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Introduction

Let N, Z, Q and C denote the sets of all posi-
tive integers, integers, rational and complex num-
bers, respectively. Consider an elliptic curve £ given
by the Weierstrass equation y* =x* + ax+b, a, b € Z.
Suppose that the discriminant A =—16(4a* + 275) of
the curve E is non-zero; then E is non-singular.

For each prime p, denote by v(p) the number
of solutions of the congruence y* = x* + ax+b(modp).
Denote A (p) = p — v(p) H. Hasse proved that
|A(p) I 2\/; . For the investigations into value-dis-
tribution of the numbers A (p) H. Hasse and H. Weil
introduced the L-function attached to the curve E. Let
s =0 + it be a complex variable. Then the L-function
of the elliptic curve E is defined, for 6 > 3/2, by
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The Hasse conjecture on analytic continuation and
the functional equation of L ,(s) becomes true after
proving the Shimura-Taniyama-Weil conjecture
[1]. Therefore, the function L, (s) is analytically
continuable to entire function and satisfies the
following functional equation
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Here g is a positive integer composed of prime factors
of the discriminant A, n = +1 is the root number, and
I'(s), as usual, denotes the Euler gamma-function.
In [6] the universality of the function L (s)
was obtained. Let {4} denote the Lebesgue measure
of the set 4 — R . Then we have following assertion

[6].

Lg(s) =H

pla

[1

plA

Theorem 1. Suppose that E is a non-
singular elliptic curve over the field of rational
numbers. Let K be a compact subset of the strip
D={seC:1<0 <3/2} withconnectedcomplement,
and let f(s) be a continuous non-vanishing function
on K, which is analytic in the interior of K. Then for
every € >0,
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lim inf%meas {r €[0,T]: sup|Ly (s +it) — f(s)| < e} >0.
seK

T—o

In [2] the assertion of Theorem 1 was extended
to powers L%.(s), ke N. If L, (s)# 0on D, then the
function L}k (s), k €N is also universal in the above
sense.

Note that the universality of the Riemann zeta-
function was discovered by S. M. Voronin [10]. Lat-
er A. Reich, S. M. Gonek, B. Bagchi, K. Matsumo-
to, J. Steuding, Y. Mishou, H. Bauer, A. Laurincikas,
R. Garunkstis and others obtained the universality of
other classical zeta-functions and of some classes of
Dirichlet series. The Linnik-Ibragimov conjecture
asserts that all functions given by Dirichlet series,
analytically continuable to the left absolute conver-
gence half-plane and satisfying some growth condi-
tions, are universal.

Our aim here is to obtain the discrete univer-
sality for the function L, (s).Let N eN,

1
L)=—#HOV<m<N ...
Wy () N1l { m }

where in the place of dots a condition satisfied by m
is to be written. In discrete theorems instead of the
translations L. (s+it), T €[0,7], the translations
Ly (s+imh), m=0,1,..,N, where h>0 is a fixed
number, are considered.

Theorem 2. Suppose that exp{ZTtk/ h} is
an irrational number for all ke Z\{0}. Let K be
a compact subset of the strip D with connected
complement, and let f(s) be a continuous non-
vanishing function on K, which is analytic in the
interior of K. Then, for every € >0,

liminf uN(sup L, (s +imh) - f(s)‘ < e) >0.
T—o sek
Theorem 2 shows that the set {m, m=0, 1,...}
such that L (s + imh) approximates a given analytic
function is sufficiently rich: it has a positive lower
density. Since by Hermite-Lindemann theorem
exp{a} isirrational with an algebraic number a# 0,
we can take, for example, 4 =2m . On the other hand,
Theorems 1 and 2 are non-effective in the sense that
it is impossible to indicate T or m with approxima-
tion properties.
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Consequently we suppose that exp {27tk / h}

k € Z\ {0} is an irrational number.

A discrete limit theorem in the space of analytic
functions for L (s)

For the proof of Theorem 2 we need a discrete
limit theorem in the sense of the weak convergence
of probability measures in the space of analytic
functions for the function L,(s). Theorems of such
a kind were obtained in [3] for the Matsumoto zeta-
function that was introduced in [7]. The Matsumoto
zeta-function @(s) is defined by

g(m)

o(s)= H A (p.r) » where 4,,(x)= H@ D)

+ fig(m),m),

is a polynomial of degree f(1, m) + ...

gmeN, a,) €C, f(j,meN, j =1, ., gm),
and p denotes the mth prime number. If
gm<e,ply, |al)|<e,p} Q)

with some positive constants ¢, ¢, and non-
negative o and B, then the infinity product for ¢ (s)
converges absolutely in the half-plane ¢ > a +  +
1, and defines there an analytic function with no
zeros. Suppose that the function ¢ (s) is analytically

continuable to the region D, = {s € C:6 > p } where
oc+[3+§gp<oc+[3+1,and,forc>p,

o(o + if) = B |15, > 0; Q)
and

T

Iﬁp(c +if)2dt =BT, T — . 3)
0

Here and in the sequel B denotes a quantity bounded
by a constant.

Let G be a region on the complex plane, and
let H(D) stand for the space of analytic (on G) func-
tions equipped with the topology of uniform con-
vergence on compacta. To state a limit theorem in
the space H(D,)) for the function ¢ (s) we need the

following topological structure. Let for all m e N,

Yy, =Y ={se€Cils|=1},and Q=]]v,, -
m=1

With product topology and pointwise multiplication
Q is a topological Abelian group. Denoting by B(S)
the class of Borel sets the space S, we have that the
probability Haar measure m,, on (Q B(Q)) exists,
and this leads to a probability space (Q B(Q),
m,). Let ®(p,,) be the projection of ®weQ to the
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coordinate space Y, and on the probability space
(Q B(Q) my )deﬁne an H(D,) valued random

element (p(s 0)) by
]—1

Let Pé stand for the distribution of a random
element & .

0/ (5, )
p;f(j,m)

ot 1] -

m=1 j=1

Lemma 3. Suppose conditions (1) — (3) are
satisfied. Then the probability

Wy (@(s +imh) € ), AeB(H(Dy)),

converges weakly to the measure P as N—o.

Proof. The lemma is a particular case of the
theorem from [4], where a limit theorem in the space
of meromorphic functions for the function ¢ (s) was
proved.

LetV>0and D, = {seC:1<0 <3/2,|t|<V}.
Later we will use a more convenient notation
Qszy p» and o(p). On the probability space

(Q,B(Q) m H) define an H(D))
element L (s, o) by

— valued random

-1
Ly (s.0) = H[l _ up)?(p)J
plA p
2 -1
H(l B x(p)ff(p) Lo ﬁ)}
plA p p

Lemma 4. The probability measure
My (L (s + imh) e 4), A B(H(Dy)),

converges weakly to the measures Py as N—>o.
Proof. Clearly, for 6 >3/2,

mj a(p)]‘l(l_
P’ P’

where A(p) =a.(p) + B(p) and |a(p) [<4/p,
IB(p) < \/; Therefore, (1) is valid with a = 0

and B = 1/2. Moreover, L,(s) is an entire function
and satisfies (2). From the validity of the Shimura-
Taniyama-Weil conjecture and [8] we have that (3) is
satisfied, too. Consequently, in view of Lemma 3 the
probability measure

B(p)]_1
pS

LE(s)=H{1

plA

I

plA

Wy (Lg (s +imh) € A), AeBH (D)),
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D= {€C:0 >1} converges weakly to the distribu-
tion of the random element L (s,®), s€ D. Since
the function F: H (15) — H,(Dy) given by the for-
mula F(f)=flsp, . f€ H(li) , 1s continuous,
hence the lemma follows.

The support of the measure P,

Let P be a probability measure on (S,B(S),
where § is a separable metric space. We recall that
the support of P is a minimal closed set Sp < S such
that for every neighbourhood G of each xe S, we
have P(G)>0. Let

Sy ={geH(Dy):g(s)#0 org(s) =0}

Lemma 5. The support of the measure Py, is
the set Sy, .

Proof. The proof of the lemma is similar to
that of Lemma 8 in [6], therefore we will give only a
sketch of the proof. Let a,, €y and se Dy,

A(p)a a’
—1og[1—(p—2”+ Zf_l} if plA,
r r-
g,(s,a,)=
A(pla, .
—log l-——1 if p|A.
P

Then it is proved that the set of all convergent series
Zp g(s,a ) isdensein H(D,). For this some properties
of functions of exponential type are applied, see, for
example, [5].

The sequence %x)( p)} is a sequence of inde-
pendent random variables defined on the probability
space (Q,B(Q) my ) The support of each @ (p) is
the unit circle y . Therefore, {g (s, o (p)} is a se-

quence of independent H(D,) — valued random ele-
ments, and the support of the random elements g(s,
o (p)) is the set

lge H(D,):g(s)=g,(s.a) with |al=1}

Hence, in view of Theorem 1.7.10 of [5] the support
of the random element

log Ly (s,0) =D g (s, ® (p))
p

is the closure of the set of all convergent series
ng (s,a,) with a, ey. However, as we have

sepen above, the later set is dense in H(D,). Let
h:H(D,)— H(D,) be given by the formula A(g)

=exp {g}, g€ H(D)). Then clearly, 4 is a continu-
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ous function sending log L, (s,®) to Ly (s,®)and

H(D,) to S,\ {0}. This shows that the support S;
of the random element log L (s,®) contains the set

S\ 10}. However, the support is a closed set, there-
fore in view of the Hurwitz theorem [9] we obtain
that S, \{0}=S,. Hence Sy < §; . On the oth-
er hand, L, (s,0) is an almost surely convergent
product of non-vanishing factors, and the Hurwitz
theorem again shows thatL,(s,w)eS) . Thus,

S ;. S Sy, and the lemma is proved.
E

Proof of the two theorems

Let K be compact subset of the strip D with
connected complement, and suppose that V' >0 is
such that K < D, . First let the function f(s) have
a non-vanishing analytic continuation to the region
D, . Denote by G the set of functions ge H(D))
satisfying

sup|g(s)— f(s)[<e.
sek
The set G is an open one, and Lemma 5 implies that
G < S, . Now properties of the weak convergence of
probability measures and of support together with
Lemmas 4 yield
liminf py (Lg (s + imh) € G)2 P, _(G)>0.  (4)
T—o0

Now let f(s) satisfy the hypotheses of the two
theorems. Then according to the Mergelyan theorem
(see, for example, [11]) there exists a polynomial
p(s) that has no zeros on K and such that

sup| £(s) — p(s) |<§. )

sekK

Similarly, there exists a polynomial ¢(s) such that

€
sup| p(s) — e |<—.
seK 4

This and (5) show that

sup| /(s) — ) |<§, (6)

seK

and e?“) % 0. Therefore, by (4)

L (s +imh) — e

<8J>O.

Hence in virtue of (6) the theorem follows.

liminf p [sup
N—oo sek
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DISCRETE UNIVERSALITY THEOREM FOR L-FUNCTIONS OF ELLIPTIC CURVES
Jurgita Ceponiené, Virginija Garbaliauskiené, Antanas Garbaliauskas
Summary

Let E be an elliptic curve over the field of rational numbers Q defined by the Weierstrass equation y? = x> + ax+b,
a, b € Z. Denote by A =—16(4a* + 27b%) the discriminant of the curve E, and suppose that A # 0. Then the roots of the

cubic x* + ax+b are distinct, and the curve E is non-singular. In the paper there is done a research on discrete universality
theorems (in Voronin’s sense) for L-functions of the curve £ defined by Euler product

-1 -1
LE<s>=H(1—’”(—i”] H@MLJ ,

plA p plA p P

where p is prime number, v (p) is the number of solutions of the congruence y? = x* + ax+b (mod p), L (p) =p — v(p), and
s = o + it is a complex variable. We use the difference of an arithmetical progression 2> 0 4> 0 such that exp ﬁ}
h

is irrational for some k # 0. The proof of the universality for L-functions of elliptic curves is based on discrete limit
theorems in the sense of weak convergence of probability measures in functional spaces.
Keywords. Elliptic curve, L-function, universality, limit theorem, probability measure, weak convergence.

DISKRETI UNIVERSALUMO TEOREMA ELIPSINIU KREIVIU L-FUNKCIJOMS
Jurgita Ceponiené, Virginija Garbaliauskiené, Antanas Garbaliauskas
Santrauka

Straipsnyje apibréziama elipsiné kreive, su ja susieta elipsiniy kreiviy L-funkcija, iSreiksta Oilerio sandauga.
Tegul E — elipsiné nesinguliarioji kreivé vir§ racionaliyjy skai¢iy kiino, duota Vejetraso lygtimi y* = x* + ax+b, a, b

€ Z, su diskriminantu A = —16(4a* + 27b%). Kiekvienam pirminiam p pazymékime v (p) lyginio ) = x* + ax+b (mod p)

sprendiniy skaiéiy ir A(p) = p—v (p). Elipsiniy kreiviy L-funkcija L, (s), kur s = ¢ + it yra kompleksinis kintamasis,
apibréziama Oilerio sandauga
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-1 -1
LE<S):H[1_L?) H[l—“—i’”%} -

plA p plA p p

Funkcija L;(s) yraanaliziné pusplok§tuméje D = {se C:o > 3} ir analiziSkai pratgsiama | visg kompleksing plokstuma.
2

Elipsiniy kreiviy L-funkcijy diskretus universalumas remiasi ribinémis teoremomis tikimybinio mato silpno konvergavimo
prasme funkcinése erdvése, todél straipsnyje pirmiausia pateikiama diskreti ribiné teorema, tirStumo bei atramos lemos.
Naudojantis Siomis teoremomis jrodoma diskreti universalumo teorema elipsiniy kreiviy L-funkcijoms, kai visiems

ke N\ {0} ir fiksuotam skai¢iui # >0, exp{ﬂ} yra iracionalusis skaicius.
h
Prasminiai Zodziai: elipsiné kreiveé, L-funkcija, universalumas, ribiné teorema, tikimybinis matas, silpnas

konvergavimas.
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