
138

ISSN 1648-8776
JAUNŲJŲ MOKSLININKŲ DARBAI. NR. 2 (40). 2013

Introduction
Word games are a simple and fun way to spend

time. It helps to improve a person’s vocabulary, expand
erudition, train memory and intelligence, and develop
logic and associative thinking. There exists different
types of word games which require different game logic,
and different word-finding algorithms. The optimization
of word search algorithms is required to design a fully
functioning and efficient system.

The aim of this work is to research the efficiency of
different kinds of word search algorithms, using an SQL-
based relational database. Results of this research could
provide valuable information for the design of an efficient
helping system for solving word games. String Search
Algorithms.

To find a suitable word-for-word game requires
review of dictionary, and to find one. This requires certain
resources to compare all words from the dictionary to
the word search pattern. There are different algorithms
for string matching problem. As R. Rivest [1] states,
to search for a pattern of length m in a text of length n
(where n > m) the search time is 0(n) in the worst case
(for fixed m). Moreover, in the worst case, at least n - m +
1 character must be inspected. However the complexity
of string search can vary depending on the algorithm
used.

The most known unoptimized string search
algorithm is naive or brute force algorithm. It tries to
match any substring of length m in the text with the
pattern [2], therefore n-m+1different combination of
one word must be checked to find all pattern matches.
This algorithm matches all pattern letters for all word
combinations. Meanwhile Knuth, Morris, and Pratt’s
algorithm [3] optimizes it and does not examine all
the patterns. This algorithm comparing two strings
compares it until the first unmatched letters; therefore,
the complexity of this algorithm is a little bit smaller and
the search time is more dependable on the search pattern
and comparable string.

To reduce the complexity of the search algorithm
Boyer and Moore [4] proposed to search the pattern from
right to left. If no mismatch occurs, then the pattern has
been found. Otherwise, the pattern matching is moved to
the left by an amount of letters which is calculated using
heuristic algorithm (adjusting to the difference of the
matching pattern).

The complexity research of these string search
algorithms depend on the length of the pattern was carried
out by Ricardo A. Baeza-Yates [5] (see. Fig. 1). It showed
the decrease of the Boyer and Moore algorithm, compared
to the naive and Knuth, Morris, Pratt algorithm. However
all these classic algorithms were proposed in 1977;
meanwhile, new information technologies allow different
solutions to the problem.

Word Search in SqL-Based Relational
Databases

Relational database model is an organization of
data into collections of two-dimensional tables called
“relations” [6]. This type of database management
systems at present is the most common in different kinds
of information systems [7, 8]. The popularity of relational
database management systems is increased by support of
SQL, which allowed clear syntax to get required data from
relational databases.

The Structured Query Language (SQL) is a
standardized language used to retrieve and update data
stored in relational tables (or databases) [9]. SQL has
different type of queries and parameters. However, for
string search algorithms the LIKE clause is usually used.
It has two wildcards: the percent sign (%) represents zero,
one, or multiple characters; the underscore (_) represents
a single number or character [10].

The symbols can be used in combinations to
compose a desired pattern of search string.

Fig. 1. Comparison of complexity of string search
algorithms [5]

Possible Database Designs for Word Search
Based on Letter Patterns

The most important element of word search systems
is the design of a system database: the database has to
store the word dictionary which usually stores a large
number of data; a word search system usually searches
for matching words according to a known pattern;
therefore, many connections to the database can be used.

RESEARch OF WORD SEARch ALGORIThMS BASED ON RELATIONAL DATABASE

Oleksij Volkov, Simona Ramanauskaitė
Šiauliai university, Faculty of Technology

139

TEcHNOLOGIJOS MOKSLAI INFORMATIKA

The simplest design of a word search database is
represented in Fig. 2.

dictionary word

dictionary_id
dictionary_title

dictionary_id
word

Fig. 2. Database design No. 1

This architecture is very simple and allows having
different dictionaries in the same system. Using this kind
of database design, two types of SQL queries can be used
to get matching words from the database:

•	 To select all matching words from the database
according to provided pattern PTRN: SELECT word.word
FROM word WHERE word.word LIKE ‘PTRN’.

•	 To select all matching words from a specific
dictionary DIcT in the database according to provided
pattern PTRN: SELECT word.word FROM word
WHERE word.dictionary_id = DIcT AND word.word
LIKE ‘PTRN’.

The pattern can be composed of any symbols from
the alphabet and percent sign (%) as well as underscore
(_) wildcards to represent any unimportant parts of the
word. However this architecture does not allow for a
search according to the length of the word. Therefore this
database design can be improved by adding an additional
field to the table word (see Fig. 3).

dictionary word

dictionary_id
dictionary_title

dictionary_id
word
number_of_letters

Fig. 3. Database design No. 2

This database design improvement allows for two
additional queries to specify the search:
•	 To select all matching words from the specific dicti-

onary DIcT in the database according to a provided
pattern PTRN where the length of the word is exactly
N: SELECT word.word FROM word WHERE word.
dictionary_id = DIcT AND word.word LIKE ‘PTRN’
AND word.number_of_letters = N.

•	 To select all matching words from the specific dicti-
onary DIcT in the database according to a provided
pattern PTRN where the length of the word is more
than N1 and less than N2: SELECT word.word FROM
word WHERE word.dictionary_id = DIcT AND word.
word LIKE ‘PTRN’ AND (word.number_of_letters >
N1 AND word.number_of_letters < N2).

There can be different combinations of word length
limitations; however, these two are the mostly used.

The SQL query to get all words with exact length
can also be realized with first database design. For this
purpose, thee underscore (_) wildcard should be used to
identify all unknown letters and their position in the word.

However, to specify the range of world letters would not
be possible with the first database design.

To design a system with a wide variety of string
search algorithms, a scrabble-type search has to be
supported. This type of search usually has no pattern, but
just a list of possible letters which have to be used to get
a word. To do this with the previously described database
design would be difficult: all possible combinations of
known letters have to be generated; a large number of
possible letter combinations can be generated for long set
of letters; and SQL is not capable of generating all possible
word combinations from a known set of letters, etc.

To solve this problem, a new improvement to the
database design has to be made – the database should
describe all words by splitting them into letters and
associating them to the corresponding word (see. Fig 4).

dictionary word letter
dictionary_id
dictionary_title

dictionary_id
word_id
word
number_of_letters

word_id
letter

Fig. 4. Database design No. 3

This architecture would allow for finding all words
for a scrabble-type word search:
•	 To select all matching words from a specific dictionary

DIcT in the database according to a provided set of
letters {L1, L2, …, LN} where at least M letters of the
set would be used: SELECT word.word FROM letter,
word WHERE word.word_id = letter.word_id AND
(letter.letter = ‘L1’ OR letter.letter = ‘L2’ OR … OR
letter.letter = ‘LN’) AND word.dictionary_id = DIcT
group by letter.word_id HAVING count(letter.word_
id) > M.

This database design would provide all the
functionality the system needs. However, it can be
extended to search for words by pattern using the table
letter, instead of the word. This requires adding the
position of letter in the word only (see. Fig. 5).

dictionary word letter
dictionary_id
dictionary_title

dictionary_id
word_id
word
number_of_letters

word_id
letter
position

Fig. 5. Database design No. 4

The position of a letter in a word allows us to search
by specifying which letter in the set and the letter should
be placed in the word. Therefore, the query for searching a
word of specific length can be changed to it:
•	 To select all matching words from a specific dictiona-

ry DIcT in the database according to a provided set
of letters {L1, L2, …, LN} the length of the word is
exactly M: SELECT word.word FROM letter, word
WHERE word.number_of_letters = M AND word.

140

ISSN 1648-8776
JAUNŲJŲ MOKSLININKŲ DARBAI. NR. 2 (40). 2013

word_id = letter.word_id AND ((letter.letter = ‘L1’ and
letter.position=1) OR (letter.letter = ‘L2’ AND letter.
position=2) OR … OR (letter.letter = ‘LN’ AND letter.
position=N)) AND word.dictionary_id = DIcT group
by letter.word_id HAVING count(letter.word_id) > N.

However, it is unknown if this query would be more
efficient than in the previous architecture.

Research of Relational Database-Based Word
Search Algorithms

To define the best database architecture from the
proposed ones, a research of its efficiency has to be
carried out. For this purpose four different database
architectures (described earlier in this paper) will be
created in the SQLite database management system. To
examine the efficiency of these database architectures,
experiments with different number of words in the
database have to be done. Therefore, experiments will
be executed with 10, 100, 1000 and 5000 words in the
database. According to the database architecture, all
provided SQL queries should be tested using different
patterns or sets of letters.

The purpose of the research would be to evaluate the
query execution time to obtain a suggested list of words
according to the chosen database architecture and the
number of words in the database and search pattern or set
of letters.

Testing will be done with words from the English
dictionary. With each design of the database two types
of requests (complex and simple) will be performed; the
average query time will be compared with other designs
of databases.

Research of Database Design No. 1
To test the performance of the first database design,

4 SQL queries were used to get all the words which start
with letter ‘a’ and differ in conditions:

1. SELECT word.word FROM word WHERE word.
word LIKE ‘a%’

2. SELECT word.word FROM word WHERE word.
word LIKE ‘a_%’

3. SELECT word.word FROM word WHERE word.dic-
tionary_id = 1 AND word.word LIKE ‘a%’

4. SELECT word.word FROM word WHERE word.dic-
tionary_id = 1 AND word.word LIKE ‘a_%’

Results, obtained from the test are presented in 1 table.
As the results of this test showed, the execution time

is dependable on the number of words in the database.
However, the type of SQL query does not have a great
influence on speed (as only one dictionary exists in the
database), but only the number of found elements differs
because of the conditions which were used.

Research of Database Design No. 2
The second database design is tested as well as the

first one; however, a limitation to the word size in used:
1. SELECT word.word FROM word WHERE word.

word LIKE ‘a%’ AND word.number_of_letters = 7
2. SELECT word.word FROM word WHERE word.

word LIKE ‘a_%’ AND (word.number_of_letters >
3 AND word.number_of_letters < 8)

3. SELECT word.word FROM word WHERE word.
dictionary_id = 1 AND word.word LIKE ‘a%’ AND
word.number_of_letters = 7

4. SELECT word.word FROM word WHERE word.
dictionary_id = 1 AND word.word LIKE ‘a_%’ AND
(word.number_of_letters > 3 AND word.number_of_
letters < 8)

The result of the second database designs testing
is provided in table 2 where can be noticed similar
tendencies. However, comparing results of the first and
second research, we can notice the decrees of the query
execution time. It shows that word length storage can
optimize the SQL query execution time for a word search
when the desired length of the word is known.

Table 1. Results of testing with the first database design

Site of the
dictionary

Query execution time, ms Number of returned rows by query
1’st query 2’nd query 3’rd query 4’th query 1’st query 2’nd query 3’rd query 4’th query

10 words 1 1 1 1 10 9 10 9
100 words 2 2 2 2 100 99 100 99
1000 words 6 6 6 6 408 407 408 407
5000 words 8 8 8 8 408 407 408 407

Table 2. Results of testing with the second database design

Site of the
dictionary

Query execution time, ms Number of returned rows by query
1’st query 2’nd query 3’rd query 4’th query 1’st query 2’nd query 3’rd query 4’th query

10 words 1 1 1 1 3 5 3 5
100 words 1 1 1 1 11 38 11 38
1000 words 1 3 1 3 51 186 51 186
5000 words 5 6 5 6 51 186 51 186

141

TEcHNOLOGIJOS MOKSLAI INFORMATIKA

Research of Database Design No. 3
The third design has more differences in comparison

to the first one, as it has an additional table to store letters
of the words. Therefore, more complex SQL queries to
join multiple tables have to be used; however, similar
queries to the first and second design should work either:
1. SELECT word.word FROM word WHERE word.

dictionary_id = 1 AND word.word LIKE ‘a%’ AND
word.number_of_letters = 7

2. SELECT word.word FROM word WHERE word.dicti-
onary_id = 1 AND word.word LIKE ‘a_%’ AND (word.
number_of_letters > 3 AND word.number_of_letters < 8)

3. SELECT word.word FROM letter, word WHERE
word.word_id = letter.word_id AND (letter.letter = ‘a’
OR letter.letter = ‘b’) AND word.dictionary_id = 1 gro-
up by letter.word_id HAVING count(letter.word_id) > 1

4. SELECT word.word FROM letter, word WHERE
word.word_id = letter.word_id AND (letter.letter = ‘a’
OR letter.letter = ‘b’ OR letter.letter = ‘r’) AND word.
dictionary_id = 1 group by letter.word_id HAVING
count(letter.word_id) > 3

As results of this test show, (see 3 table) the
execution time of complex queries is bigger comparing
to queries which do not use the table ‘letter’. Another
interesting thing which was noticed by comparing the
3rd and 4th queries is the execution time when there are
1000 words in the database – the 4th query is faster when
there are up to 1000 words, while the 3rd query is faster
when the number of words in the database is 5000. This
leads to fact that the speed of these queries is dependent on
the word in the database.

Research of Database Design No. 4
For the experiment with the fourth database design,

different types of SQL queries were tested as well:
1. SELECT word.word FROM word WHERE word.

dictionary_id = 1 AND word.word LIKE ‘a%’ AND
word.number_of_letters = 7

2. SELECT word.word FROM word WHERE word.
dictionary_id = 1 AND word.word LIKE ‘a_%’ AND
(word.number_of_letters > 3 AND word.number_of_
letters < 8)

3. SELECT word.word FROM letter, word WHERE
word.number_of_letters = 7 AND word.word_id = le-
tter.word_id AND ((letter.letter = ‘a’ and letter.positi-
on=1) OR (letter.letter = ‘b’ AND letter.position=2))
AND word.dictionary_id = 1 group by letter.word_id
HAVING count(letter.word_id) > 1

4. SELECT word.word FROM letter, word WHERE
word.number_of_letters = 7 AND word.word_id = le-
tter.word_id AND ((letter.letter = ‘a’ and letter.posi-
tion=1) OR (letter.letter = ‘b’ AND letter.position=2)
OR (letter.letter = ‘i’ AND letter.position=3)) AND
word.dictionary_id = 1 group by letter.word_id HA-
VING count(letter.word_id) > 2

This database design allows us to search for words by
a very specific letter pattern as can be seen from the tested
queries. Meanwhile, the execution time of these queries
(see 4 table) is noticeably bigger. This leads to the fact
that this kind of search can be useful in certain situations;
however, it should not be used for a simple word search as
it can decrease the performance of the system.

Summary of the Research
As can be seen from research, the time to perform

simple queries does not depend on the structure of the
database, but only on how much data there is inside. The
ascent of time to perform more complex queries can be
seen with 5000 words, which generally gives more than
40,000 rows in the database.

The average performance of any of the requests
depending on the design can be seen in the chart below.

The second type gives the best performance, because
it is possible to more accurately describe the request, but
these features are not enough. The fourth type requires too
much time to process their full opportunities. The most

Table 3. Results of testing with third database design

Site of the dictionary
Query execution time, ms Number of returned rows by query

1’st query 2’nd query 3’rd query 4’th query 1’st query 2’nd query 3’rd query 4’th query
10 words 1 1 1 1 3 5 9 2
100 words 1 1 2 1 11 38 55 6
1000 words 2 2 8 6 51 186 354 52
5000 words 4 5 22 26 51 186 660 111

Table 4. Results of testing with the fourth database design

Site of the dictionary
Query execution time, ms Number of returned rows by query

1’st query 2’nd query 3’rd query 4’th query 1’st query 2’nd query 3’rd query 4’th query
10 words 1 1 1 1 3 5 3 1
100 words 1 1 4 5 11 38 4 1
1000 words 1 2 42 65 51 186 4 1
5000 words 5 6 350 520 51 186 4 1

142

ISSN 1648-8776
JAUNŲJŲ MOKSLININKŲ DARBAI. NR. 2 (40). 2013

balanced result is provided by the third type, because of
quite exact queries that do not require too much time to
perform.

No relationship between query execution time
and number of returned results was noticed. The query
execution time is more dependent on the number of
records which must be examined. Therefore, an effective
way to reduce the word search execution time is word
length limitation, which reduces the number of examined
records in the database as well as query execution time.

conclusions
1. The string search algorithm can vary in its complexity

and require text analysis, while SQL-based rational da-
tabase allows for a word search according to a known
pattern of set of letters more easily.

2. To design certain functionality for word search algo-
rithms, limitations can be used depending on database
structure. Therefore, the design of database schema is
very important to ensure all the functionality and per-
formance of the system.

3. All proposed database designs allow for word search in
the database and the results of tested SQL queries give
suitable results (all words which meet the pattern of set of
letters are found). Therefore, the main choice of database
design should be done according to the query execution
time to get a certain set of words from the database.

4. The storage of letters in different tables for all the
words in the dictionary gives an opportunity to search
for words which have a set of letters. However, this
database design is space consuming, as all words have
more space in the database, and the execution time is
bigger comparing to database designs without a sepa-
rate table for letters storage. Therefore, this database
design should be used just for specific problem solving
to ensure good system performance.

References
1. R. Rivest, 1977, On the worst-case behavior of string-

searching algorithms. SIAM J on Computing, 6:669-674.
5. R. Baeza-Yates, 1989, Improved string searching.

Software-Practice and Experience, 19(3):257-271.
6. D.E. Knuth, J. Morris, and V. Pratt. Fast pattern ma-

tching in strings. SIAM J on Computing, 6:323-350
7. R. Boyer and S. Moore, 1977, A fast string searching

algorithm. C.ACM, 20:762-772.
8. Ricardo A. Baeza-Yates, 1989,String Searching Algo-

rithms Revisited, Proceedings of the Workshop on Al-
gorithms and Data Structures, p.75-96, August 17-19.

9. Jeffrey D. Ullman, < http://infolab.stanford.edu/~ullman
/focs/ch08.pdf>

10. Okunis R., Makarevičius M. Populiariausios duomenų
bazių valdymo sistemos.

11. Paliulis E., Baronienė R., 2010, Duomenų bazių valdy-
mo sistemų analizė. Jaunųjų mokslininkų darbai. Nr.
3 (28). P. 94—99.

12. An introduction to the SQL procedure, <http://www.
ats.ucla.edu/stat/sas/library/nesug99/bt082.pdf>.

13. SQL – LIKE Clause, <http://www.tutorialspoint.com/
sql/pdf/sql-like-clause.pdf>.

Fig. 5. Comparison of execution time in proposed data-
base designs

RESEARch OF WORD SEARch ALGORIThMS BASED ON RELATIONAL DATABASE

Oleksij Volkov, Simona Ramanauskaitė

Summary

Word games are a simple and fun way to spend time. It helps to improve a person’s vocabulary, expand erudition, train
memory and intelligence, and develop logic and associative thinking. There exist different types of word games and different
types of word games require a different game logic, and different word-finding algorithms. The optimization of word search
algorithms is required to designa fully-functioning and efficient system. The aim of this work is to research the efficiency of
different kinds of word search algorithms, using SQL-based relational database.

In this work, classic string search algorithms are analyzed and a different architecture of relational database structure was
proposed to design a functional and efficient word search system. An efficiency analysis of proposed database designs was also
analyzed to obtain metrics to define which architecture would be the most suitable for th design of word search system.

Key words: SQL; word search; database.

143

TEcHNOLOGIJOS MOKSLAI INFORMATIKA

RELIAcINėS DuOMENŲ BAzėS STRuKTūRA PAREMTŲ ŽODŽIŲ PAIEŠKOS ALGORITMŲ TYRIMAS

Oleksij Volkov, Simona Ramanauskaitė

Santrauka

Žaidimai žodžiais yra paprastas ir linksmas laiko praleidimo būdas, kuris padeda asmenims plėsti savo žodyną, gerinti
erudiciją, lavinti atmintį ir mąstymą, vystyti loginį mąstymą. Šiuo metu egzistuoja daug skirtingų žaidimų žodžiais, kurie reika-
lauja ir skirtingo žaidimo algoritmo, tinkamo žodžio radimo algoritmo. Todėl kuriant informacines sistemas, padedančias surasti
ieškomą žodį pagal žinomus kriterijus, yra labai svarbu tinkamai parinkti ar optimizuoti žodžių paieškos algoritmą. Šio darbo
tikslas – ištirti žodžių paieškos algoritmų, naudojančių SQL paremtas reliacines duomenų bazes, našumą.

Darbe apžvelgiami klasikiniai teksto paieškos algoritmai ir analizuojamos skirtingos reliacinių duomenų bazių archi-
tektūros, leidžiančios aprašyti turimą žodžių žodyną ir atlikti žodžių atranką naudojant skirtingo tipo paiešką. Darbe tiriamas
pasiūlytų duomenų bazės schemų našumas, siekiant įvertinti tinkamiausią duomenų bazės architektūrą žodžių paieškos sistemai,
kurioje gali būti vykdomi skirtingo tipo žodžių paieškos algoritmai, realizuoti.

Prasminiai žodžiai: SQL; žodžių paieška; duomenų bazė.

Įteikta 2013-05-14

