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Introduction

Let us consider the problem of the estimation of small
probabilities in large populations (e.g., the estimation of
probability of some disease, death, suicides, etc.). The
number of corresponding events depends on the size of
the population and the probability of the single event. It is
assumed that the number of events in populations have a
Poisson distribution with certain parameters.

In the empirical Bayesian estimation the
probabilities of events in populations are assumed random
and have some certain distribution. It is well known
(see, e.g., (Clayton, Caldor, 1987), (Meza, 2003)) that
Bayesian estimates of the unknown probabilities have a
substantially smaller mean square error as compared with
the mean square error of simple relative risk estimates.

Let us have two models of a distribution of unknown
probabilities: the probabilities have a gamma distribution
with the shape parameter n > 0 and scale parameter a >
0 (Poisson-gamma model), or logits of the probabilities
have a Gaussian distribution with mean m and variance s> >
0 (Poisson-Gaussian model). In the case of the Poisson-
Gaussian model it is known (see (Sakalauskas, 1995)) that
if a certain non-singularity condition does not hold then the
empirical Bayes estimates of unknown probabilities are
equal to mean relative risk estimates, and corresponding
distribution of logits of the probabilities have singular
distribution with zero variance. In such a case, in practice
it means that the distribution variance given by iterative
procedures for finding distribution parameters converges
to zero and we do not obtain parameters with finite values
of both mean and variance.

In case of the Poisson-gamma model (see
(Jakimauskas, 2012)) we have a similar non-singularity
issue. In practice it means that shape and scale parameters
given by iterative procedures for finding distribution
parameters converge to infinity and we do not obtain finite
values of shape and scale parameters.

Non-singularity conditions for both models depend
only on population sizes and the number of observed
events. We will consider the Poisson-gamma model for
some sets of data and we will show the behaviour of
iterative procedures in various situations. We will focus
on the behaviour of a partial derivative by n of maximum
likelihood function, which is essential for the non-
singularity condition for the Poisson-gamma model.

Mathematical models

Let us have K populations 4, 4,,..., A,, consisting
of N, individuals, resp., and some event (e.g., death or
some disease), which can occur in these populations. We
observe the number of events {Yi} = Y/.,j =1,2,..., K

We assume that a number of events are caused by
unknown probabilities {Z/.} = l/., j=1,2,..., K, which are equal
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for each individual from the same population. Then the number
of events {Y} are a sample of independent random variables
(rv.’s) {Yj} =Y, j=12..K with binomial distribution
(resp., with parameters (l]., N),j=1,2,...,K). Clearly,
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An assumption is often made (see, e.g., (Tsutakawa
et al., 1985), (Clayton, Caldor, 1987)) that r.v.’s {Yj} have
a Poisson distribution with parameters Z/N/., j=12,...,K,
PYY, =m}=h(m,AN,),m=0,1,.;j=12,..,K,
where  h(m,z)=¢ Z—, m
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Under such an assumption we also have (1).

We will consider the mathematical model assuming
that unknown probabilities {l/.} are independent identically
distributed (i.i.d.) r.v.’s with a distribution function F from
the certain class F. Our problem is to get estimates of
unknown probabilities {4 } from the observed number

of events {Y/.}, assuming that Fe F.

Regardless of the distribution of {Zj} we can use
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assume that {/TjMRR} = AR j=12,..,K.Also

a mean relative risk estimate , SO we
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Poisson-gamma model. Let us make an assumption
that {lj} are i.i.d. gamma r.v.’s with a shape parameter n >
0 and scale parameter a > 0, i.e. d.f. F has a distribution

density
a-(a-x)"

) =f(xv,a)= o)

Then Elj =n /a,and Dl/. =n / a*. Moreover,
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E(4, Y, =Y)= , j=12,...,K.
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Empirical Bayes estimate {/ij} , which is a certain
compromise between the mean relative risk estimate
{/T,WR } and relative risk estimate {ZJR }, is obtained by
(3) using parameter estimates (v,a) .

Poisson-Gaussian model. We will consider the Bayes
estimate {4}, which is obtained under assumption that
unknown probabilities are i.i.d. r.v.’s such that their logits
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are i.1.d. Gaussian r.v.’s with mean m and variance
s%. In this case the conditional expectation of {lj} has the
following form (see (Sakalauskas, 1995), (Gurevicius et
al., 2009)):
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D (u,0%)= Th(Y, Yo(x; 1,07 )dx.

Empirical Bayes estimate {/1 }, is obtained by (4)
using parameter estimates (,u,o-z) Note, that the formula
(4) can be calculated using Hermite polynomials (see
(Abramovich, Stegun, (1968)).

Considering the Poisson-gamma model, the
corresponding maximum likelihood function has the
following form:
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Considering the Poisson-Gaussian model, the
corresponding maximum likelihood function has the
following form:
IR 2 6
Lug(i,0%) = Y. (InD(1,0%)) ©)
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Maximum likelihood estimates are obtained by
maximizing (5), resp., (6) and replacing corresponding
parameter values in (3) or (4). In practice, approximate
estimates {}Lj_} and {/1j} are obtained using numerical
methods (usually iterative procedures) for finding
approximate parameter values (V,&), resp., (H,6°).
Non-singularity conditions for considered models imply
that iterative procedures will give finite and non-zero
values for estimated parameters. Denote
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1
model the nén singularity condition has the following
form: O < 0.
Denote
K K
6 =21 =2 (Y;=N;-Py.
j=1 Jj=1

Similarly, for the Poisson-Gaussian model the
non-singularity condition has the following form (see
(Sakalauskas, 1995)): Qp; < 0.
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Simulation results

An iterative procedure for obtaining maximum
likelihood estimates for the Poisson-gamma model is
given in (Clayton, Caldor, 1987). Denote

LtV 0k @®)
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and two equations:
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From (9) and (1 0) we obtain a as root of the quadratic
equation and then we obtain n using (10). The iterative
procedure starts from {6}, = {47}, then from (9) and
(10) we obtain (n , a ), from (8) we obtain {6’/_}] , etc

Partial derivatives of a maximum likelihood function
for the Poisson-gamma model (5) have the following form:

L) v $YHv_fv 18,0 )
da a TN;+a a Kia')
OL(v,a) k' S
ZZ +K1na—21n(Nj+a). (12)
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The non-singularity condition of the Poisson-gamma
model is based on the following formula:

ov

lim

V,a—0
via=P-(1+o(1/v))

=0.

Because for sufficiently small values of n and a,
the partial derivative (12) is strictly positive, if the non-
singularity condition (7) holds, i.e., if O is strictly negative,
then there exist finite values of n and a, for which the
partial derivatives (11) and (12) are equal to zero.

We will focus on the behaviour of the partial
derivative (12) for various real or simulated data in cases
when the non-singularity condition (7) holds, or when
this condition does not hold. In the case when the non-
singularity condition (7) holds, it is denoted by (V,a&)
parameters found by the iterative procedure (9)—(10). In
the case when the condition (7) does not hold, parameters
are defined using empirical mean and variance of relative
risk estimates (2). Denote functions

21/2 8L v,a
g(ny= 2L L)
1ol ov e,

h(x) = OL(v,@) .
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Let us consider a certain artificial set of data
(dataset 1), which illustrates the behaviour of a partial
derivative (12). Set number of populations K = 60,
population sizes N = 50000, j = 1, 2,..., K, and number
of events ¥, = (350 150, 310, 190, 400, 100 250, 250,.
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250). For dataset 1 we have Q = Q,, = —57200. For
comparison we will use dataset 2, with the same number
of populations, but with population sizes N,=5000,; =1,
2,..., K, and the number of events Y/ = (35, 15, 31, 19, 40,
10, 25, 25,..., 25). For dataset 1 we have O = Q,, = 778.
The simulation results show that the iterative algorithm
(8)-(10) for dataset 1 gives values for (v,a) after just

few iterations. The same algorithm for dataset 2 does
not converge and stops after reaching values about 10%.
Fig. 1-4 illustrates the behaviour of partial derivatives of
corresponding maximum likelihood functions.

The given examples show that the non-singularity
condition depends not only on relative risks, but it
significantly depends on population sizes.
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Fig.1. Function /(x) for dataset 1.
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Fig.2. Function g(x) for dataset 1.
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Fig.3. Function /(x) for dataset 2.
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Fig.4. Function g(x) for dataset 2.
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APIE NESINGULIARUMO SALYGA TAIKANT PUASONO-GAMA MODELI
Gintautas Jakimauskas
Santrauka

Straipsnyje nagriné¢jama mazy tikimybiy didelése populiacijose (pvz., tam tikros ligos, miréiy, savizudybiy ir t. t.
tikimybiy) vertinimo problema, darant priclaida, kad jvykiy skai¢ius turi Puasono skirstinj su tam tikrais parametrais, ir taikant
nezinomy tikimybiy gama skirstinio modelj.

Aptariami du nezinomy tikimybiy pasiskirstymo modeliai: kai tikimybés pasiskirsciusios pagal gama skirstinj (Puasono-
gama modelis) ir tikimybiy logitai pasiskirste pagal Gauso modelj (Puasono-Gauso modelis). Kalbant apie pirmajj modelj,
zinoma, kad jei néra iSpildyta tam tikra nesinguliarumo salyga, nezinomy tikimybiy empiriniai Bajeso jver¢iai sutampa su
vidutinés santykinés rizikos jverCiais, o atitinkamas logity pasiskirstymas turi i$sigimusj skirstinj su nuline dispersija.
Puasono-gama modelyje situacija panasi: gama skirstinio parametrai, gaunami iteraciniais procesais, konverguoja j begalybeg ir
negaunamos baigtiniy gama skirstinio parametry reikSmés.

Nesinguliarumo sglyga priklauso tik nuo populiacijy dydziy ir stebéty jvykiy skaiciaus. Nagrinéjamas Puasono-gama
modelio taikymas atskiriems duomeny rinkiniams ir apibtdinamas iteraciniy procesy veikimas. Aptariamas didziausio
tikétinumo funkcijos daliniy i§vestiniy veikimas yra esminis Puasono-gama modelio nesinguliarumo salygai.

Prasminiai ZodzZiai: empirinis Bajeso vertinimas, Puasono-gama modelis.
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ON THE NON-SINGULARITY ISSUE FOR THE POISSON-GAMMA MODEL
Gintautas Jakimauskas
Summary

The problem of estimation of small probabilities in large populations (e.g., the estimation of probability of some disease,
death, suicides, etc.) is considered. The number of corresponding events depends on the size of the population and the probability
of the single event. It is assumed that the number of events in populations has a Poisson distribution with certain parameters.

Let us have two models of distribution of unknown probabilities: the probabilities have a gamma distribution (Poisson-
gamma model), or logits of the probabilities have a Gaussian distribution (Poisson-Gaussian model). In the case of the Poisson-
Gaussian model it is known that if a certain non-singularity condition does not hold then empirical Bayes estimates of unknown
probabilities are equal to mean relative risk estimates, and corresponding distribution of logits of the probabilities have singular
distribution with zero variance. In the case of the Poisson-gamma model we have a similar non-singularity issue. In practice it
means that the shape and scale parameters given by iterative procedures for finding distribution parameters converge to infinity
and we do not obtain finite values of shape and scale parameters.

The non-singularity condition depends only on population sizes and the number of observed events. We will consider
the Poisson-gamma model for some sets of data and we will show the behaviour of iterative procedures. We will focus on the
behaviour of a partial derivative of the maximum likelihood function, which is essential for the non-singularity condition for the
Poisson-gamma model.

Keywords: empirical Bayesian estimation, Poisson-gamma model.
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