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Abstract. In [2], optimal bounds for the remainder terms in asymptotic expansions for Euler’s approx-
imations of semigroups were derived. The approach was based on applications of the Fourier—Laplace
transforms, which allowed one to reduce the problem to estimation of error terms in the Law of Large
Numbers. In this paper, we propose an alternative (direct) approach based on application of certain integro-
differential identities (so-called multiplicative representations of differences). Such identities were intro-
duced by Bentkus in [3] and applied (see Bentkus and Paulauskas [4]) to derive the optimal convergence
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1. INTRODUCTION AND RESULTS

Let A be a possibly unbounded linear operator on a complex Banach space
R(}) = (I + 2A)~ 1 be the resolvent oft. Let E(r) = exp{—tA}, t > 0, be a semi-
group of operators with generater. We consider the functions+— R"(¢/n) =
(I +tA/n)™", n € N, which are called the Euler's approximations of the semi-
groupkE(z).

We consider asymptotic expansions of Euler’s approximations

1
(I +1A/m) " =exp—tA}+ 2 4.+ %y o(—k) asn— oo,  (L1)
n n n

with coefficientsa; depending orE (r) and independent of. We also obtain asymp-
totic expansions of the semigroup

b b 1
exp{—1A) = (I +1A/m) " + 2 4. 4+ 5 4 0<—k) asn— oo, (1.2
n n n

with b, which are linear combinations of functioms~> (tA)™ R"(t/n) with coeffi-
cients independent of. We provide explicit and optimal bounds for the remainder
terms in (1.1) and (1.2).
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To obtain asymptotic expansions we use a decomposition of Euler’s approximations
which is an integro-differential identity. Such an approach was introduced by Bentkus
in [3] for analysis of errors in the Central Limit Theorem and in approximations by ac-
companying laws and applied by Bentkus and Paulauskas in [4] to derive optimal con-
vergence rates in Chernoff-type lemmas and Euler’'s approximations of semigroups.
It consists of a choice of a curve, sgyr), 0< 7 < 1, connecting two close objects,
saya andb, such thaty (0) = a andy (1) = b. In our case, we have = exp{—t A},
b=R"(t/n) andy (r) = R"(tt/n)exp{—(1 — 1)t A} (See Section 4 in Bentkus ([3]).
Then we apply the mean-value theorem (or Newton-Leibnitz formula) along the curve,
thatis,b —a = fol y/(t)dr. In our case, we have

1
R™(t/n) — exp{—tA} = %f t(tA)’R" (zt/n)E(t(1— 1)) dr. (1.3)
0

Iterative applications of this identity lead to asymptotic expansionsRoft/n)
andE(t).

Using this approach, Bentkus and Paulauskas in [4] provided a rather short and
simple proof of A, = O(n~1), where A, = |R"(t/n) — E(t)|, in the case of
bounded holomorphic semigroups. For semigroups in Hilbert spaces generated by
sectorial operators, Cachia and Zagrebnov in [6] obtained the bayrd O~ tInn).
Paulauskas in [9] improved the bound to the optimal @) using a new method based
on the results and methods of probability theory related to the Central Limit Theorem.
Cachia in [5] extended the bound®Inn) to the case of bounded holomorphic
semigroups and noticed that the Paulauskas argument can be applied to improve the
bound to Qn~1). Proofs in [6], [9] and [5] are rather complicated, and it is not clear
how to extend such proofs in order to obtain asymptotic expansions. Bentkus in [2] ob-
tained asymptotic expansions for Euler's approximations of semigroups and optimal
error bounds using another approach based on applications of the Fourier-Laplace
transforms and a reduction of the problem to the convergence rates and asymptotic ex-
pansions in the Law of Large Numbers. In particular, for bounded differentiable semi-
groups, the error bound,, = O(n~1) was obtained. It covers and refines all known
related results obtained for semigroups of operators in Banach spaces. An alternative
(direct) approach we use in this paper does not involve the Laplace transforms. The
proofs are much simpler and shorter here; besides, this method also gives us a con-
structive description of the terms of the expansion.

To make the exposition more comprehensible, we first formulate the results in the
special case of short expansions, i.e., expansions with remainder$)OWe start
with a related integro-differential identity.

THEOREM1.1. We have

(tA)?
2n

(I+tA/n) " =exp{—tA} + exp{—tA} + D1, (2.4)
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where the remainder term D1 is given by

1
Dy = ;(Dl,l + D1)2) (1.5)
with
1
Di1= —/ 2(t AR (zt/n)E(t(1 - 1)) dt
0
and

1 p1
Dio= / / 212t A)* R (t100t /1) E (1 (1 — T172)) dy dr.
0 JO

To estimate the remainder terBy in expansion (1.4), we use the same conditions
as in Theorem 1.3 of Bentkus and Paulauskas in [4]. These conditions are satisfied by
bounded holomorphic semigroups (see Bentkus and Paulauskas [4]).

THEOREM1.2. Assumethat there exists a constant K independent of » and ¢ such
that

nl[tA(I +tA)"| <K (1.6)
and
lexp(—tA}| < K, [tAexp(—tA}| < K (1.7)

forall n=1,2,... and ¢ > 0. Then the remainder term D1 in asymptotic expansion
(1.4) satisfies

C1
| D1l < ?K“,

where C1 is an absolute positive constant.

Now we consider the so-called inverse expansions, i.e., expansions where the expo-
nentk (¢) is approximated byrR" (¢ /n). Again we start with a short expansion with the
remainder term Q:~2).

THEOREM 1.3. We have

b
exp{—tA} = (I +tA/n) ™" + 71 + A1, (1.8)

where by = —#(1 +tA/n)~". The remainder term A1 is given by

Ao, (1.9)



270 M. Milkiene

where D1 isgiven by (1.5), and
1 1
Ag= ——/ T(tA)’R" (z1/n)E(t (1 - 1)) dr.
nJo

To estimate the remainder terfty in expansion (1.8), we use the same conditions
as in Theorem 1.2.

THEOREM1.4. Assumethat there exists a constant K independent of » and ¢ such
that conditions (1.6) and (1.7) are satisfied for all n = 1,2, ... and ¢ > 0. Then the
remainder term A1 in asymptotic expansion (1.8) satisfies

C1
ALl < =5 K>,
n

where C1 is an absolute positive constant.

Now we generalize the results of Theorems 1.1-1.4 for asymptotic expansions of
any given lengtht. We first need some additional notation. Hencefopf), means
summation over all integer components .. ., a; of vectorsa = (a1, ..., ax) which
satisfy certain conditions. Write

1 1 1 .
em1=— and ¢ ;= Z — forj=2,...,m, (1.10)

+1 m—+j - 0203...1;
wherei = (ip, i3, ...,i;) satisfy 2<i; <m — j+2 andi,41+2<i, <m+ j —
2m—1 forn=2,3,...,j — 1. Then the coefficients,, in (1.1) are given by
m .
am =Y _ cm,j(—tA)"*/ exp(—1A). (1.11)
j=1

For example, we have

2
a1=(“;) exp{—tA},
3 4
as = —% exp{—tA} + (t4) exp{—tA},
—(tA)4ex tA (tA)5ex tA (tA)Bex tA
az=—, pl—rA} — 6 p—tA} + 18 pl—rA}.

We note that an alternative form of the coefficients; is

1 1
T S

! i102...1;
it j=mtj T2l
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whereiy, ip, ..., i; > 2 and 1< j <m. Here)_, . |, _, means summation over all
distinct ordered:-tuples of positive integers, ..., i, whose elements sum ko
We also define the functions

O’k,j:O’k,j(l']_,...,‘l,'j):Tf+jZT£2...T;j forj=2,...,k+1 (1.12)
i

wherei = (iz, i3, ...,i;) satisfy 1<i; <k — j+2 andi, 11+ 2<i, <k +j—2(n - 1)

forn=2,3,...,j —1.Whenj =1,0p,1 =7, .

To shorten the notation for multiple integrals we use a sequence of independent
identically distributed random variablesty, 12, ... uniformly distributed in the in-

terval [0, 1]. Then we can writgfol f(r)dr = E f(r) for any functionf. In the case
where f is a function ofk variables, we writeE f(z1, ..., 1;) instead of ak-tuple
integral.

We also introduce the indicator functions

Iip=lr2>1/2,..., 1 > 1/2},
L =ty < 1/2,t4121/2, ...

ks

WV
=
~
N
»
WV
w

form=2,...,k—1,and
Do =Mr <1/2}, k=2
THEOREM1.5. We have

(I+1A/m) " =expl—tA}+ 2+, + % 1D, k=12.., (113)
n n

where a,, are given by (1.11). The remainder termis given by
1 K
Dy = WZDI{J’ (1.14)
j=1
where
Dy j=Eop j(—t AR (0 tjt/mEG(L—11.. 7)) (1.15)
with oy ; given by (1.12).
THEOREM1.6. Assumethat there exists a constant K independent of » and ¢ such

that conditions (1.6) and (1.7) are satisfied for all n = 1,2, ... and ¢ > 0. Then the
remainder term Dy in asymptotic expansion (1.13) satisfies

Ci
| Dyl < WKZ"”, k=1,2,... (1.16)
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with a positive constant C;, depending only on k.

Now we provide asymptotic expansions of the semigréigp via Euler’s approx-
imationsR" (¢ /n). First, we define

m
dn = emi(—tA)" (1.17)
i=1

wherec,, ; are given by (1.10). Then the coefficiets in (1.2) are given by
m
bu=—Y dibm_j, m=12....., bo=U+tA/n)™" (1.18)
j=1

We note thab,, can be represented as
by =hyu(I +tA/n)™",

where

hw = (=" cmi(tAY". (1.19)
i=1

For example, we have

b= (14 12

2 n
(tA)3 AN (tA)? tAN\-n
=g (1+57) 5 (1+77)
(tA)* tAN-  (tA)° 1A\ (tA)® tA\—n
b3 =— I+—) - I+—) ——(r1+—) .
3 4(+n) 6<+n) 48(+n)
THEOREM1.7. We have
., b by
exp{—tA}=U +tA/n)"+—=+...+ 7+ A, k=12..., (1.20)
n n
where b,, are given by (1.18). The remainder termis given by
d d
Ag=—Dj— —At1—...— — Ao, (1.21)
n n

where Dy isgiven by (1.14).
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THEOREM1.8. Assume that there exists a constant K independent of » and ¢ such
that conditions (1.6) and (1.7) are satisfied for all n = 1,2, ... and ¢ > 0. Then the
remainder term A; in asymptotic expansion (1.20) satisfies

C
[As]] < —= K>3

5 , os=12,... (1.22)
n‘\

with a positive constant C; depending only on s.

2. PROOFS

Proof of Theorem 1.1. From (1.3) we have
(I +tA/n)~" =exp{—tA} + Do, (2.1)
where
Do = % _/01 11(tA)?R" (vt /) E(t (1 — 1)) dry = %Do,l (2.2)

(see (4.2) in Bentkus [3]).
It is easy to check the algebraic identity

1
R"™(t1t/n) = R"(tat/n) — =11t AR" 1 (11t /n). (2.3)
n
Also, from (2.1) and (2.2) we obtain that
1
R"(rlt/n)=exp{—r1m}+E / t20o(t A)?R"  (t110t /n) E (111 (1—12)) drp. (2.4)
nJjo

Substituting (2.3) and then (2.4) into expressiorDgfi, we get

1 (tA)%exp(—rA} 1
DO,l = ;Dl,l + + + ;Dl,z, (2-5)

where
1
Dy1=— /O 2t ARty /) E(1(1 — 11)) drg

and

1 ,1
Dis= / / 212t A)* R (t1t0t /1) E (1 (1 — T172)) drg dra.
0 JO
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Substituting expression (2.5) into (2.2), we obtain the asymptotic expansion
_ ax
(I+tA/n)™" =exp{—tA}+ — + D1,
n

where

(tA)2 exp(—t A}
=T

and
1
Dy = P(Dl,l + D12).

In order to prove Theorem 1.2, we first prove the following:

LEMMA 2.1. Assume that there exists a constant K independent of n and ¢ such
that

nlltA(I +tA)™"| <K
and
|t Aexp{—tA}| < K
foralln=1,2,...andr > 0. Then
A"t AY T+t AT < m" K™ (2.6)
and
It A)" exp{—t A} <m™ K™ (2.7)
foralm=1,2,....
Proof. We first prove (2.6). We consider only the case wherems, since in the

casesr=ms+1,n=ms+2,...,n=ms+m—1, the proof is similar. So, for = ms,
we have

m

n"|(tA)" (I +1tA) T <n™[tA +tA) " < n_me =m"K".
s

Now let us prove (2.7). Using the semigroup property {exp + s)A}
=exp{—tA}exp{—sA}, we obtain

(A" exp{—tA}|| < m™|tA/mexp{—tA/m}|" <m™K".
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Proof of Theorem 1.2. From (1.5) we have

1
ID1ll < = (ID11ll + 1 D12]l).
n

Let us first estimaté D1 1||. It is clear that| D1 1|| < 61,1 + 61,2, where

1
91,1=/ |72t AR T (xt /) E(t (1 — 1)) | dr
1/2
and
1/2
91,2=/ |72t A3 R (r1 /) E(t(1 - 7)) dr.
0

Letor1 = [[(ztA)R" 1(zt/n)||. Then

1

Et(l—1

81,12/ 91,1” (( DI dr.
1/2 T

By Lemma 2.1 we have1 1 < 27K3 and||E(r(1— 1))| < K. Integrating over the
interval[1/2, 1], we get

011 <27In 2K 4.
Let us estimat®; . Write
01.2= |zt A?R" L (zt/m)ll,  o013= (L DAEEX(1—1))].

Then

1/2 1
01,2 =/ 01,201,3 dr.
0 1-1)

By Lemma 2.1 we haves» < 4K? and o1.3 < K. Integrating over the interval
[0, 1/2], we get

f12<4In 2K 3
and (note thak > 1)

4
D11l < C11K",
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whereCy 1 is an absolute positive constant.
Now we estimatd| D1 2||. It is clear that| D1 1]| < 02,1 + 62,2, where

1 p1
Op1 = /O /1 B |z3r2(t AY* R (2170t /1) E (1 (1 — 1172)) || dra de
and
1 ,1/2
022 = /0 /0 ” ‘Cftz(tA)4Rn+l(‘K1‘C2t/n)E(t(1 — 1172)) ” drq dro.

Write

SR 022= |1 -t AE(t(1 - T172) .

02,1= | (T172t A)

Then

1
021= 021022 ———— dridra.
o Jiy2 5(1—1172)

By Lemma 2.1 we have, 1 < 27K 2 andpz > < K. Integrating, we get
021 < 27(1/2+2In2) K4,
It remains to estimaté, ». Let

023= | utat AR™™ 024=||(1- 11123 APE( (1 - 1172))|.

Then
1/2
922—/ / 923Q24 = 5 dridro.

By Lemma 2.1 we have, 3 < K andoz 4 < 27K 3. Integrating, we get
022 <27(7/4—2In2K*
and
ID12ll < C12K*,
whereCy 7 is an absolute positive constant. Then

C
11<4.
}’l

NI'—‘

D1l < (”Dl 1l +1D12]) <
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Proof of Theorem 1.3. From Theorem 1.1 we have

exp{—tA = (I +tA/n) " — 22 _ Dy,
n

2
wherea; = "9 exp{—A} and

exp{—tA}={ +tA/n)"" + Ao, (2.8)

whereAg = — Dg. Substituting (2.8) into expression @f, we obtain

exp{—tA}=U +tA/n)"" —

2
(tZA) (I +tA/n)" + Ag)— D1 (2.9)

n

Regrouping the terms in (2.9), we obtain asymptotic expansion (1.8).

Proof of Theorem 1.4. From Theorem 1.2 we have
c1
ID1]l < S K%
n

Let us estimaté|(rA)2Aq||. Itis clear that|(rA)? Aol < (61 + 62), where

1
lef ||T(tA)4Rn+l(.”/n)E(t(1—t))” dr
1/2
and
1/2
6 = / [z R Xzt m)EG 1 - 1)) dr.
0

Write o1 = || (ttA)*R"1(z¢/n)||. Then

1 _
91=/ QlllE(t(13 )l dr.
1/2 T

By Lemma 2.1 we have; < 4*K* and ||[E(r(1 — 1))|| < K. Integrating over the
interval[1/2, 1], we get

01 < 384K °.
Now we estimat®,. Let

02= |t AR (zt/n)

. 03=|A-D3¢APECA-1)).
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Then

1/2 1
6y = _ = d
2 /0 R

From (1.6) we have, < K and by Lemma 2.1 we have < 27K 3. Integrating over
the intervall0, 1/2], we get

0> < 81K*%/2

and (note thak > 1)
Co
I(t4)% Aol < —K°,

whereCg is an absolute positive constant. Then

1A Aol _ C1 5

Al < [[1Dall + <
ALl < 1Dyl o 2

Proof of Theorem 1.5. We prove the theorem using induction with respect.ttn
the cas& = 0, we have

(I +tA/n)™" =exp{—tA} + Do, (2.10)

where
1t 2 pntl 1
Do=* / n AR ot/ EG (- ) dn = D1 (2.11)
n Jo n

(see (4.2) in Bentkus [3]). The cage= 1 was proved in Theorem 1.1 (see also Ben-
tkus [3]).
Assume that (1.13) holds for, Q, ..., k — 1. Let us show that (1.13) holds féras
well. To this end we have to show that
ak
Dy—1=—+ Dy.
n

From (1.14) we have
k—1 k . k 1,] ’ .

where

Di-1,; =Eop_1 j(—t AR ey tit/m)EG(L—11.. 7). (2.13)
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Itis easy to show that the following algebraic identity holds:
1
R (zr1...tjt/n) = R"(r1...Tjt/n) — “11... Tjt AR (1. .. tjt/n). (2.14)
n

Also, from (2.10) and (2.11) we obtain

1 1
R'(t1t2...7jt/n) = exp(—1172... Tt A} + —/ Tiy1(T1t2. .. 7:th)2
nJo
x RNt tjtiat/n)E(nina. .. it (L — tj41)) dtjpa. (2.15)
Substituting expressions (2.14) and (2.15) into (2.13), we get
Di-1j=1"-1j1+ Ix-1j2+ lr-1,3,
where
1 .
li1ji="Eor1;m. .. T (=t AR (o) it/ mE( (L — 11 . T)),
Ii—1,j,2 = Eop_1 j(—t AT expl—t A},
and
1 .
Li1j3= ;Eak,l,,-rjﬂrf. Tt AR (/) E(t(L-T1. . Tj40).
Integrating/y_1, ;2 (note thatE oy 1, ; = ¢« ), we get
Ii-1j2= Ck,j(—fA)k+j exp{—rA},

wherecy ; is given by (1.10). Taking the sum, we obtain that= Z’j‘.zl Ii—1,j2.
It is easy to check that

2 2
Ok—1,jT1...Tj + Ok—1,j-1T1 ... Tj_1Tj = O j.
From this equality it follows that

Dy j=n(Ix—1,j1+ Ir—1,j-13) forj=2,... k,

Dii1=nli-111, and Dyjy1=nlx_1x3.

Finally, we get

k

1 ay
D,:— I, i +17 i +I, i :—+D
k-1= "7 jE_l( k=171 + lk—1,j,2+ lk-1,;,3) v k
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with a; given by (1.11) and), given by (1.14).
Proof of Theorem 1.6. From (1.14) we have

1 k+1
1Dl < =5 D 1D - (2.16)
j=1

EachDy ; is the sum ofj-tuple integrals of the type
Ji = Etfﬂr;z ... t]i.j (—t AR (g . tit/n)E(t(l—11...7})),
where the sum is taken over all integer components #f(iy, i3, ..., i;) such that
1<ij<k—j+2andiy41+2<iy<k+j—2n—1forn=23,...,j—1.
We rewrite eacly; as the sum of > 2 integrals
Ji=Ji1+...+Jij,
where
Jim=Eln i/ e2... r;f (—t AR Y ¢y it/ EG(L—11...7)))
forallm=1,...,j. Then
Iill < il + ...+ il SO+ ...+ 6,
where
Oim = ElLnj |1y 22t (AR it /) EG (L 1. 1p) |
form=1,..., j. Write
Oim1=(t1...T;t A" R" X (zy.. . ;t/n)|
and
oim2= ||t —11...tHA T TMEGAL— 1. 1)),
Then we have
Oim = Eln, j0i,m,10i,m,218im (T, ..., T,
where

k+j—im _i2—im Im—1—Im
2 Ty T

b ( B J) im—Im+1 im ij k+j+1—i '
. l
[m 1 [] (1 Ij...tj) J m
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The functiong; ,,(t1,...,7;), m =2,..., j, is bounded forry, ..., 7,1 € [0, 1],
™, €[0,1/2], andt, 41, ..., 7, € [1/2,1]. By Lemma 2.1 we have

0im 1 <imK™, 0pm2 < (k4 j 41— i)t gkt 1min
and, integrating, we get
Oim < Cimk, j KK+

whereC; ,, «, j is a positive constant depending onlyknj, m, andiy, ..., i;.
In the casen = 1, we have

0i11=Il(r1...Tjt AT R eyt )|

and
0i12=||1—t1...tIAEG(L—11...7)))|.
Then
0;,1=EIl1 0i110i1.2lg 1(T2, ..., T))I,
where

1

k+j—iz k+j—ij )
T, T AQ-71...1))

gia(ty,..., 1) =

We note that, forp, ..., 7; € [1/2,1],

2N
i,l(Tla ey T') g a4

8 T 1-1nn)
whereN =iz +...+i; — (k+ j)(j — 1. Integrating overs, ..., t; € [1/2, 1], we
have

) ) ) 1 p1 1

91',1 < 2Nj+2(k+j)k+ij+]+1/ / 7d_[1d1_2.
0 Ji2 1—1172)

This integral converges, and from this it follows that
0i1< Cix, K,

whereC; 1, ; is a positive constant depending onlyonj, andiy, ..., i;. Taking the
sums over allz andiy, ..., i;, we obtain

Dk jll < Cr j K*HTL j=2, k+1, (2.17)
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whereCy ; is a positive constant depending onlyoand .
It remains to prove the case whefe- 1. Then

D1 =E i ™ (—t A 2R L (rat /n) E(1(1 - 11)).
Write
1 =EI{ry > 1/2}| o5 T (—t A2 Rty /) E (1 (1 — 1) |
and

El

02 = ET{r1 < 1/2}]| o5 PH(—t A 2R Y war /) E(1 (1 — 11)

wherel is the indicator function. Then we hay@y 1| < 61 + 6.
Letor,1 = l(rat A)¥2R" (3¢ /n) . Then

01=EI{r1 > 1/2}o11llE(t (1 — )|/ 71.

By Lemma 2.1 we havéoy 1| < (k + 2*2K*+2 and||E(t (1 — 11))| < K. Integrat-
ing over the intervall/2, 1], we get

01 < Cl,k,lKk+3-

Now we estimate,. Let 021 = ||(tat A)FTIR" (211 /n) || and oz = [|(1 — 11)(tA)
x E(t(1—11))||. Then

02 = El{r1 <1/2}02,102,2/(1 — 11).

By Lemma 2.1 we havétoz 1]l < (k + D)*1K* 1 and|02.2] < K. Integrating over
the interval[0, 1/2], we obtain

02 < Co 1 K*T2.
Then (note thak > 1) we have
1Dk 1l < Cr 1K . (2.18)

Substituting (2.17) and (2.18) into (2.16), we get

Cr o
k- +2
||Dk||<nk+1K .

Proof of Theorem 1.7. We prove the theorem using induction with respect.ttn
the case& = 0, we have

exp{—tA} = +tA/n)"" + Ao,
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where Ag = —Dgp. The case whergé = 1 was proved in Theorem 1.3. Assume that
(1.20) and (1.21) hold for,, ...,k — 1. Let us prove that (1.20) and (1.21) hold for
k as well. From Theorem 1.5 we have

ai Aak

exp{—tA} = +tA/n)" — — —...— — — Dy, (2.19)
n n
where
an_ I ot —14) (2.20)
n n

form =1, ..., k. Substituting expression (1.20) (with expansion length m) into
expression (2.20), we get

am

d by bi_
nmzn—ﬁ((1+tA/n) 1+7+...+nk—_::’l+Ak,m> (2.21)

form=1,... k.

Substituting (2.21) into (2.19), then collecting terms with the same powersnfl
moving terms containing the remainder terms intg, we obtain expressions (1.20)
and (1.21).

Proof of Theorem 1.8. From (1.21) we obtain another expression Aqr
s—1
D
Ay =—D; — Zhs_kns——kk’
k=0

whereh,, are given by (1.19). From Theorem 1.6 we have

Cs . 25+2
Dy € —= K=+

o , s=12 ...,

wherec; is a positive constant depending only enFor s = 0, we have| Dg| <
4K3/n by Theorem 1.3 in [4].

Then we note thak,_; are linear combinations af A)* %1, ..., (tA)% % with
some numerical coefficients depending only Jomand s. So, in order to prove the
theorem we have to show that

C .
1A Dyl < “ZE KPR k=0,1....5 -1,
n

wherep =s —k+1,...,25s — 2k and C,, ; is a positive constant depending only
on p andk. The proof is similar to the proofs of Theorems 1.6 and 1.4. In the case
k=1,...,s — 1, we obtain|(tA)” Dy || < ’%KZS’LZ and, in the casé = 0, we have

(¢ A)? Dol < %K&”. We omit the proof here.

Acknowledgment | would like to thank Vidmantas Bentkus for suggesting the
problem and for many useful advices during the preparation of the paper.
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REZIUME

M. Vilkiené. Pusgrupiu Eulerio aproksimacijosir asimptotiniai skleidiniai

Straipsnyje gauti pusgrupiEulerio aproksimadij asimptotiniai skleidiniai ir liekam optimals jverCiai.
Buvo naudojamas metodas, pateiktas Bentkaus [3] straipsnyje.



