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Introduction

Let £ be an elliptic curve defined by the
Weierstrass equation y* = x* + ax + b witha, b € Z.
The number A = —16(4a’° + 27b%) is the discriminant
of E. Suppose that A # 0, i.e. the curve £ is non-
singular.

For each prime p let us mark by v(p)
the number of solutions of the congruence
¥’ =x% + ax + b(mod p),
and let A(p) = p — v(p). Then the result of H. Hasse
asserts that |k(p)| < 2\/;. (1)

H. Hasse and H. Weil attached to the curve
E the L-function defined by the following Euler
Ly(s)= H H

product
-1 -1
(1 . x(p)] J '
pla r’ plA

where s = ¢ + it is a complex variable. The latter
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product converges absolutely for ¢ > % , and in this

region L, (s) can be written as the Dirichlet series

Li(s)= Z%
m=1

H. Hasse conjectured that the function L (s)
has analytic continuation to an entire function and
satisfies the functional equation

§ 2-s
[%J F(S)LE (8)=n [%J re- s)LE (2-s), where

q 1s a positive integer composed from prime factors
of the discriminant A, # = %1 is the root number, and
I'(s), as usual, denotes the Euler gamma-function.

Now we shortly discuss L-functions attached
to cusp forms. Let

b
SL(2,Z):{G d]:a,b,c,deZ,ad—bc:l}
C

be the full modular group, and let g be a positive
integer. The subgroup of SL(2,Z)

T,(q) = {[a SJ eSL(2,Z):c = O(modq)}
C

is called the Hecke subgroup or congruence subgroup
modg. Let k be an even positive integer, and let F(z)
be a holomorphic function in the upper half-plane Im
z> (0 Then the function F(z) is called a cusp form of
weight x and level g provided that
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F(az-i—b
cz+d

provided that F(z) are holomorphic and vanishing at
the cusps. In this case F(z) has at « the following
Fourier series expansion

F(z)= ic(m)ez’””' .

m=1

j =(cz+d)" F(z) for all C SJ €l;(g), and

2)

Denote by S, (I',(¢)) the space of all cusp forms
of weight x and level g. Let g |q. Then a function
F(z)eS.(Iy(q,) can also be an element of
S .(Iy(q) - Acusp form F(z)e S, (I(q) is called
a newform if F(z)is not a cusp form of a level
less than ¢, and if F(z)is an Hecke eigenform, i.
e. F(z)is an eigenfunction 7, F=c(m)F of all the
Hecke operators 7', m = 1, 2, ... From this it follows

that ¢(1) # 0, and we may assume that F(z) is a nor-
malized newform with ¢(1)=1.

E. Hecke attached to a cusp form F(z) with the
Fourier expansion (2) the L-function

L(s,F)= i%
m=1

The latter Dirichlet series converges absolutely for

G>= - and defines there a holomorphic function.

Moreover, since F(z) is a newform, L(s, F), for
1 .

c > % has the Euler product expansions

L(S’F) = H H 2s+1-K

e ]
Pla r’ pla p

Also, it is well known that L(s, F) is analytically
continuable to the entire function and satisfies

functional equation
J— K-S
[—qj Tk —5)Ly(k -5, F)
n

[ﬁ] F(s)L(s.F)=e(-1)?

n

where € = £1 is the sign of the functional equation
corresponding to the eigenvalues 1 of the Atkin-

[1—M+ !
pS

Oq] on §_([(q) .

By the Shimura-Taniyama conjecture every
L-function L (s) attached to a non-singular elliptic
curve E over the rationals is the L-function attached
to certain newform F of weight 2 of some Hecke
subgroup. This conjecture as well as the Hasse
conjecture on analytic continuation of L (s) was

Lehner involution
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partially proved by A Wiles [11], and a full proof
was recently given in [2]. Consequently, instead of
L,(s) we may consider the L-functions attached to
newforms.

One of the remarkable properties of functions
given by Dirichlet series is their universality.
This property for the Riemann zeta-function was
discovered by S. M. Voronin [9]. Later many authors
generalized and improved the Voronin theorem (see
survey papers [5], [7]). There exists the Linnik-
Ibragimov conjecture that all functions given by
Dirichlet series, analytically continuable to the
left of the half-plane of absolute convergence, and
satisfying some growth conditions, are universal
in the Voronin sense. It seems to be that the latter
conjecture is very difficult.

In [6] the universality of L-functions attached
to newforms was proved, and from this some other
properties for L(s, F) were derived. Therefore, we
have the following analogue of the Voronin theorem
for L-functions of elliptic curve. Let meas {4} denote
the Lebesque measure of the set 4 — R, and let 7> 0,

1
ve(.)= Fmeas{re[O,T] :...}, where in place of dots

a condition satisfied by 7 is to be written. C stands

for the complex plane.

Theorem 1. Suppose that E is a non-sin-
gular elliptic curve over the field of rational
numbers. Let K be a compact subset of the strip

D=<seC:l<o < %} with connected complement,

and let f(s) be a continuous non-vanishing function
on K which is analytic in the interior of K. Then, for
every € >0,

liminf v, (sup|LE (s+ir)— f(s)| < e} > 0.

T sek

Let k be a positive integer. The aim of this
note is to generalize Theorem 1 for the function
L (s).

Theorem 2. Suppose that E is a non-singular
elliptic curve over the field of rational numbers. Let
K be a compact subset of the strip D with connected
complement, and let f(s) be a continuous non-
vanishing function on K which is analytic in the
interior of K. Then for every € > 0, and k € N,

L’;(s+ir)—f(s)\<a)>o.

liminfv , (sup
T—w» sek
This theorem shows that there exist many
translations I%.(s+it) which approximate a given
analytic function f{s): the set of T has a positive
lower density.
It turns out that if for L’g (s) the analogue of
the Riemann hypothesis is valid, then L' (s) is also
universal.

179

Theorem 3. Suppose that L, (s) # 0 on D. Then
the assertion of Theorem 1 is true for the function
L}k (s).

Limit theorems

Let C_ = CU {0} be the Riemann sphere with
spherical metric d defined by the formulae

2]s, =5,
d(s,s,)= 21 2 =,
V115 P18, |
d(Sl,OO) :#’ d(O0,00):O’ Slyszec‘

1+ s, |2

Let G be a region on C, and let M (G)denote the

space of meromorphic function g:G— (C_,d)
equipped with the topology of uniform convergence
on compacta. In this topology, a sequence

g,(s) e M(G) converges to a function g(s) € M(G)
if d(g,(s) g(s) — 0 as n — oo, uniformly on com-
pact subsets of G. The space H(G) of analytic of G

functions is a subspace of M(G).
Lety={seC:|s|=1} and QzHyp , Where

Y, =7 for each prime p. With product tf)pology and
pointwise multiplication the infinite-dimensional
torus Q) is a compact topological Abelian group.
Therefore, the probability Haar measure m, on
(Q,ﬂJ(Q)) (B(S) stands for the class of Borel sets
of the space S) exists, and we have a probability
space (Q,.‘B(Q) my ) Let o(p) be the projection of
® €Q to the coordinate space v ,. Then <%,o( p)} is
a sequence of independent random variables defined
by the probability space (Q,:’B(Q) my )

Suppose se D,

-k _k

I (s5,0) =H(1 _Mp)ap) Mj H(l ) Mp)(f(p)) |
p piA p

i ps 25-1
Then [1] and [4] show that L} (s,w) is an H(D)-
valued random element defined on the probability
(Q,B(Q) m, ). Denote by P, the

distribution of the random element L’g (s,m), i.e.,

space

P, (4)=my (0cQ:Li(s.0)c 4) AecBHD)).

Lemma 4. The probability measure

vellh(s+ityed), AcB(H(D)),

converges weakly to P, as T — .

Proof. In view of validity of the Shimura-Ta-
niyama conjecture and Lemma 3 of [6] we have that
the probability measure

velLp(s +it)ed), AcBH(D)),
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=PLl T —> . The

function 4 :H(D)—> H(D) defined by the formula

h(f)=f*, f e H(D),is continuous. Therefore, by
a property of the weak convergence of probability
measures (Theorem 5.1 of [1]) we obtain the lem-
ma.

converges weakly to Py as

Now let V>0, and

D, —{seC <o <= |t|<V}

Lemma 5. The probabllzty measure

def
Pr(A) =v, ([(s+it)ed) AeBH(D,)).
converges weakly to m,, (L', (s,0) € A)

AeBHD,) as T > .

Proof. Since the function defined by coordinate
restriction is continuous, the lemma follows from
Lemma 4 in the same way as Lemma 4.

Lemma 6. Suppose that L;(s)#0onD. Then
the probability measure

v (s+it)ed) AeBHD,)).
converges weakly to m,; (L.} (s,0) € 4)

AeBHD,) ,as T —> .
Proof. The metric d satisfies the equality

d(} fJ d(fi. ) firfr € HDy)

Therefore, the function h:H (D, ) — M(D))

given by the formula A(f)= "', fe H(Dy) is
continuous, and the lemma is consequence of its
hypothesis and Lemma 5.

A density lemma
Let a, ey and seD,,

2
Cl
2s5-1

A
*klog 1_(p—zap+
)= i

g (Saa -
T Mp)a
p

Lemma 7. The set of all convergent series
ng(s,ap) is dense in H(D,,).
P

prlA

Proof. In [6], Lemma 8, it was proved that the

set of all convergent series Zg »(8:a,) is dense in
p

H(D,), where

180

c(pla, a2
_log 1- s + 2s+1 —K f p|q’
P
gp(sﬁap): ( )
c(p)a
—log(l— o ”J 7 rlq.

and c(p)are the coefficients of L-functions attached
to newforms of weight x and level g. Since, by [2],
g,(s,a,) with x =2 differs from g,(s,a,) only
by a fixed factor +k, the assertion of the lemma
follows from Lemma 8 of [6].

The support of the limit measures in Lemmas 5
and 6

The proof of Theorems 2 and 3 based
on Lemma 7 and the support of the measure
my 0 eQ: L (s.0)ed) AeB(H(D,)). Let
S, ={geH(D,): g(s)#0 or g(s) = 0}.

Lemma 8. The support of the measure
my @) eQ: Lék (s,m)eA), Ae B(H(D,),is the set S, .

Proof. We have mentioned that {o(p)}is a
sequence of independent random variables defined
on the probability space (Q,:’B(Q) my, ) Let

x,=x,(s)=g,(s,0(p)),

then {x( p)} is a sequence of independent H(D)-
valued random elements. Since the support of each
o(p)is the unit circle vy, the support of the random
elements x,(s) is the set

{ge HDD)) : g(s)= gp(s, a) with |a| = 1}.

Therefore, by Theorem 1.7.10 of [3] the
support of the random element

logLEk (s,0) = pr (s)
p

is the closure of the set of all convergent series

ng(s,ap)a ap EY :
P

By Lemma 7 the set of these series is dense
in H(D,). The function % : H(D,) — H(D,) given by
the formula /(g) = exp{g}, g € H(D,), is continuous
sending logL;*(s,m) to L (s,w)and H(D,) to
S,\ {0}. Therefore, the support S 12 of the random
element log L} (s,w) contains the setS \ {0}. Since

the support is a closed set, by the Hurw1tz theorem
[8] we obtain that S, \ {0} =S,,. This gives

S, S ..
Vo=t

3)

On the other hand, Lik (s,m) is an almost surely
convergent product of non-vanishing factors.
Therefore, in virtue of the Hurwitz theorem again
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we find that L3 (s,0) € S, . Hence S@k c Sy, and
this together with (3) implies the lemma.

Proofs of Theorems

Proof of Theorems 2 and 3. Let K be an
arbitrary compact subset of D with connected
complement. Then, clearly, there exists a number
V>0suchthatKcD,.

First we suppose that the function f{s) in
Theorems 2 and 3 has a non-vanishing continuation
to D, and denote by G the set of functions g € H(D,)
satisfying the inequality

sup [ g(s) - f(s) <.

sek
Obviously, G is an open set, and by Lemma 8§ we
have that G — §,. Therefore, properties of the weak
convergence of probability measures [1] as well as
of the support in view of Lemmas 5 and 6 yield

L (s +it)= f(s)|< gj >

liminf v, (sup
T— sek

> my (e Q: L2 (s.0) €G)> 0. @)

Now let for f{s) the hypotheses of Theorems 2
and 3 be satisfied. Then by the Mergelyan’s theorem
(see [10]) we can find a sequence of polynomials
p,(s)}such that p (s) — f(s), n — oo, uniformly on
K. Then there exists n, such that P, #0on K, and

€
sup| f(s)—p,, (s)[<—. (5)
sek 4

Using the well-known properties of polynomials and
the Mergelyan’s theorem again, we find a polynomial
q(s) such that

; €
sup| p,,, ()= e’ < T

sek

Hence and from (5)

sup| /() ~ " [< . ©)

sek

However, ¢/ # 0. Therefore, by (4)

<§j>0,
2

and this together with (6) proves the theorems.

LF (s +it)— e’

liminfv , (sup
T—» sek
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THE UNIVERSALITY OF DEGREES OF L-FUNCTIONS OF ELLIPTIC CURVES

Martynas Latakas, Virginija Garbaliauskiené, Antanas Garbaliauskas

Summary

Let E be an elliptic non-singular curve over the field of rational numbers Q defined by the Weierstrass equation

Vv=x'+ax+b, a bel.

Let us denote by A= —16(4a’ + 27b%) the discriminant of the curve E. For each prime p let us mark the number of
solutions of congruence y* = x* + ax+ b(mod p) v(p) and let A(p) = p — v(p). The L-function L (s) of elliptic curves, where

s = o + it is a complex variable, is defined by Euler product

-1
L,(s) :H[l—x(—f)J

plA p

-1
A 1
H(l—@+ﬁJ ;

p p

where p is prime number, v(p) is the number of solutions of the congruence y? = x* + ax+ b(mod p), A(p) = p — v(p) and
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s = o + it is a complex variable. In the paper, a survey on universality theorems (in Voronin’s sense) for L-functions and
the degrees of L-functions of elliptic curves over the field of rational numbers is given.

The proof of the universality of L-functions of elliptic curves is based on limit theorems in the sense of weak
convergence of probability measures in functional spaces.

Keywords: elliptic curve, L-function, universality, limit theorem.

ELIPSINIU KREIVIU L-FUNKCIJU LAIPSNIU UNIVERSALUMAS
Martynas Latakas, Virginija Garbaliauskiené, Antanas Garbaliauskas
Santrauka

Tegul E — elipsiné nesinguliarioji kreivé vir§ racionaliyjy skaiciy kiino, duota Vejetraso lygtimi
V=x+axtbabel,

sudiskriminantu A=-16(4a’ +275%). Kiekvienam pirminiam p pazymékime v(p) lyginio y* = x* + ax+ b(mod p) sprendiniy
skaic¢iy ir A(p) = p — v(p). Elipsiniy kreiviy L-funkcija L (s), kur s = ¢ + it yra kompleksinis kintamasis, apibréZiama

Oilerio sandauga
1 -1
A A 1
Ly(s)= H(l—(—ﬂmj H(l—(—f)Jfﬁj :
pIA P pla p p

Funkcija L (s) yra analiziné pusplok$tuméje D = {se C:o > 5} ir analizi$kai pratgsiama | visa kompleksing plokstuma,

o analizinés savybés sutampa su svorio 2 naujyjy formy savybémis.

Straipsnyje pateikiama tolydaus tipo ribiné teorema, tir§tumo bei atramos lemos ir jrodoma tolydi universalumo
teorema elipsiniy kreiviy L-funkcijos laipsniams Lik (s), kur k£ eN.

Prasminiai Zodziai: elipsiné kreivé, L-funkcija, universalumas, ribiné teorema.
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