ D is a compact set, then K ⊂ Kl for some l ∈ N. Then ρ is a metric
in the space H(D) inducing the topology of uniform convergence on compacta. Now, putting, for
g

1
= (g11, . . . , g1r), g

2
= (g21, . . . , g2r) ∈ Hr(D),

ρ(g
1
, g

2
) = max

1≤j≤r
ρ(g1j, g2j) (13)

gives a metric in Hr(D) inducing the product topology. The next lemma provides a certain
approximation of L(s, χ) (see definition (11)) by Ln(s, χ).

Lemma 8. Suppose that a 6= (0, . . . , 0). Then

lim
n→∞

lim sup
T→∞

1
T − 2

∫ T

2
ρ
(

L(s + iatτ , χ), Ln(s + iatτ , χ)
)

dτ = 0.

Proof. From the definition (13) of the metric ρ, it follows that it suffices to prove that, for a 6= 0,

lim
n→∞

lim sup
T→∞

1
T − 2

∫ T

2
ρ
(

L(s + iatτ , χj), Ln(s + iatτ , χ)
)

dτ = 0 (14)

for every j = 1, . . . , r. We will prove the above equality for the character χ modulo q.
Let θ be from the definition (6) of vn(m), and

ln(s) =
s
θ

Γ
( s

θ

)
ns. (15)

Then the representation

Ln(s, χ) =
1

2πi

∫ θ+i∞

θ−i∞
L(s + z, χ)ln(z)

dz
z

,

is true. Its proof is the same as in Section 5.4 of [21] for the Riemann zeta-function. Hence, taking
θ1 > 0, by the residue theorem, we obtain

Ln(s, χ)− L(s, χ) =
1

2πi

∫ −θ1+i∞

−θ1−i∞
L(s + z, χ)ln(z)

dz
z

+ Rn(s, χ), (16)

where

Rn(s, χ) =

 0 if χ is a non-principal character,

∏
p|q

(
1− 1

p

)
ln(1−s)

1−s otherwise.

Let K ⊂ D be an arbitrary compact set. Denote by s = σ + iv the points of K, and suppose that
1/2 + 2ε ≤ σ ≤ 1− ε with fixed ε > 0 for s ∈ K. More precisely, we select θ1 = σ− ε− 1/2 ≥ ε > 0.
Then, in view of (16),

|Ln(s + iatτ , χ)− L(s + iatτ , χ)|

�
∫ ∞

−∞
|L(s + iatτ − θ1 + it, χ)| |ln(−θ1 + it)|

| − θ1 + it| dt + |Rn(s + iatτ , χ)|.
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Now, taking t in place of t + v, we get that, for s ∈ K,

|Ln(s + iatτ , χ)− L(s + iatτ , χ)|

�
∫ ∞

−∞
|L(1/2 + ε + i(t + atτ), χ)| |ln(1/2 + ε− s + it)|

|1/2 + ε− s + it| dt

+ |Rn(s + iatτ , χ)|.

This implies the estimate

1
T − 2

∫ T

2
sup
s∈K
|L(s + iatτ , χ)− Ln(s + iatτ , χ)|dτ (17)

� 1
T − 2

∫ T

2

∫ ∞

−∞
|L(1/2 + ε + i(t + atτ), χ)| sup

s∈K

|ln(1/2 + ε− s + it)|
|1/2 + ε− s + it| dt dτ

+
1

T − 2

∫ T

2
sup
s∈K
|Rn(s + iatτ , χ)|dτ

� J1 + J2,

where

J1 =
∫ ∞

−∞

1
T − 2

∫ T

2
(|L(1/2 + ε + i(t + atτ), χ)|dτ) sup

s∈K

|ln(1/2 + ε− s + it)|
|1/2 + ε− s + it| dt

and

J2 =
1

T − 2

∫ T

2
sup
s∈K
|Rn(s + iatτ , χ)|dτ. (18)

It is well known that uniformly in σ, σ1 ≤ σ ≤ σ2, with arbitrary σ1 < σ2,

Γ(σ + it)� exp{−c|t|}, c > 0.

Therefore, by the definition (15) of the function ln(s), we find that, for s ∈ K,∣∣∣∣ ln(1/2 + ε− s + it)
1/2 + ε− s + it

∣∣∣∣ = n1/2+ε−σ

θ

∣∣∣∣Γ(1/2 + ε− σ

θ
+

i(t− v)
θ

)∣∣∣∣
�θ,K n−ε exp

{
− c1

θ
|t|
}

, c1 > 0.
(19)

In the same way, for s ∈ K, we obtain

Rn(s + iatτ , χ)�θ,q,K n1−σ exp
{
− c2

θ
|a|tτ

}
. (20)

Suppose that θ = 1/2 + ε. Then (17), (19) and Lemma 7 lead to the bound

J1 �ε,K n−ε
∫ ∞

−∞
(1 + |t|) exp{−c3|t|}dt�ε,K,a n−ε, c3 > 0. (21)

Moreover, by (18), Lemma 1 and (20),
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J2 �ε,K,q n1/2−2ε 1
T − 2

∫ T

2
exp

{
−c4|a|

τ

log τ

}
dτ

�ε,K,q n1/2−2ε log T
T − 2

+
n1/2−2ε

T − 2

∫ T

log T
exp

{
−c4|a|

τ

log τ

}
dτ

�ε,K,q,a n1/2−2ε log T
T − 2

.

Thus, in view of (17) and (21),

1
T − 2

∫ T

2
sup
s∈K
|L(s + iatτ , χ)− Ln(s + iatτ , χ)|dτ �ε,K,q,a n−ε + n1/2−2ε log T

T − 2
.

From this, it follows that

lim
n→∞

lim sup
T→∞

1
T − 2

∫ T

2
sup
s∈K
|L(s + iatτ , χ)− Ln(s + iatτ , χ)|dτ = 0. (22)

Now, the definition (12) of the metric ρ implies (14), which completes the proof of Lemma 8.

4. A Limit Theorem

For A ∈ B(Hr(D)), define

PT(A) =
1

T − 2
meas

{
τ ∈ [2, T] : L(s + iatτ , χ) ∈ A

}
. (23)

In this section, we will prove the following statement.

Theorem 4. Suppose that a1, . . . , ar are non-zero real algebraic numbers linearly independent over Q,
and χ1, . . . , χr are arbitrary Dirichlet characters. Then PT converges weakly to PL as T → ∞. The support of
PL is the set Sr.

First we recall a useful property of convergence in distribution ( D−→) (see Theorem 4.2 in Reference [20]).

Lemma 9. Suppose that the space (X, d) is separable, the random elements Xkn and Yn, k ∈ N, n ∈ N,
are defined on the same probability space with measure µ,

Xkn
D−−−→

n→∞
Xk,

for every k ∈ N,

Xk
D−−−→

k→∞
X,

and, for every ε > 0,
lim
k→∞

lim sup
n→∞

µ {d(Xkn, Yn) ≥ ε} = 0.

Then Yn
D−−−→

n→∞
X.

In the theory of weak convergence of probability measures, the notions of relative compactness
and tightness of families of probability measures are very useful. We recall that the family {P} of
probability measures on (X,B(X)) is called relatively compact if every sequence {Pn} ⊂ {P} contains
a weakly convergent subsequence to a certain measure on (X,B(X)), and this family is called tight,
if for every ε > 0, there exists a compact set K = K(ε) ⊂ X such that

P(K) > 1− ε
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for all P ∈ {P}. By the direct Prokhorov theorem (see Theorem 5.1 in Billingsley [20]), every tight
family {P} is relatively compact. We apply the above remarks to the sequence {Vn : n ∈ N}, where Vn

(defined by (8)) is the limit measure in Lemma 5.

Lemma 10. The sequence {Vn} is relatively compact.

Proof. By the above mentioned Prokhorov theorem, it suffices to prove that the sequence {Vn} is tight.
Suppose θT is a random variable defined on a certain probability space with measure µ and

uniformly distributed on [2, T]. Define the Hr(D)-valued random element

XT,n = XT,n(s) = (XT,n,1(s), . . . , XT,n,r(s)) = Ln(s + iatθT , χ).

Moreover, let

Xn = Xn(s) = (Xn1(s), . . . , Xnr(s)) (24)

be the Hr(D)-valued random element with the distribution Vn. Then Lemma 5 implies the relation

XT,n
D−−−→

T→∞
Xn. (25)

By Lemma 7 with t = 0, we have, for 1/2 < σ < 1,

∫ T

2
|L(σ + iajtτ , χj)|2 dτ �σ,aj T, j = 1, . . . , r. (26)

Let Kl be a compact set from the definition of the metric ρ. Then (26) together with the Cauchy integral
formula show that ∫ T

2
sup
s∈Kl

|L(s + iajtτ , χj)|dτ �l,aj
T, j = 1, . . . , r.

This combined with (22) implies the inequality

sup
n∈N

lim sup
T→∞

1
T − 2

∫ T

2
sup
s∈Kl

|Ln(s + iajtτ , χj)|dτ � Rl j, j = 1, . . . , r. (27)

Fix ε > 0, and define Ml j = Ml j(s) = 2lrRl jε
−1. Then, in view of (27), we find that, for each

n ∈ N,

lim sup
T→∞

µ

{
∃j : sup

s∈Kl

|XT,n,j(s)| > Ml j

}

≤
r

∑
j=1

lim sup
T→∞

µ

{
sup
s∈Kl

|XT,n,j(s)| > Ml j

}

≤
r

∑
j=1

lim sup
T→∞

1
(T − 2)Ml j

∫ T

2
sup
s∈Kl

|Ln(s + iajtτ , χj)|dτ ≤
r

∑
j=1

Rl j

Ml j
=

ε

2r .

This together with (25) shows that, for all l, n ∈ N,

µ

{
∃j : sup

s∈Kl

|Xn,j(s)| > Ml j

}
≤ ε

2l . (28)
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Define the set

Kj = Kj(s) =

{
g ∈ H(D) : sup

s∈Kl

|g(s)| ≤ Ml j, l ∈ N
}

.

Then Kj is a compact set in H(D), and, in virtue of (24) and (28),

µ{Xn ∈ K} ≥ 1− ε

for all n ∈ N. In other words, we have
Vn(K) ≥ 1− ε

for all n ∈ N. Thus, the sequence {Vn : n ∈ N} is tight.

Proof of Theorem 4. By Lemma 10, there exists a subsequence {Vnk} of the sequence {Vn} that is
weakly convergent to a certain probability measure P on (Hr(D),B(Hr(D))) as k→ ∞. This can be
written as

Xnk

D−−−→
k→∞

P. (29)

Define one more Hr(D)-valued random element

XT = XT(s) = L(s + iatθT , χ).

Then Lemma 8 implies that, for every ε > 0,

lim
n→∞

lim sup
T→∞

µ
{

ρ(XT , XT,n) ≥ ε
}

≤ lim
n→∞

lim sup
T→∞

1
(T − 2)ε

∫ T

2
ρ
(

L(s + iatτ , χ), Ln(s + iatτ , χ)
)

dτ = 0.

The latter equality together with (25), (29), and Lemma 9 shows that

XT
D−−−→

T→∞
P, (30)

or, in other words, PT converges weakly to P as T → ∞. Moreover, by the relation (30), the measure P
is independent of the subsequence {Vnk}. Thus, we deduce that

Xn
D−−−→

n→∞
P,

or Vn converges weakly to P as n→ ∞. Therefore, the theorem follows by Lemma 6.

5. Proof of Universality

The proof of Theorem 3 is based on Mergelyan’s theorem on the approximation of analytic
functions by polynomials [22], Theorem 4, and the properties of weak convergence. For convenience,
we state them as lemmas.

Lemma 11 (Mergelyan theorem). Suppose that K ⊂ C is a compact set with connected complement, and f (s)
be a continuous function on K and analytic in the interior of K. Then, for every ε > 0, there exists a polynomial
p(s) such that

sup
s∈K
| f (s)− p(s)| < ε.

We recall that A ∈ B(X) is called a continuity set of the measure P on (X,B(X)) if P(∂A) = 0,
where ∂A is a boundary of A.
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Lemma 12. Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Then the following statements
are equivalent:

1◦ Pn converges weakly to P as n→ ∞;
2◦ For every open set G ⊂ X,

lim inf
n→∞

Pn(G) ≥ P(G);

3◦ For every continuity set A of P,
lim

n→∞
Pn(A) = P(A).

The above lemma is a part of Theorem 2.1 from Reference [20]. Now, we can give the proof of
Theorem 3.

Proof of Theorem 3. First part. In view of Lemma 11, there exist polynomials p1(s), . . . , pr(s) such that

sup
1≤j≤r

sup
s∈Kj

∣∣∣ f j(s)− epj(s)
∣∣∣ < ε

2
. (31)

The set

Gr
ε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

1≤j≤r
sup
s∈Kj

∣∣∣gj(s)− epj(s)
∣∣∣ < ε

2

}
(32)

is an open neighbourhood of the element
(

ep1(s), . . . , epr(s)
)
∈ Sr. Thus, by Theorem 4, PL(Gr

ε) > 0,
where the distribution PL is defined by (9). Hence, from Theorem 4 again and Lemma 12,

lim inf
T→∞

PT(Gr
ε)≥PL(Gr

ε) > 0,

and the definitions (23) and (32) of PT and Gr
ε together with (31) prove the first part of the theorem.

Second part. Introduce one more set

Aε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

1≤j≤r
sup
s∈Kj

∣∣gj(s)− f j(s)
∣∣ < ε

}
. (33)

Then the boundary of Aε lies in the set{
(g1, . . . , gr) ∈ Hr(D) : sup

1≤j≤r
sup
s∈Kj

∣∣gj(s)− f j(s)
∣∣ = ε

}
,

thus, ∂Aε1 ∩ ∂Aε2 = ∅ for different ε1 > 0 and ε2 > 0. This shows that the set Aε is a continuity set of
the measure PL for all but at most countably many ε > 0. Therefore, by Lemma 12,

lim
T→∞

PT(Aε) = PL(Aε) (34)

for all but at most countably many ε > 0. Moreover, (31) shows the inclusion Gr
ε ⊂ Aε. This, (34) and

the definitions (23) and (33) of PT and Aε prove the second assertion of the theorem.
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