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Abstract. In [2], optimal bounds for the remainder terms in asymptotic expansions for Euler’s approx-
imations of semigroups were derived. The approach was based on applications of the Fourier–Laplace
transforms, which allowed one to reduce the problem to estimation of error terms in the Law of Large
Numbers. In this paper, we propose an alternative (direct) approach based on application of certain integro-
differential identities (so-called multiplicative representations of differences). Such identities were intro-
duced by Bentkus in [3] and applied (see Bentkus and Paulauskas [4]) to derive the optimal convergence
rates in Chernoff-type lemmas and Euler’s approximations of semigroups.
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1. INTRODUCTION AND RESULTS

Let A be a possibly unbounded linear operator on a complex Banach spaceX and
R(λ) = (I + λA)−1 be the resolvent ofA. Let E(t) = exp{−tA}, t � 0, be a semi-
group of operators with generatorA. We consider the functionst �→ Rn(t/n) =
(I + tA/n)−n, n ∈ N, which are called the Euler’s approximations of the semi-
groupE(t).

We consider asymptotic expansions of Euler’s approximations

(I + tA/n)−n = exp{−tA} + a1

n
+ . . . + ak

nk
+ o

( 1

nk

)
asn → ∞, (1.1)

with coefficientsak depending onE(t) and independent ofn. We also obtain asymp-
totic expansions of the semigroup

exp{−tA} = (I + tA/n)−n + b1

n
+ . . . + bk

nk
+ o

( 1

nk

)
asn → ∞, (1.2)

with bk which are linear combinations of functionst �→ (tA)mRn(t/n) with coeffi-
cients independent ofn. We provide explicit and optimal bounds for the remainder
terms in (1.1) and (1.2).
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To obtain asymptotic expansions we use a decomposition of Euler’s approximations
which is an integro-differential identity. Such an approach was introduced by Bentkus
in [3] for analysis of errors in the Central Limit Theorem and in approximations by ac-
companying laws and applied by Bentkus and Paulauskas in [4] to derive optimal con-
vergence rates in Chernoff-type lemmas and Euler’s approximations of semigroups.
It consists of a choice of a curve, sayγ (τ), 0� τ � 1, connecting two close objects,
saya andb, such thatγ (0) = a andγ (1) = b. In our case, we havea = exp{−tA},
b = Rn(t/n) andγ (τ) = Rn(τ t/n)exp{−(1− τ )tA} (see Section 4 in Bentkus ([3]).
Then we apply the mean-value theorem (or Newton-Leibnitz formula) along the curve,
that is,b − a = ∫ 1

0 γ ′(τ )dτ . In our case, we have

Rn(t/n) − exp{−tA} = 1

n

∫ 1

0
τ (tA)2Rn+1(τ t/n)E(t (1− τ ))dτ. (1.3)

Iterative applications of this identity lead to asymptotic expansions ofRn(t/n)

andE(t).
Using this approach, Bentkus and Paulauskas in [4] provided a rather short and

simple proof of �n = O(n−1), where �n = ‖Rn(t/n) − E(t)‖, in the case of
bounded holomorphic semigroups. For semigroups in Hilbert spaces generated bym-
sectorial operators, Cachia and Zagrebnov in [6] obtained the bound�n = O(n−1 lnn).
Paulauskas in [9] improved the bound to the optimal O(n−1) using a new method based
on the results and methods of probability theory related to the Central Limit Theorem.
Cachia in [5] extended the bound O(n−1 lnn) to the case of bounded holomorphic
semigroups and noticed that the Paulauskas argument can be applied to improve the
bound to O(n−1). Proofs in [6], [9] and [5] are rather complicated, and it is not clear
how to extend such proofs in order to obtain asymptotic expansions. Bentkus in [2] ob-
tained asymptotic expansions for Euler’s approximations of semigroups and optimal
error bounds using another approach based on applications of the Fourier–Laplace
transforms and a reduction of the problem to the convergence rates and asymptotic ex-
pansions in the Law of Large Numbers. In particular, for bounded differentiable semi-
groups, the error bound�n = O(n−1) was obtained. It covers and refines all known
related results obtained for semigroups of operators in Banach spaces. An alternative
(direct) approach we use in this paper does not involve the Laplace transforms. The
proofs are much simpler and shorter here; besides, this method also gives us a con-
structive description of the terms of the expansion.

To make the exposition more comprehensible, we first formulate the results in the
special case of short expansions, i.e., expansions with remainders O(n−2). We start
with a related integro-differential identity.

THEOREM 1.1. We have

(I + tA/n)−n = exp{−tA} + (tA)2

2n
exp{−tA} + D1, (1.4)
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where the remainder term D1 is given by

D1 = 1

n2
(D1,1 + D1,2) (1.5)

with

D1,1 = −
∫ 1

0
τ2(tA)3Rn+1(τ t/n)E(t (1− τ ))dτ

and

D1,2 =
∫ 1

0

∫ 1

0
τ3

1τ2(tA)4Rn+1(τ1τ2t/n)E(t (1− τ1τ2))dτ1 dτ2.

To estimate the remainder termD1 in expansion (1.4), we use the same conditions
as in Theorem 1.3 of Bentkus and Paulauskas in [4]. These conditions are satisfied by
bounded holomorphic semigroups (see Bentkus and Paulauskas [4]).

THEOREM 1.2. Assume that there exists a constant K independent of n and t such
that

n‖tA(I + tA)−n‖ � K (1.6)

and

‖exp{−tA}‖ � K, ‖tAexp{−tA}‖ � K (1.7)

for all n = 1,2, . . . and t � 0. Then the remainder term D1 in asymptotic expansion
(1.4) satisfies

‖D1‖ � C1

n2
K4,

where C1 is an absolute positive constant.

Now we consider the so-called inverse expansions, i.e., expansions where the expo-
nentE(t) is approximated byRn(t/n). Again we start with a short expansion with the
remainder term O(n−2).

THEOREM 1.3. We have

exp{−tA} = (I + tA/n)−n + b1

n
+ �1, (1.8)

where b1 = − (tA)2

2 (I + tA/n)−n. The remainder term �1 is given by

�1 = −D1 − (tA)2

2n
�0, (1.9)
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where D1 is given by (1.5), and

�0 = −1

n

∫ 1

0
τ (tA)2Rn+1(τ t/n)E(t (1− τ ))dτ.

To estimate the remainder term�1 in expansion (1.8), we use the same conditions
as in Theorem 1.2.

THEOREM 1.4. Assume that there exists a constant K independent of n and t such
that conditions (1.6) and (1.7) are satisfied for all n = 1,2, . . . and t � 0. Then the
remainder term �1 in asymptotic expansion (1.8) satisfies

‖�1‖ � C1

n2
K5,

where C1 is an absolute positive constant.

Now we generalize the results of Theorems 1.1–1.4 for asymptotic expansions of
any given lengthk. We first need some additional notation. Henceforth,

∑
α means

summation over all integer componentsα1, . . . , αk of vectorsα = (α1, . . . , αk) which
satisfy certain conditions. Write

cm,1 = 1

m + 1
and cm,j = 1

m + j

∑
i

1

i2i3 . . . ij
for j = 2, . . . ,m, (1.10)

wherei = (i2, i3, . . . , ij ) satisfy 2� ij � m − j + 2 andin+1 + 2 � in � m + j −
2(n − 1) for n = 2,3, . . . , j − 1. Then the coefficientsam in (1.1) are given by

am =
m∑

j=1

cm,j (−tA)m+j exp{−tA}. (1.11)

For example, we have

a1 = (tA)2

2
exp{−tA},

a2 = − (tA)3

3
exp{−tA} + (tA)4

8
exp{−tA},

a3 = (tA)4

4
exp{−tA} − (tA)5

6
exp{−tA} + (tA)6

48
exp{−tA}.

We note that an alternative form of the coefficientscm,j is

cm,j = 1

j !
∑

i1+...+ij=m+j

1

i1i2 . . . ij
,
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wherei1, i2, . . . , ij � 2 and 1� j � m. Here
∑

i1+...+in=k means summation over all
distinct orderedn-tuples of positive integersi1, . . . , in whose elements sum tok.

We also define the functions

σk,j = σk,j (τ1, . . . , τj ) = τ
k+j

1

∑
i

τ
i2
2 . . . τ

ij
j for j = 2, . . . , k + 1, (1.12)

wherei = (i2, i3, . . . , ij ) satisfy 1�ij �k − j + 2 andin+1 + 2�in�k + j − 2(n− 1)

for n = 2,3, . . . , j − 1. Whenj = 1, σk,1 = τ k+1
1 .

To shorten the notation for multiple integrals we use a sequence of independent
identically distributed random variablesτ, τ1, τ2, . . . uniformly distributed in the in-
terval [0,1]. Then we can write

∫ 1
0 f (τ)dτ = Ef (τ) for any functionf . In the case

wheref is a function ofk variables, we writeEf (τ1, . . . , τk) instead of ak-tuple
integral.

We also introduce the indicator functions

I1,k = I{τ2 � 1/2, . . . , τk � 1/2}, k � 2,

Im,k = I{τm � 1/2, τm+1 � 1/2, . . . , τk � 1/2}, k � 3,

for m = 2, . . . , k − 1, and

Ik,k = I{τk � 1/2}, k � 2.

THEOREM 1.5. We have

(I + tA/n)−n = exp{−tA} + a1

n
+ . . . + ak

nk
+ Dk, k = 1,2, . . . , (1.13)

where am are given by (1.11). The remainder term is given by

Dk = 1

nk+1

k+1∑
j=1

Dk,j , (1.14)

where

Dk,j = Eσk,j (−tA)k+j+1Rn+1(τ1 . . . τj t/n)E(t (1− τ1 . . . τj )) (1.15)

with σk,j given by (1.12).

THEOREM 1.6. Assume that there exists a constant K independent of n and t such
that conditions (1.6) and (1.7) are satisfied for all n = 1,2, . . . and t � 0. Then the
remainder term Dk in asymptotic expansion (1.13) satisfies

‖Dk‖ � Ck

nk+1
K2k+2, k = 1,2, . . . (1.16)
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with a positive constant Ck depending only on k.

Now we provide asymptotic expansions of the semigroupE(t) via Euler’s approx-
imationsRn(t/n). First, we define

dm =
m∑

i=1

cm,i(−tA)m+i , (1.17)

wherecm,i are given by (1.10). Then the coefficientsbm in (1.2) are given by

bm = −
m∑

j=1

djbm−j , m = 1,2, . . . , b0 = (I + tA/n)−n. (1.18)

We note thatbm can be represented as

bm = hm(I + tA/n)−n,

where

hm = (−1)m
m∑

i=1

cm,i(tA)m+i . (1.19)

For example, we have

b1 = − (tA)2

2

(
I + tA

n

)−n

,

b2 = (tA)3

3

(
I + tA

n

)−n + (tA)4

8

(
I + tA

n

)−n

,

b3 = − (tA)4

4

(
I + tA

n

)−n − (tA)5

6

(
I + tA

n

)−n − (tA)6

48

(
I + tA

n

)−n

.

THEOREM 1.7. We have

exp{−tA} = (I + tA/n)−n + b1

n
+ . . . + bk

nk
+ �k, k = 1,2, . . . , (1.20)

where bm are given by (1.18). The remainder term is given by

�k = −Dk − d1

n
�k−1 − . . . − dk

nk
�0, (1.21)

where Dk is given by (1.14).
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THEOREM 1.8. Assume that there exists a constant K independent of n and t such
that conditions (1.6) and (1.7) are satisfied for all n = 1,2, . . . and t � 0. Then the
remainder term �s in asymptotic expansion (1.20) satisfies

‖�s‖ � Cs

ns+1
K2s+3, s = 1,2, . . . (1.22)

with a positive constant Cs depending only on s.

2. PROOFS

Proof of Theorem 1.1. From (1.3) we have

(I + tA/n)−n = exp{−tA} + D0, (2.1)

where

D0 = 1

n

∫ 1

0
τ1(tA)2Rn+1(τ1t/n)E(t (1− τ1))dτ1 = 1

n
D0,1 (2.2)

(see (4.2) in Bentkus [3]).
It is easy to check the algebraic identity

Rn+1(τ1t/n) = Rn(τ1t/n) − 1

n
τ1tARn+1(τ1t/n). (2.3)

Also, from (2.1) and (2.2) we obtain that

Rn(τ1t/n)=exp{−τ1tA}+ 1

n

∫ 1

0
τ2

1τ2(tA)2Rn+1(τ1τ2t/n)E(τ1t (1−τ2))dτ2. (2.4)

Substituting (2.3) and then (2.4) into expression ofD0,1, we get

D0,1 = 1

n
D1,1 + (tA)2 exp{−tA}

2
+ 1

n
D1,2, (2.5)

where

D1,1 = −
∫ 1

0
τ2

1 (tA)3Rn+1(τ1t/n)E(t (1− τ1))dτ1

and

D1,2 =
∫ 1

0

∫ 1

0
τ3

1τ2(tA)4Rn+1(τ1τ2t/n)E(t (1− τ1τ2))dτ1 dτ2.
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Substituting expression (2.5) into (2.2), we obtain the asymptotic expansion

(I + tA/n)−n = exp{−tA} + a1

n
+ D1,

where

a1 = (tA)2 exp{−tA}
2

and

D1 = 1

n2
(D1,1 + D1,2).

In order to prove Theorem 1.2, we first prove the following:

LEMMA 2.1. Assume that there exists a constant K independent of n and t such
that

n‖tA(I + tA)−n‖ � K

and

‖tAexp{−tA}‖ � K

for all n = 1,2, . . . and t � 0. Then

nm‖(tA)m(I + tA)−n‖ � mmKm (2.6)

and

‖(tA)m exp{−tA}‖ � mmKm (2.7)

for all m = 1,2, . . ..

Proof. We first prove (2.6). We consider only the case wheren = ms, since in the
casesn = ms+1,n = ms+2,. . . ,n = ms+m−1, the proof is similar. So, forn = ms,
we have

nm‖(tA)m(I + tA)−n‖ � nm‖tA(I + tA)−s‖m � nm

sm
Km = mmKm.

Now let us prove (2.7). Using the semigroup property exp{−(t + s)A}
= exp{−tA}exp{−sA}, we obtain

‖(tA)m exp{−tA}‖ � mm‖tA/mexp{−tA/m}‖m � mmKm.
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Proof of Theorem 1.2. From (1.5) we have

‖D1‖ � 1

n2

(‖D1,1‖ + ‖D1,2‖
)
.

Let us first estimate‖D1,1‖. It is clear that‖D1,1‖ � θ1,1 + θ1,2, where

θ1,1 =
∫ 1

1/2

∥∥τ2(tA)3Rn+1(τ t/n)E(t (1− τ ))
∥∥dτ

and

θ1,2 =
∫ 1/2

0

∥∥τ2(tA)3Rn+1(τ t/n)E(t (1− τ ))
∥∥dτ.

Let �1,1 = ‖(τ tA)3Rn+1(τ t/n)‖. Then

θ1,1 =
∫ 1

1/2
�1,1

‖E(t (1− τ ))‖
τ

dτ.

By Lemma 2.1 we have�1,1 � 27K3 and‖E(t (1− τ ))‖ � K . Integrating over the
interval[1/2,1], we get

θ1,1 � 27 ln2K4.

Let us estimateθ1,2. Write

�1,2 = ‖(τ tA)2Rn+1(τ t/n)‖, �1,3 = ‖(1− τ)tAE(t (1− τ ))‖.
Then

θ1,2 =
∫ 1/2

0
�1,2�1,3

1

(1− τ )
dτ.

By Lemma 2.1 we have�1,2 � 4K2 and �1,3 � K . Integrating over the interval
[0,1/2], we get

θ1,2 � 4 ln2K3

and (note thatK � 1)

‖D1,1‖ � C1,1K
4,
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whereC1,1 is an absolute positive constant.

Now we estimate‖D1,2‖. It is clear that‖D1,1‖ � θ2,1 + θ2,2, where

θ2,1 =
∫ 1

0

∫ 1

1/2

∥∥τ3
1τ2(tA)4Rn+1(τ1τ2t/n)E(t (1− τ1τ2))

∥∥dτ1 dτ2

and

θ2,2 =
∫ 1

0

∫ 1/2

0

∥∥τ3
1τ2(tA)4Rn+1(τ1τ2t/n)E(t (1− τ1τ2))

∥∥dτ1 dτ2.

Write

�2,1 = ∥∥(τ1τ2tA)3Rn+1(τ1τ2t/n)
∥∥, �2,2 = ∥∥(1− τ1τ2)tAE(t (1− τ1τ2))

∥∥.

Then

θ2,1 =
∫ 1

0

∫ 1

1/2
�2,1�2,2

1

τ2
2 (1− τ1τ2)

dτ1 dτ2.

By Lemma 2.1 we have�2,1 � 27K3 and�2,2 � K . Integrating, we get

θ2,1 � 27(1/2+ 2 ln2)K4.

It remains to estimateθ2,2. Let

�2,3 = ∥∥τ1τ2tARn+1(τ1τ2t/n)
∥∥, �2,4 = ∥∥(1− τ1τ2)

3(tA)3E(t (1− τ1τ2))
∥∥.

Then

θ2,2 =
∫ 1

0

∫ 1/2

0
�2,3�2,4

τ2
1

(1− τ1τ2)3
dτ1 dτ2.

By Lemma 2.1 we have�2,3 � K and�2,4 � 27K3. Integrating, we get

θ2,2 � 27(7/4− 2 ln2)K4

and

‖D1,2‖ � C1,2K
4,

whereC1,2 is an absolute positive constant. Then

‖D1‖ � 1

n2

(‖D1,1‖ + ‖D1,2‖
)
� C1

n2
K4.
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Proof of Theorem 1.3. From Theorem 1.1 we have

exp{−tA} = (I + tA/n)−n − a1

n
− D1,

wherea1 = (tA)2

2 exp{−tA} and

exp{−tA} = (I + tA/n)−n + �0, (2.8)

where�0 = −D0. Substituting (2.8) into expression ofa1, we obtain

exp{−tA} = (I + tA/n)−n − (tA)2

2n

(
(I + tA/n)−n + �0

) − D1. (2.9)

Regrouping the terms in (2.9), we obtain asymptotic expansion (1.8).

Proof of Theorem 1.4. From Theorem 1.2 we have

‖D1‖ � c1

n2
K4.

Let us estimate‖(tA)2�0‖. It is clear that‖(tA)2�0‖ � 1
n
(θ1 + θ2), where

θ1 =
∫ 1

1/2

∥∥τ (tA)4Rn+1(τ t/n)E(t (1− τ ))
∥∥dτ

and

θ2 =
∫ 1/2

0

∥∥τ (tA)4Rn+1(τ t/n)E(t (1− τ ))
∥∥dτ.

Write �1 = ‖(τ tA)4Rn+1(τ t/n)‖. Then

θ1 =
∫ 1

1/2
�1

‖E(t (1− τ ))‖
τ3

dτ.

By Lemma 2.1 we have�1 � 44K4 and ‖E(t (1 − τ ))‖ � K . Integrating over the
interval[1/2,1], we get

θ1 � 384K5.

Now we estimateθ2. Let

�2 = ∥∥τ tARn+1(τ t/n)
∥∥, �3 = ∥∥(1− τ )3(tA)3E(t (1− τ ))

∥∥.
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Then

θ2 =
∫ 1/2

0
�2�3

1

(1− τ )3
dτ.

From (1.6) we have�2 � K and by Lemma 2.1 we have�3 � 27K3. Integrating over
the interval[0,1/2], we get

θ2 � 81K4/2

and (note thatK � 1)

‖(tA)2�0‖ � C0

n
K5,

whereC0 is an absolute positive constant. Then

‖�1‖ � ‖D1‖ + ‖(tA)2�0‖
2n

� C1

n2
K5.

Proof of Theorem 1.5. We prove the theorem using induction with respect tok. In
the casek = 0, we have

(I + tA/n)−n = exp{−tA} + D0, (2.10)

where

D0 = 1

n

∫ 1

0
τ1(tA)2Rn+1(τ1t/n)E(t (1− τ1))dτ1 = 1

n
D0,1 (2.11)

(see (4.2) in Bentkus [3]). The casek = 1 was proved in Theorem 1.1 (see also Ben-
tkus [3]).

Assume that (1.13) holds for 0,1, . . . , k − 1. Let us show that (1.13) holds fork as
well. To this end we have to show that

Dk−1 = ak

nk
+ Dk.

From (1.14) we have

Dk−1 = 1

nk

k∑
j=1

Dk−1,j , (2.12)

where

Dk−1,j = Eσk−1,j (−tA)k+jRn+1(τ1 . . . τj t/n)E(t (1− τ1 . . . τj )). (2.13)
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It is easy to show that the following algebraic identity holds:

Rn+1(τ1 . . . τj t/n) = Rn(τ1 . . . τj t/n) − 1

n
τ1 . . . τj tARn+1(τ1 . . . τj t/n). (2.14)

Also, from (2.10) and (2.11) we obtain

Rn(τ1τ2 . . . τj t/n) = exp{−τ1τ2 . . . τj tA} + 1

n

∫ 1

0
τj+1(τ1τ2 . . . τj tA)2

× Rn+1(τ1τ2 . . . τj τj+1t/n)E(τ1τ2 . . . τj t (1− τj+1))dτj+1. (2.15)

Substituting expressions (2.14) and (2.15) into (2.13), we get

Dk−1,j = Ik−1,j,1 + Ik−1,j,2 + Ik−1,j,3,

where

Ik−1,j,1 = 1

n
Eσk−1,j τ1 . . . τj (−tA)k+j+1Rn+1(τ1 . . . τj t/n)E(t (1− τ1 . . . τj )),

Ik−1,j,2 = Eσk−1,j (−tA)k+j exp{−tA},
and

Ik−1,j,3= 1

n
Eσk−1,j τj+1τ

2
1 . . .τ2

j (−tA)k+j+2Rn+1(τ1. . .τj+1t/n)E(t (1−τ1. . .τj+1)).

IntegratingIk−1,j,2 (note thatEσk−1,j = ck,j ), we get

Ik−1,j,2 = ck,j (−tA)k+j exp{−tA},

whereck,j is given by (1.10). Taking the sum, we obtain thatak = ∑k
j=1 Ik−1,j,2.

It is easy to check that

σk−1,j τ1 . . . τj + σk−1,j−1τ
2
1 . . . τ2

j−1τj = σk,j .

From this equality it follows that

Dk,j = n(Ik−1,j,1 + Ik−1,j−1,3) for j = 2, . . . , k,

Dk,1 = nIk−1,1,1, and Dk,k+1 = nIk−1,k,3.

Finally, we get

Dk−1 = 1

nk

k∑
j=1

(Ik−1,j,1 + Ik−1,j,2 + Ik−1,j,3) = ak

nk
+ Dk
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with ak given by (1.11) andDk given by (1.14).

Proof of Theorem 1.6. From (1.14) we have

‖Dk‖ � 1

nk+1

k+1∑
j=1

‖Dk,j‖. (2.16)

EachDk,j is the sum ofj -tuple integrals of the type

Ji = E τ
k+j

1 τ
i2
2 . . . τ

ij
j (−tA)k+j+1Rn+1(τ1 . . . τj t/n)E(t (1− τ1 . . . τj )),

where the sum is taken over all integer components ofi = (i2, i3, . . . , ij ) such that
1� ij � k − j + 2 andin+1 + 2� in � k + j − 2(n − 1) for n = 2,3, . . . , j − 1.

We rewrite eachJi as the sum ofj � 2 integrals

Ji = Ji,1 + . . . + Ji,j ,

where

Ji,m = E Im,j τ
k+j

1 τ
i2
2 . . . τ

ij
j (−tA)k+j+1Rn+1(τ1 . . . τj t/n)E(t (1− τ1 . . . τj ))

for all m = 1, . . . , j . Then

‖Ji‖ � ‖Ji,1‖ + . . . + ‖Ji,j‖ � θi,1 + . . . + θi,j ,

where

θi,m = E Im,j

∥∥τ
k+j

1 τ
i2
2 . . . τ

ij
j (tA)k+j+1Rn+1(τ1 . . . τj t/n)E(t (1− τ1 . . . τj ))

∥∥
for m = 1, ..., j . Write

�i,m,1 = ‖(τ1 . . . τj tA)imRn+1(τ1 . . . τj t/n)‖
and

�i,m,2 = ∥∥(t (1− τ1 . . . τj )A)k+j+1−imE(t (1− τ1 . . . τj ))
∥∥.

Then we have

θi,m = E Im,j�i,m,1�i,m,2|gi,m(τ1, . . . , τj )|,
where

gi,m(τ1, . . . , τj ) = τ
k+j−im
1 τ

i2−im
2 . . . τ

im−1−im
m−1

τ
im−im+1
m+1 . . . τ

im−ij
j (1− τ1 . . . τj )k+j+1−im

.
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The functiongi,m(τ1, . . . , τj ), m = 2, . . . , j , is bounded forτ1, . . . , τm−1 ∈ [0,1],
τm ∈ [0,1/2], andτm+1, . . . , τj ∈ [1/2,1]. By Lemma 2.1 we have

�i,m,1 � iimm Kim, �i,m,2 � (k + j + 1− im)k+j+1−imKk+j+1−im,

and, integrating, we get

θi,m � Ci,m,k,jK
k+j+1,

whereCi,m,k,j is a positive constant depending only onk, j , m, andi1, . . . , ij .
In the casem = 1, we have

�i,1,1 = ‖(τ1 . . . τj tA)k+jRn+1(τ1 . . . τj t/n)‖
and

�i,1,2 = ∥∥(1− τ1 . . . τj )tAE(t (1− τ1 . . . τj ))
∥∥.

Then

θi,1 = E I1,j �i,1,1�i,1,2|gi,1(τ1, . . . , τj )|,
where

gi,1(τ1, . . . , τj ) = 1

τ
k+j−i2
2 . . . τ

k+j−ij
j (1− τ1 . . . τj )

.

We note that, forτ2, . . . , τj ∈ [1/2,1],

gi,1(τ1, . . . , τj ) � 2N

(1− τ1τ2)
,

whereN = i2 + . . . + ij − (k + j)(j − 1). Integrating overτ3, . . . , τj ∈ [1/2,1], we
have

θi,1 � 2N−j+2(k + j)k+jKk+j+1
∫ 1

0

∫ 1

1/2

1

(1− τ1τ2)
dτ1 dτ2.

This integral converges, and from this it follows that

θi,1 � Ci,1,k,jK
k+j+1,

whereCi,1,k,j is a positive constant depending only onk, j , andi2, . . . , ij . Taking the
sums over allm andi2, . . . , ij , we obtain

‖Dk,j‖ � Ck,jK
k+j+1, j = 2, . . . , k + 1, (2.17)
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whereCk,j is a positive constant depending only onk andj .
It remains to prove the case wherej = 1. Then

Dk,1 = E τ k+1
1 (−tA)k+2Rn+1(τ1t/n)E(t (1− τ1)).

Write

θ1 = E I{τ1 > 1/2}∥∥τ k+1
1 (−tA)k+2Rn+1(τ1t/n)E(t (1− τ1))

∥∥
and

θ2 = E I{τ1 � 1/2}∥∥τ k+1
1 (−tA)k+2Rn+1(τ1t/n)E(t (1− τ1))

∥∥,

whereI is the indicator function. Then we have‖Dk,1‖ � θ1 + θ2.
Let �1,1 = ‖(τ1tA)k+2Rn+1(τ1t/n)‖. Then

θ1 = E I{τ1 > 1/2}�1,1‖E(t (1− τ1))‖/τ1.

By Lemma 2.1 we have‖�1,1‖ � (k + 2)k+2Kk+2 and‖E(t (1− τ1))‖ � K . Integrat-
ing over the interval[1/2,1], we get

θ1 � C1,k,1K
k+3.

Now we estimateθ2. Let �2,1 = ‖(τ1tA)k+1Rn+1(τ1t/n)‖ and�2,2 = ‖(1 − τ1)(tA)

× E(t (1− τ1))‖. Then

θ2 = E I{τ1 � 1/2}�2,1�2,2/(1− τ1).

By Lemma 2.1 we have‖�2,1‖ � (k + 1)k+1Kk+1 and‖�2,2‖ � K . Integrating over
the interval[0,1/2], we obtain

θ2 � C2,k,1K
k+2.

Then (note thatK � 1) we have

‖Dk,1‖ � Ck,1K
k+3. (2.18)

Substituting (2.17) and (2.18) into (2.16), we get

‖Dk‖ � Ck

nk+1
K2k+2.

Proof of Theorem 1.7. We prove the theorem using induction with respect tok. In
the casek = 0, we have

exp{−tA} = (I + tA/n)−n + �0,
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where�0 = −D0. The case wherek = 1 was proved in Theorem 1.3. Assume that
(1.20) and (1.21) hold for 0,1, . . . , k − 1. Let us prove that (1.20) and (1.21) hold for
k as well. From Theorem 1.5 we have

exp{−tA} = (I + tA/n)−n − a1

n
− . . . − ak

nk
− Dk, (2.19)

where

am

nm
= dm

nm
exp{−tA} (2.20)

for m = 1, . . . , k. Substituting expression (1.20) (with expansion lengthk − m) into
expression (2.20), we get

am

nm
= dm

nm

(
(I + tA/n)−n + b1

n
+ . . . + bk−m

nk−m
+ �k−m

)
(2.21)

for m = 1, . . . , k.
Substituting (2.21) into (2.19), then collecting terms with the same powers ofn and

moving terms containing the remainder terms into�k , we obtain expressions (1.20)
and (1.21).

Proof of Theorem 1.8. From (1.21) we obtain another expression for�s

�s = −Ds −
s−1∑
k=0

hs−k

Dk

ns−k
,

wherehm are given by (1.19). From Theorem 1.6 we have

‖Ds‖ � cs

ns+1
K2s+2, s = 1,2, . . . ,

wherecs is a positive constant depending only ons. For s = 0, we have‖D0‖ �
4K3/n by Theorem 1.3 in [4].

Then we note thaths−k are linear combinations of(tA)s−k+1, . . . , (tA)2s−2k with
some numerical coefficients depending only onk and s. So, in order to prove the
theorem we have to show that

‖(tA)pDk‖ � Cp,k

nk+1
K2s+3, k = 0,1, . . . , s − 1,

wherep = s − k + 1, . . . ,2s − 2k and Cp,k is a positive constant depending only
on p andk. The proof is similar to the proofs of Theorems 1.6 and 1.4. In the case
k = 1, . . . , s − 1, we obtain‖(tA)pDk‖ � Cp,k

nk+1 K2s+2 and, in the casek = 0, we have

‖(tA)pD0‖ � Cp,0
n

K2s+3. We omit the proof here.
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REZIUMĖ

M. Vilkienė. Pusgrupi
↪

u Eulerio aproksimacijos ir asimptotiniai skleidiniai

Straipsnyje gauti pusgrupi↪u Eulerio aproksimacij↪u asimptotiniai skleidiniai ir liekan↪u optimal̄us
↪
iverčiai.

Buvo naudojamas metodas, pateiktas Bentkaus [3] straipsnyje.


