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We study knockout reactions with proton probes within a theoretical framework where ab initio Quantum 
Monte Carlo (QMC) wave functions are combined with the Faddeev/Alt-Grassberger-Sandhas few-body 
reaction formalism. QMC wave functions are used to describe 12C, yielding, for the first time, results 
consistent with the experimental root mean square (rms) point proton radii, (p,2p) total cross section 
data, as well as momentum distributions compatible with electron scattering data analysis. In our results 
for A ≤ 12 and (N − Z) ≤ 3 nuclei the ratios between the (i) theoretical cross sections evaluated using 
QMC and simple Shell Model structure inputs, and (ii) the corresponding ratios between the spectroscopic 
factors, summed over states below particle emission, are smaller than unity, pointing to the shortcomings 
of the simple Shell Model. This quenching is more significant for the knockout of the more correlated 
nucleon of the deficient species. These ratios can be represented reasonably well by a linear combination 
of the separation energy and the difference between the removed nucleon rms radius in the parent and 
residual nuclei, showing a mild dependence on these physical quantities.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The mean field approach to particle systems has played an im-
portant role in atomic physics for describing the periodic table of 
elements and in nuclear physics for explaining many properties of 
nuclei, such as the origin of the magic numbers leading to addi-
tional stability.

Nevertheless, one of the goals of Nuclear Physics is to describe 
simultaneously, and along the nuclear landscape, nuclear binding, 
structure, electromagnetic and weak transitions, as well as reac-
tions with electroweak and nuclear probes based on a microscopic 
description of the interaction between individual nucleons.

A formidable theoretical effort has been performed in devel-
oping many-body and cluster approaches to describe nuclei and 
their application to the study of reactions [1–7]. Strong deviations 
between these models and simple Shell Model (SM) approaches 
[9], albeit more sophisticated than the initial mean field mod-
els, indicate the presence of non-trivial many-body effects, being 
interpreted as due to nuclear correlations. Many-body ab initio
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calculations of nuclear structure have demonstrated the need to 
go beyond the simple SM and to consider models with realis-
tic nucleon-nucleon (NN) and three-nucleon (NNN) interactions. 
Moreover, explicit NN and NNN correlations have to be built in 
the wave functions [1,2], which are entirely absent in the simple 
SM [8,10].

In parallel, for more than 30 years an extensive experimental 
program, in particular, nucleon knockout reactions with electron 
and nuclear probes, has been devoted to the study of the short-
comings of the simple SM [11–23]. The interpretation of these 
reactions has been relying on a standard knockout ansatz based on 
the assumptions that the knockout/breakup operator does not act 
on the internal structure of the residual nucleus, making the spec-
troscopic overlap between the parent and residual nuclei the key 
nuclear structure input. As a consequence, the cross section can 
be factorized into the single-particle cross section, defined below, 
and the corresponding spectroscopic factor (SF) calculated from the 
squared norm of the overlap function. For (p,pN), this ansatz is 
supported by the recent work of Ref. [33] where inelastic core exci-
tations give only a small contribution, and by the work of Ref. [34]
where an agreement was found between theoretical calculations 
and experimental results in the case of selected observables such 
as angular correlations and momentum distributions.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The analysis of earlier (e,e’p) knockout experiments has been 
used to provide information on the one-nucleon spectroscopic 
overlaps at low momentum and for low-lying energy states of the 
residual nucleus. The experimentally extracted SFs were found to 
be reduced with respect to simple SM ones [11,12].

The nucleon knockout for composite projectiles and target nu-
clei (called one-nucleon removal in the literature) has been also 
analyzed extensively [17,18, references therein]. The ratio between 
the inclusive experimental and the SM theoretical cross sections, 
R S , has been found to be below one and to have a strong de-
pendence on the asymmetry parameter �S , a measure of the 
asymmetry of the neutron and proton binding. This has been in-
terpreted as additional correlations in strongly asymmetric (N-Z) 
systems.

Concurrently, (p,pN) reactions on Oxygen, Carbon and Nitrogen 
isotopes with −2 ≤ (N − Z) ≤ 7 [19,20,25], and transfer studies of 
(d,t) and (d,3He) on 14,16,18O [23] and of (p,d) on 34,46Ar [22] have 
revealed a nearly constant R S as a function of �S .

Theoretical calculations of one-nucleon spectroscopic overlaps 
for asymmetric parent nuclei, 14,16,22,24,28O showed that SFs cal-
culated with a microscopic coupled cluster model are quenched 
relatively to the simple SM ones, the quenching being particu-
larly important for the nucleon knockout of the deficient species 
in strongly asymmetric nuclei [7]. On the other side, a weak de-
pendence of this quenching on the nucleon binding was found [3].

Conflicting results did follow from this vast theoretical and 
experimental work. The variety of models, methods and energy 
regimes makes it difficult to extract a consistent explanation of 
the inadequacy of simple SMs to describe nuclear structure and to 
evaluate the importance and nature of the correlations. A consis-
tent analysis of available experimental data, for all open reaction 
channels as well as different probes, with state-of-the art theory is 
lacking and of utmost importance for the understanding of nuclear 
structure along the nuclear landscape. Furthermore, it is essen-
tial to meet the challenges of new experimental developments and 
multiphysics research [26].

In this letter our goal is to contribute to a unified theoretical 
approach built on state-of-the-art ab initio Quantum Monte Carlo 
(QMC) wave functions [1], which can be used as a common in-
put to transfer and nucleon knockout reactions with electron and 
nuclear probes. These QMC wave functions have been used to in-
terpret successfully transfer reactions [21] and (e,e’p) experimental 
data [12]. We aim to shed light on the inadequacy of a simple 
(with an inert core) SM that exhausts the Spectroscopic Factor sum 
rule in a small space to describe (p,pN) reactions and to provide an 
understanding of (i) the ratios R S , (ii) the ratios between the QMC 
and SM theoretical cross sections, Rσ , (iii) their relation with the 
corresponding ratios between the spectroscopic factors, R� , and 
(iv) their correlation with the separation energy of the knocked 
out nucleon and other features of nuclei. We also aim (v) to test, 
for the first time, the ability of QMC wave functions to describe 
(p,pN) reactions. Our analysis of (p,pN) reactions with light nuclei 
will contribute to the construction of a unified interpretation of 
nucleon knockout reactions along the nuclear landscape, including 
the (p,pN) experimental data collected at the R3B-LAND setup at 
GSI [19,20,27].

2. Formalism

In this paper, we assume the standard ansatz for the knockout 
reaction. The one-nucleon spectroscopic overlap, the key nuclear 
structure input, is defined as the inner product of the A par-
ent nucleus wave function and the fully antisymmetrized A − 1
residual nucleus plus the knockout nucleon wave function, and 
is calculated from fully correlated QMC wave functions generated 
using the NN Argonne V18 and the NNN Urbana X (AV18+UX) po-
Table 1
Summary of the acronyms.

Quantity Definition

�(M) �i Z i(M)

R Z Z i(QMC)/Z i(SM)|i=g.s.
R� �(QMC)/�(SM)

σth(M)
∑

i Z i(M)σ i
sp(M)

Rσ σth(QMC)/σth(SM)

R S σexp/σth(SM)

Rσσ Rσ [σ i
sp(WS)/σ i

sp(QMC)]|i=g.s.

tentials, with explicit charge-dependence and charge-asymmetry 
terms [2]. We consider Variational Monte Carlo (VMC) overlaps for 
p- and n-knockout from 9Li, 10Be and 12C nuclei. We use improved 
shell-model-like VMC wave functions for 12C recently employed in 
benchmark calculations of neutrinoless double beta decay [28] and 
for 11B in studies of nuclear charge radii of boron isotopes [29]. 
For 10Be we have new shell-model-like VMC wave functions with 
additional spatial symmetry states beyond those used in studies of 
B(E2) transitions in A = 10 nuclei [30,41]. Preliminary results with 
the Norfolk local chiral potential NV2+3-Ia* [42,43] show 5% vari-
ations in the SFs with respect to AV18+UX. The Green’s Function 
Monte Carlo (GFMC) SFs for the 7Li parent and residual 6Li over-
laps agree fairly well with the VMC ones, validating the use of VMC 
overlaps. We take the VMC and GFMC overlaps for the 7Li parent 
nucleus from Ref. [24], which are able to describe the (e,e’p) reac-
tion [12]. All QMC SFs are translationally invariant. Additionally, we 
have performed a convenient parameterization of the QMC over-
laps using the procedure described in Ref. [24], which incorporates 
the adequate asymptotic behavior.

We also take SFs from the simple SM of Cohen and Kurath (CK) 
[46], where only the (A-1)+N configuration is present in the parent 
nucleus state space, and all the valence nucleons are in p-shells 
in both parent and residual nuclei. In this model SFs are obtained 
from wave functions generated by diagonalizing the Hamiltonian 
in the nucleons valence space with effective two-body interactions, 
and require the well-known center of mass (c.m.) correction, given 
by A/(A − 1) [47].

The theoretical SFs for each structure model, M, (QMC and 
simple SM) are denoted here as Z i(M), where i identifies the 
energy and the angular momentum of the residual nucleus, as 
well as the nucleon angular momentum channels, with the sum 
�(M) = �i Z i(M).

The one-nucleon overlaps normalized to unity are then used 
as initial-channel wave functions in the Faddeev/Alt-Grassberger-
Sandhas (F/AGS) three-body reaction formalism [31,32] that pro-
vides single-particle cross sections σ i

sp(M). The theoretical in-
clusive cross section σth(M) is obtained as the weighted sum 
σth(M) = ∑

i Z i(M)σ i
sp(M). These and other acronyms used in 

this manuscript are summarized in Table 1.
The F/AGS formalism allows a consistent and simultaneous 

treatment of all open channels, providing an exact solution of the 
three-body scattering problem for an assumed three-body Hamil-
tonian. This formalism includes all multiple scattering terms, con-
trary to other scattering frameworks that rely on assumed exact 
cancellations between multiple scattering terms [34]. It has been 
used recently in several exploratory studies of (p,pN) reactions 
[20,34–36] and it is able to model the experimental transverse mo-
mentum distributions [20,34].

We use the F/AGS in a non relativistic form since consistent 
treatment of relativistic kinematics and dynamics in Refs. [37,38]
indicates only a small total relativistic effect for the total three-
body breakup cross section, less than 10% in our energy regime of 
interest. However, separate relativistic effects may be quite sizable 
[37,38].
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Fig. 1. VMC overlaps in momentum space N(k) calculated for the low-lying states of 
11B. Also shown in black is the difference of 12C and 11B proton momentum distri-
butions multiplied by 4 (the total number of protons in a p-shell in the Independent 
Particle Model).

The reaction formalism requires three pair interactions. We take 
the realistic NN AV18 potential for the proton-nucleon pair. For the 
interaction between nucleons and the residual nucleus we consider 
the Koning-Delaroche (KD) optical potential parameterization [39]
used in preliminary calculations [36] and the Cooper potential [40]
for 12C, a global parameterization developed for medium-heavy 
nuclei and in particular for A = 12, that reproduce the elastic scat-
tering data. From comparison with other parameterizations pro-
vided in [34] we estimate the uncertainty of the cross sections 
associated with optical parameterizations to be about 15%.

3. Results

We start by evaluating the one-nucleon spectroscopic overlaps 
for the parent nucleus 12C, for which there are experimental (p,2p) 
data at 400 MeV/u [27]. The overlaps in momentum space are rep-
resented in Fig. 1, along with the difference between the VMC 12C
and 11B proton momentum distributions. This difference exhibits a 
significant high-momentum tail, where about 15% of the protons 
have momenta above 1.4 fm−1, unaccountable in any simple SM. 
The result for 12C, shown here for the first time, is consistent with 
high-momentum electron scattering analysis [13], supporting the 
VMC wave function from which both momentum distributions and 
spectroscopic overlaps are generated and, therefore, corroborating 
our nuclear structure model. Interesting to say that the dominant 
source of this high momentum tail is the NN tensor force, com-
ing from the one-pion-exchange potential, with a further signifi-
cant contribution from the NNN force with its two-pion-exchange 
terms.

Using the Cooper potential we have obtained the total theoreti-
cal cross section σth(QMC) = 21.617 mb with a ratio to the experi-
mental value [27] of σexp/σth(QMC) = 0.888(10). The experimental 
SFs, Z i

exp, are calculated dividing the (p,2p) experimental cross sec-

tions of Ref. [27] by σ i
sp(QMC). These SFs, together with those 

extracted from (p,2p) analysis of Ref. [27], electron scattering and 
transfer reactions [15], and their corresponding sums, are collected 
in Table 2. Our extracted spectroscopic factors differ by about 10%
from those obtained by the Distorted Wave Impulse Approxima-
tion (DWIA) analysis of Ref. [27], which might be attributed to 
expected sensitivities of the single particle cross sections to the 
optical potential parametrizations, and in addition to possible re-
action formalism effects.

Also shown in Table 2 are the theoretical VMC and SM (before 
the A/(A − 1) c.m. correction) SFs and their sums, �(M).
Table 2
SFs for different low lying final states of 11B.

Analysis SF(3/2−) SF(1/2−) SF(3/2−
2 ) �

QMC 2.357(12) 0.868(4) 0.108(1) 3.33(2)

SM [46] 2.85 0.75 0.38 3.98
(p,2p) 2.43(28) 0.29(03) 0.24(03) 2.96(28)

(e,e’p) transfer [15] 1.72(11) 0.26(2) 0.20(2) 2.18(15)[1.00]
(p,2p) [27] 2.11(24)[0.82] 0.26(3)[0.10] 0.21(3)[0.08] 2.58(30)[1.00]

It is found that the VMC spectroscopic strength appears to be 
distributed among the low lying states differently than the de-
duced experimental values, the sum of the SFs for the two 3/2−
states being relatively close to the experimental value and the 1/2−
state about three times larger than the available experimental val-
ues, a feature also common to the SF prediction of Cohen and 
Kurath [46]. The first excited 1/2− state has a high excited state 
companion sitting at more than 10 MeV and this split should not 
account for the large theoretical SF. It remains unclear from the 
structure point of view, why theoretical and experimental SFs for 
the 1/2− excited state differ significantly.

We also note that the sum of the SFs taken from CK is very 
close to the sum of particles in the shell (before c.m. correction), 
the well known sum rule. This results from the truncation of the 
nuclear state space, which assigns to one the probability of finding 
all valence nucleons in p-shells in parent and residual nuclei and 
the (A − 1) + N configuration in the parent nucleus. As a conse-
quence, the sum of the CK SFs exhausts the sum rule. In contrast, 
the QMC overlaps are calculated from fully microscopic correlated 
wave functions for parent and residual nuclei, both normalized to 
one. This means that the states corresponding to the valence p-
shell nucleons and to the (A − 1) + N partitions do not span the 
parent nucleus space. Accordingly, the sum rule, which should be 
obeyed by any good many-body theory, is not exhausted by the 
QMC SFs within the p-shell, but has significant contributions from 
a broader interval of states, including states in the continuum. This 
is partially reflected in the high-momentum tail of the proton dis-
tribution difference shown in Fig. 1.

In Table 3, for the ground-state parent and residual nuclei we 
compare experimental values of the point proton rms radii (rp ) 
[44,45] with the ones obtained from the QMC wave functions. For 
all the studied nuclei, including 12C, we find quite a good agree-
ment, validating the QMC approach. In addition, we present point 
neutron rn and matter rm = [(Zr2

p + Nr2
n)/A]1/2 radii, difference be-

tween the removed nucleon rms radius in the parent and residual 
nuclei, �rN = rN (A) − rN (A − 1), in the corresponding (p,pN) re-
action, and the SF ratio R Z = Z i(QMC)/Z i(SM) with i being the 
ground state here.

The theoretical VMC and SM sums �(M) and their ratios R�

(including c.m. correction) for all the studied nuclei are collected 
in Table 4. The ratios R� range from 0.6 to 0.8 being consistent 
with Ref. [8]. This reduction is due to the fact that the simple 
SM SFs before the c.m. correction exhaust the sum rule, as dis-
cussed above, meaning that they are necessarily larger than the 
QMC ones, with an additional SM enhancement due to the c.m. 
correction A/(A − 1). This conclusion is independent of the in-
teraction models. Also listed in the same Table are the results of 
partial sums over the final states of the residual nucleus below its 
breakup threshold, indicated as BPT (below particle threshold). The 
ratios of partial SF sums, shown also in the upper panel of Fig. 2, 
differ significantly from those of total SF sums, ranging from 0.5 
to 1, which follows naturally from the fact that the spectroscopic 
strength is distributed among the states differently in the VMC and 
SM formalisms. The R� BPT exhibit a moderate dependence on SN, 
for the considered small asymmetry (N − Z) ≤ 3. Nevertheless, the 
ratio R� is always smaller for the knockout of the more correlated 
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Table 3
Radii, nucleon separation energies and QMC/SM SF ratios for the ground states of the parent AX and residual nucleus A−1Y.

AX A−1Y Jπ S N

(MeV) 
exp

rp

(fm) 
QMC

rn

(fm) 
QMC

rm

(fm) 
QMC

rp

(fm) 
exp

�rN

(fm) 
QMC

R Z

SF 
g.s.

7Li 3/2− 2.26 2.41 2.35 2.31(5)
6Li 1+ 7.25 2.46 2.46 2.46 2.45(4) −0.05 0.81
6He 0+ 9.97 1.94 2.82 2.53 1.92(1) 0.32 0.56

9Li 3/2− 2.07 2.45 2.33 2.11(5)
8Li 2+ 4.06 2.13 2.44 2.33 2.20(5) 0.01 0.96
8He 0+ 13.94 1.83 2.79 2.58 1.84(2) 0.24 0.67

10Be 0+ 2.28 2.46 2.39 2.22(3)
9Be 3/2− 6.81 2.36 2.46 2.42 2.36(1) 0.00 0.84
9Li 3/2− 19.64 2.07 2.45 2.33 2.11(5) 0.21 0.58

12C 0+ 2.37 2.37 2.37 2.32(1)
11C 3/2− 18.72 2.41 2.35 2.38 – 0.02 0.76
11B 3/2− 15.96 2.35 2.41 2.38 2.28(13) 0.02 0.76
Table 4
Total and BPT sums of SFs, �, and ratios R� . The SM� includes c.m. correction 
factors.

AX A−1Y �(M) R�

QMC/SM�
SM QMC

7Li 6Li BPT 1.016 0.874(3) 0.737(2)

1.999 1.606(10) 0.689(4)
6He BPT 0.592 0.389(1) 0.563(1)

0.997 0.733(3) 0.630(2)

9Li 8Li BPT 1.313 1.428(4) 0.967(3)

3.859 3.597(14) 0.829(3)
8He BPT 0.847 0.635(2) 0.666(2)

1.000 0.785(3) 0.698(3)

10Be 9Be BPT 2.356 2.214(9) 0.846(3)

3.990 3.608(15) 0.814(3)
9Li BPT 1.990 1.595(6) 0.721(3)

1.990 1.680(6) 0.760(3)

12C 11C BPT 3.980 3.326(17) 0.766(16)

3.980 3.326(17) 0.766(16)
11B BPT 3.980 3.333(17) 0.768(16)

3.980 3.333(17) 0.768(16)

Fig. 2. Theoretical ratios (QMC/SM) of SF sums (upper panel) and (p,pN) cross sec-
tions (lower panel) restricted to final states below particle threshold (BPT) of the 
residual nucleus and quenching factors, R S (asterisk), as functions of the nucleon 
separation energy.

deficient species nucleon, the proton in these cases, in accordance 
with previous findings [7,17].

On the other hand, the overlaps and consequently the SFs, as 
well as their VMC/SM ratios, are expected to be determined not 
solely by the separation energy SN of the knockout nucleon but by 
its interplay with other features of nuclei. We consider the differ-
Fig. 3. QMC/SM ground state SF ratio R Z and the renormalized BPT total cross sec-
tion ratio Rσσ versus linear combination aSN + b|�rN | + c as described in the text.

ence between the removed nucleon rms radius in the parent and 
the residual nuclei, �rN . This interplay between SN and �rN stems 
from the fact that the radii difference indicates the actual overlaps 
of the nuclei wave functions, and the separation energy determines 
the fall of the overlap tail. The VMC and SM predict slightly differ-
ent SN , for comparison they are mapped to the experimental value, 
and �rN predictions are taken from VMC. We use a simple linear 
combination of SN and �rN to simulate the SFs ratios leaving the 
residual nucleus in ground state as R Z ≈ aSN + b|�rN | + c. The 
parameters a, b, and c are determined from the fit using 8 data 
sets from Table 3 leading to a = (−0.00999 ± 0.00276) MeV−1, 
b = (−0.804 ± 0.127) fm−1, and c = (0.950 ± 0.036), with the un-
certainties of 28%, 16%, and 4%, respectively. R Z represented by 
this linear combination is shown as full symbols in Fig. 3. An ideal 
representation would correspond to the line of slope one, but the 
real data points are quite close to that line, exhibiting much more 
clear linear trend as compared to Fig. 2. This suggests a reasonable 
linear representation of the ratios R Z and, therefore, at least for a 
limited set of studied nuclei, a mild dependence on SN and |�rN |, 
with small contribution of higher-order nonlinear terms.

In the limit of the knockout of a loosely bound, less correlated 
nucleon species, the separation energy is smaller and parent and 
residual nuclei have similar nucleon (removed species) radii, and 
thus small �rN. The dominant contribution to the SF comes from 
the tail of the overlap function, which is expected to be similar in 
the two models, leading to a ratio approaching one. In the linear 
representation this fact is reflected by the smallness of the first 
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Table 5
Single particle cross sections (in units of mb). The KD potential [39] is used for 7Li, 
9Li, and 10Be, the Cooper potential [40] for 12C.

AX A−1Y Jπ σsp(WS) σsp(QMC)
7Li 6Li 1+ 16.51 18.77

0+ 15.49 18.01
6He 0+ 11.66 13.36

9Li 8Li 2+ 16.72 16.81
1+ 16.21 16.46

8He 0+ 10.18 10.99

10Be 9Be 3/2− 14.96 16.12
9Li 3/2− 9.01 10.20

1/2− 8.80 10.45

12C 11C 3/2− 7.80 8.92
1/2− 7.54 8.62
3/2−

2 7.15 8.18
11B 3/2− 6.26 6.51

1/2− 5.95 6.46
3/2−

2 5.61 6.38

two terms, leaving c = 0.950 as the prevalent one, as shown in 
Fig. 3.

For the knockout of a deep, more correlated nucleon species, 
both the separation energy and �rN are larger, and the inner part 
of the overlap function has a greater impact due to the rapid fall 
of the functions. One expects the two models to differ in the in-
ner overlap parts, sensitive to nuclear correlations, in particular, to 
short range ones. In the linear representation, the two first terms 
become competitive with the c term, leading to ratios smaller than 
one, as shown in Fig. 3.

We study now Rσ = σth(QMC)/σth(SM). Observed weak sensi-
tivity of the single particle cross section to the overlap functions 
justifies a simpler way to generate the initial bound-state wave 
functions for SM: in the given nucleon-core partial wave we take 
the Woods-Saxon potential with standard radius and depth ad-
justed to the separation energy of the removed nucleon; no an-
tisymmetrization is considered. The corresponding single particle 
cross sections σ i

sp(M) calculated using one-nucleon overlap func-
tions obtained from Woods-Saxon potentials and QMC wave func-
tions, are collected in Table 5. Their ratios vary between 1.0 and 
1.15 for ground state residual nuclei but may reach 1.19 for ex-
cited states. The small departure from 1.0 arises because the one-
nucleon spectroscopic factors normalized to unit included in the 
evaluation of the single particle cross sections explore transfer mo-
mentum larger than zero, and the sp cross section explores regions 
slightly beyond zero transfer momentum. This indicates that the 
microscopic treatment of the overlaps for SFs has its biggest effect 
on the SFs, single particle cross sections being affected less. Addi-
tionally, we expect the ratios Rσ to be nearly independent of the 
choice of the optical potential parameterization. For the case of 12C 
we verified the potential independence of these ratios since sim-
ilar results are obtained with different parameterizations [40,39]. 
As a result of our ansatz, and since we are considering low-lying 
states of the residual nucleus and we found only weak dependence 
of σ i

sp(M) on SN [35], we also expect Rσ BPT to be quite close 
to the corresponding R� . This is confirmed when comparing the 
lower and upper panels of Fig. 2. The ratios Rσ BPT, range from 
0.6 to 1, slightly enhanced due to σ i

sp(Q MC) > σ i
sp(W S), and ex-

hibit a similar moderate dependence on SN as R� , the quenching 
being more significant for the knockout of the nucleon of the de-
ficient species. These results are compatible with the behavior of 
the ratio R S as a function of SN found in Refs. [19,20] opening a 
path for an unified understanding of both light and medium light 
nuclei.

By the same token, the ratios R� and Rσ BPT are also expected 
to be determined by a similar interplay between �rN and SN for 
the case where transitions to the ground state are dominant. To 
have insight on this we also represent in Fig. 3 as open symbols 
the BPT ratio Rσσ = Rσ [σ i

sp(W S)/σ i
sp(Q MC)] where i denotes the 

ground state; the factor [σ i
sp(W S)/σ i

sp(Q MC)] removes the en-
hancement of the QMC cross sections due to its slightly larger sp 
cross sections when compared to the WS ones, therefore evincing 
the effect of the SFs. In three of the eight cases considered only 
one state contributes to Rσσ , making it identical to R Z . Therefore, 
the points coincide. The deviation between the open and corre-
sponding full symbols results when contributions of excited states 
show a different trend in QMC and SM as compared to the ground 
state. Examples are 9Li+p or 6Li+n. The linear representation as a 
function of both �rN and SN , albeit with larger deviations than for 
R Z , is an indication that the reaction mechanism does not probe 
exclusively the tail of the overlaps between the parent and resid-
ual nucleus. In addition, by the same physical arguments drawn 
for the SFs, we expect the quenching factors R S to be smaller than 
unity, independently of the interaction models.

An analysis of nucleon removal has been performed using a for-
malism that considers the factorization of the cross section into SFs 
and sp cross sections [16,18]. However, in transfer reactions and in 
nucleon knockout reactions where both projectile and target are 
composite nuclei, the reaction mechanisms are substantially differ-
ent from those of (p,pN) reactions, preventing the conclusion that 
the factorization is a reasonable approximation. We have reana-
lyzed the results of this analysis by taking their sp removal cross 
sections and the QMC and CK SFs presented here. We found that 
R S are consistently smaller than Rσ , suggesting that both the fac-
torization and the clean link between the R� and Rσ , that exists 
for (p,pN) knockout reactions, are not expected to hold for the re-
moval reactions [33]. Further work on this issue is desirable.

4. Conclusion

In conclusion, in the present letter we analyze, for the first 
time, (p,pN) reactions for A ≤ 12 and (N − Z) ≤ 3 using state-
of-the art nuclear structure and three-body scattering formalisms, 
namely QMC wave functions and the F/AGS reaction theory. New 
QMC wave functions used to describe 12C and 11B nuclei yield re-
sults consistent with experimental data of proton point rms radius, 
(p,2p) total cross section at 400 MeV/u, as well as momentum dis-
tributions compatible with electron scattering data analysis.

We show the shortcomings of the SM to describe (p,pN) re-
actions due to the strong truncation of the state spaces of the 
nuclei. This leads necessarily to an overestimation of the cross sec-
tions, independently of the interaction models. Further, nontrivial 
structure effects have to be taken into account, through two- and 
three-body correlations incorporated in the wave functions, a char-
acteristic of the fully correlated QMC wave functions.

The QMC/SM ground state SF ratio is found to be reasonably 
represented by a linear combination of separation energy and dif-
ference between the removed nucleon rms radius in the parent 
and residual nuclei. The ratio between the partial sums of QMC 
and SM cross sections, Rσ , is close to the ratio of the correspond-
ing partial sums of SFs, R� . Hence, one expects the quenching 
ratios to be determined by a delicate interplay between the radii 
of the parent and the residual nuclei and the nucleon separation 
energy, similar to the ratio of SFs. Last, R� and Rσ show a mod-
erate dependence on SN and difference between the removed nu-
cleon rms radius in the parent and residual nuclei, and are smaller 
for the knockout of the more correlated nucleon of the deficient 
species.

A consistent experimental program of transfer and knockout 
(with light and heavier targets) with proton and electron probes 
for A ≤ 12 nuclei will be very useful to get further insight on the 
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shortcomings of the simplified SM picture and on the structure of 
light nuclei.
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