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THE UNIVERSALITY OF DEGREES OF L-FUNCTIONS OF ELLIPTIC CURVES

Martynas Latakas, Virginija Garbaliauskienė, Antanas Garbaliauskas
Šiauliai University, Šiauliai College

Introduction

Let E be an elliptic curve defined by the 
Weierstrass equation y2 = x3 + ax + b with a, b ∈ Z. 
The number Δ = –16(4a3 + 27b2) is the discriminant 
of E. Suppose that Δ ≠ 0, i.e. the curve E is non-
singular.

For each prime p let us mark by v(p) 
the number of solutions of the congruence  
y2  ≡ x3 + ax + b(mod p), 
and let λ(p) = p – v(p). Then the result of H. Hasse 
asserts that .2)( pp <  (1)

H. Hasse and H. Weil attached to the curve 
E the L-function defined by the following Euler 
product
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where s = σ + it is a complex variable. The latter 

product converges absolutely for 
2
3

> , and in this 

region )(sLE can be written as the Dirichlet series
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H. Hasse conjectured that the function LE(s) 
has analytic continuation to an entire function and 
satisfies the functional equation
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, where 

q is a positive integer composed from  prime factors 
of the discriminant Δ, η = ±1 is the root number, and 
Г(s), as usual, denotes the Euler gamma-function.

Now we shortly discuss L-functions attached 
to cusp forms. Let
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be the full modular group, and let q be a positive 
integer. The subgroup of SL(2,Z)
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is called the Hecke subgroup or congruence subgroup 
modq. Let к be an even positive integer, and let F(z) 
be a holomorphic function in the upper half-plane Im 
z > 0 Then the function F(z) is called a cusp form of 
weight к and level q provided that
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and 

provided that F(z) are holomorphic and vanishing at 
the cusps. In this case F(z) has at ∞ the following 
Fourier series expansion
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Denote by SK (Г0(q)) the space of all cusp forms 
of weight к and level q. Let q1|q. Then a function 

))(()( 10 qSzF Γ∈ can also be an element of 
))(( 0 qS Γ . A cusp form ))(()( 0 qSzF Γ∈ is called 

a newform if )(zF is not a cusp form of a level 
less than q, and if )(zF is an Hecke eigenform, i. 
e. )(zF is an eigenfunction FmcFTm )(=  of all the 
Hecke operators Tm, m = 1, 2, ... From this it follows 
that ,0)1( ≠c  and we may assume that F(z) is a nor-
malized newform with 1)1( =c .

E. Hecke attached to a cusp form F(z) with the 
Fourier expansion (2) the L-function
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The latter Dirichlet series converges absolutely for 

2
1+

> and defines there a holomorphic function. 

Moreover, since F(z) is a newform, L(s, F), for 

2
1+

>  has the Euler product expansions
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Also, it is well known that L(s, F) is analytically 
continuable to the entire function and satisfies 
functional equation

),,()(
2

)1(),()(
2

2 FsLs
q

FsLs
q

E

ss

−−Γ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=Γ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

 
where ε = ±1 is the sign of the functional equation 
corresponding to the eigenvalues ±1 of the Atkin-

Lehner involution ⎟⎟
⎠

⎞
⎜⎜
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⎛ −
01

0 q
 on ))(( 0 qS Γ .

By the Shimura-Taniyama conjecture every 
L-function LE(s) attached to a non-singular elliptic 
curve E over the rationals is the L-function attached 
to certain newform F of weight 2 of some Hecke 
subgroup. This conjecture as well as the Hasse 
conjecture on analytic continuation of LE(s) was 
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partially proved by A  Wiles [11], and a full proof 
was recently given in [2]. Consequently, instead of 
LE(s) we may consider the L-functions attached to 
newforms.

One of the remarkable properties of functions 
given by Dirichlet series is their universality. 
This property for the Riemann zeta-function was 
discovered by S. M. Voronin [9]. Later many authors 
generalized and improved the Voronin theorem (see 
survey papers [5], [7]). There exists the Linnik-
Ibragimov conjecture that all functions given by 
Dirichlet series, analytically continuable to the 
left of the half-plane of absolute convergence, and 
satisfying some growth conditions, are universal 
in the Voronin sense. It seems to be that the latter 
conjecture is very difficult.

In [6] the universality of L-functions attached 
to newforms was proved, and from this some other 
properties for L(s, F) were derived. Therefore, we 
have the following analogue of the Voronin theorem 
for L-functions of elliptic curve. Let meas {A} denote 
the Lebesque measure of the set A ⊂ R, and let T > 0, 

{ },...:],0[meas1(...) T
TT ∈= τν

 
where in place of dots 

a condition satisfied by τ is to be written. C stands 
for the complex plane.

Theorem 1. Suppose that E is a non-sin-
gular elliptic curve over the field of rational 
numbers. Let K be a compact subset of the strip 
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and let f(s) be a continuous non-vanishing function 
on K which is analytic in the interior of K. Then, for 
every ,0>
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Let k be a positive integer. The aim of this 
note is to generalize Theorem 1 for the function

)(sLk
E . 

Theorem 2. Suppose that E is a non-singular 
elliptic curve over the field of rational numbers. Let 
K be a compact subset of the strip D with connected 
complement, and let f(s) be a continuous non-
vanishing function on K which is analytic in the 
interior of K. Then for every ε > 0, and k ∈ N,
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This theorem shows that there exist many 
translations )( isLk

E +  which approximate a given 
analytic function f(s): the set of τ has a positive 
lower density.

It turns out that if for )(sLk
E the analogue of 

the Riemann hypothesis is valid, then )(1 sLE
−  is also 

universal.

Theorem 3. Suppose that LE (s) ≠ 0 on D. Then 
the assertion of Theorem 1 is true for the function 

)(sL k
E
− .

Limit theorems

Let }{∞=∞ UCC be the Riemann sphere with 
spherical metric d defined by the formulae
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Let G be a region on C, and let M (G)denote the 

space of meromorphic function ),(: dGg ∞→ C
equipped with the topology of uniform convergence 
on compacta. In this topology, a sequence 

)()( GMsgn ∈  converges to a function )()( GMsg ∈  

if 0))(),(( →sgsgd n  as ∞→n , uniformly on com-
pact subsets of G. The space )(GH of analytic of G 
functions is a subspace of )(GM .

Let }1||:{ =∈= ss C  and ∏=Ω
p

p , where 

γp = γ for each prime p. With product topology and 
pointwise multiplication the infinite-dimensional 
torus Ω  is a compact topological Abelian group. 
Therefore, the probability Haar measure Hm  on 
( ))(, ΩΩ B  ( )(SB  stands for the class of Borel sets 
of the space S) exists, and we have a probability 
space ( )Hm),(, ΩΩ B . Let )( p  be the projection of 

Ω∈  to the coordinate space p . Then { })( p  is 
a sequence of independent random variables defined 
by the probability space ( )Hm),(, ΩΩ B .

Suppose Ds ∈ ,
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Then [1] and [4] show that ),(sLk
E  is an H(D)-

valued random element defined on the probability 
space ( )Hm),(, ΩΩ B . Denote by k

ELP  the 
distribution of the random element ),(sLk

E , i. e.,

( ) )).((,),(:)( DHAAsLmAP k
EHLk

E
B∈∈Ω∈= ωω

Lemma 4. The probability measure

( ) )),((,)( DHAAisLk
ET B∈∈+ τν

converges weakly to k
ELP  as ∞→T .

Proof. In view of validity of the Shimura-Ta-
niyama conjecture and Lemma 3 of [6] we have that 
the probability measure

( ) )),((,)( DHAAisLET B∈∈+ τν
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converges weakly to 1
EE LL PP =  as ∞→T . The 

function )()(: DHDHh →  defined by the formula 
kffh =)( , )(DHf ∈ , is continuous. Therefore, by 

a property of the weak convergence of probability 
measures (Theorem 5.1 of [1]) we obtain the lem-
ma.

Now let 0>V , and
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Lemma 5. The probability measure
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converges weakly to ),),(( AsLm k
EH ∈  

))(( VDHA B∈  as ∞→T .
Proof. Since the function defined by coordinate 

restriction is continuous, the lemma follows from 
Lemma 4 in the same way as Lemma 4.

Lemma 6. Suppose that 0)( ≠sLE on D. Then 
the probability measure

( ) )),((,)( V
k
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EH ∈−  

))(( VDHA B∈ , as ∞→T .
Proof. The metric d satisfies the equality
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Therefore, the function )()(: VV DMDHh →

given by the formula ,)( 1−= ffh  )( VDHf ∈  is 
continuous, and the lemma is consequence of its 
hypothesis and Lemma 5.

A density lemma
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Lemma 7. The set of all convergent series
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p
pp asg ),(  is dense in .)( VDH

Proof. In [6], Lemma 8, it was proved that the 
set of all convergent series ∑

p
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and c(p)are the coefficients of  L-functions attached 
to newforms of weight к and level q. Since, by [2], 

),(ˆ pp asg with 2=  differs from ),( pp asg  only 
by a fixed factor k± , the assertion of the lemma 
follows from Lemma 8 of [6].

The support of the limit measures in Lemmas 5 
and 6

The proof of Theorems 2 and 3 based 
on Lemma 7 and the support of the measure 

( ) )).((,),(: V
k

EH DHAAsLm B∈∈Ω∈ ±  Let
{ 0)(:)( ≠∈= sgDHgS VV  or g(s) ≡ 0}.
Lemma 8. The support of the measure 
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EH Ω∈ ± ∈A), ))(( VDHA B∈ ,is the set .VS

Proof. We have mentioned that { })( p is a 
sequence of independent random variables defined 
on the probability space ( )Hm),(, ΩΩ B . Let

)),(,()( psgsxx ppp ==

then { })( px  is a sequence of independent H(DV)-
valued random elements. Since the support of each 

)( p is the unit circle γ, the support of the random 
elements )(sx p  is the set

{g ∈ H(DV) : g(s) = gp(s, a) with |a| = 1}.

Therefore, by Theorem 1.7.10 of [3] the 
support of the random element

∑=±

p
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k
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is the closure of the set of all convergent series
∈∑ p

p
pp aasg ,),( .

By Lemma 7 the set of these series is dense 
in H(DV). The function h : H(DV) → H(DV) given by 
the formula h(g) = exp{g}, g ∈ H(DV), is continuous 
sending ),(log sL k

E
±  to ),(sL k

E
± and H(DV) to 

SV \ {0}. Therefore, the support k
ELS ± of the random 

element ),(log sL k
E
±  contains the set SV \ {0}. Since 

the support is a closed set, by the Hurwitz theorem 
[8] we obtain that .}0{\ VV SS =  This gives 

k
ELV SS ±⊆ . (3)

On the other hand, ),(sL k
E
±  is an almost surely 

convergent product of non-vanishing factors. 
Therefore, in virtue of the Hurwitz theorem again 
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we find that V
k

E SsL ∈± ),( . Hence ,VL SS k
E

⊆±  and 
this together with (3) implies the lemma.

Proofs of Theorems

Proof of Theorems 2 and 3. Let K be an 
arbitrary compact subset of D with connected 
complement. Then, clearly, there exists a number  
V > 0 such that K ⊂ DV.

First we suppose that the function f(s) in 
Theorems 2 and 3 has a non-vanishing continuation 
to DV, and denote by G the set of functions g ∈ H(DV) 
satisfying the inequality

.|)()(|sup <−
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Obviously, G is an open set, and by Lemma 8 we 
have that G ⊂ SV. Therefore, properties of the weak 
convergence of probability measures [1] as well as 
of the support in view of Lemmas 5 and 6 yield
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Now let for f(s) the hypotheses of Theorems 2 
and 3 be satisfied. Then by the Mergelyan’s theorem 
(see [10]) we can find a sequence of polynomials 
{pn(s)}such that pn(s) → f(s), n → ∞, uniformly on 
K. Then there exists n0 such that pn0

 ≠ 0 on K, and
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Using the well-known properties of polynomials and 
the Mergelyan’s theorem again, we find a polynomial 
q(s) such that
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,0
2

)(supinflim )( >⎟
⎠
⎞

⎜
⎝
⎛ <−+±

∈∞→

sqk
E

Ks
TT

eisL

and this together with (6) proves the theorems.
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THE UNIVERSALITY OF DEGREES OF L-FUNCTIONS OF ELLIPTIC CURVES
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Summary

Let E be an elliptic non-singular curve over the field of rational numbers Q defined by the Weierstrass equation

y2 = x3 + ax+ b, a, b ∈ Z.

Let us denote by Δ = –16(4a3 + 27b2) the discriminant of the curve E. For each prime p let us mark the number of 
solutions of congruence y2 = x3 + ax+ b(mod p) v(p) and let λ(p) = p – v(p). The L-function LE(s) of elliptic curves, where 
s = σ + it is a complex variable, is defined by Euler product
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where p is prime number, v(p) is the number of solutions of the congruence y2 = x3 + ax+ b(mod p), λ(p) = p – v(p) and  
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s = σ + it is a complex variable. In the paper, a survey on universality theorems (in Voronin’s sense) for L-functions and 
the degrees of L-functions of elliptic curves over the field of rational numbers is given.

The proof of the universality of L-functions of elliptic curves is based on limit theorems in the sense of weak 
convergence of probability measures in functional spaces.

Keywords: elliptic curve, L-function, universality, limit theorem.

ELIPSINIŲ KREIVIŲ L-FUNKCIJŲ LAIPSNIŲ UNIVERSALUMAS

Martynas Latakas, Virginija Garbaliauskienė, Antanas Garbaliauskas

Santrauka

Tegul E – elipsinė nesinguliarioji kreivė virš racionaliųjų skaičių kūno, duota Vejetrašo lygtimi  

y2 = x3 + ax+ b, a, b ∈ Z,

su diskriminantu Δ = –16(4a3 + 27b2). Kiekvienam pirminiam p pažymėkime v(p) lyginio y2 = x3 + ax+ b(mod p) sprendinių 
skaičių ir λ(p) = p – v(p). Elipsinių kreivių L-funkcija LE(s), kur s = σ + it yra kompleksinis kintamasis,  apibrėžiama 
Oilerio sandauga 
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Funkcija LE(s) yra analizinė pusplokštumėje 
⎭
⎬
⎫

⎩
⎨
⎧ >∈=

2
3

:CsD  ir analiziškai pratęsiama į visą kompleksinę plokštumą, 

o analizinės savybės sutampa su svorio 2 naujųjų formų savybėmis.
Straipsnyje pateikiama tolydaus tipo ribinė teorema, tirštumo bei atramos lemos ir įrodoma tolydi universalumo 

teorema elipsinių kreivių L-funkcijos laipsniams )(sL k
E
± , kur .N∈k

Prasminiai žodžiai: elipsinė kreivė, L-funkcija, universalumas, ribinė teorema.

Įteikta 2009-09-02


