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Abstract. In this paper, we describe a simple representation of a circular arc in the space using quaternions.
Using this representation, we obtain a subdivision of the arc, describe circular splines, and give a few
applications with circular surfaces.
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1. INTRODUCTION

We start with the fractional linear function which produces a circle. Using this con-
struction, we describe circular splines and subdivision of a circular arc. This approach
is unusual, since we use the Bézier representation with complex (quaternion) points
and complex (quaternion) weights. The conventional approach for representing a cir-
cular arc uses the control polygon of an isosceles trianglep0,p1,p2 and the middle
weightw1 = cosα, whereα = ∠(p2p0p1) (see [3]). The calculation of cosine involves
a computation of a square root, which is, in turn, often required for the representation
of circular surfaces (a surface with one parameter family of circles). We describe an
alternative approach and represent an arc of a circle by two end points and an initial
(resp. final) tangent vector pointing into (resp. out) an arc. In the construction of an
arc, we do not use the center of a circle and an angle. This simplifier calculations and
is useful for representing families of circles on a circular surface (see applications in
Section 8). There are many other circle representations (see [8]) but we hope that this
approach can be useful for the subdivision of a circle and for modelling a circular
surface.

2. NOTATIONS AND DEFINITIONS

We denote by IH,C and IR the sets of quaternion numbers, complex numbers and
real numbers, respectively. It is convenient to identify a complex numberz = �(z)

+ i ·�(z) = x + iy ∈ C (�(z) and�(z) mean the real and imaginary parts of a complex
number z) with the point(x, y) in the plane IR2. The notation̄z = x − iy means the
conjugated complex number and|z| = √

x2 + y2 is the length of a complex number.
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In general, the quaternion set IH can be represented as

IH = {
q = (r,p) | r ∈ IR, p ∈ IR3} = IR4. (1)

We denote the real and imaginary parts of a quaternionq = (r,p) by �(q) = r and
�(q) = p. The multiplication in the algebra IH is defined as

(r1,p1)(r2,p2) = (
r1r2 − 〈p1,p2〉, (r1p2 + r2p1) + p1 × p2

)
, (2)

where〈p1,p2〉 andp1 × p2 are scalar and vector products in IR3. We denote bȳq =
(r,−p) the conjugate quaternion toq = (r,p),|q| = √

r2 + 〈p,p〉 = √
qq̄ is the length

of the quaternion,q−1 = q̄/|q|2 = (r/|q|2,−p/|q|2) denote the multiplicative inverse
of q, i.e.,qq−1 = q−1q = 1. Denote the set of pure imaginary quaternions by

Im(IH) = {
(0,p) | p ∈ IR3} = IR3. (3)

Assume that〈u,u〉 = 1, u ∈ IR3, then denote eαu = (cosα, (sinα)u). In fact, for any
q = (r,p) such that|q|2 = r2 + 〈p,p〉 = 1, we haveq = eαu, where cosα = r, u =
p/sinα.

3. LINEAR FRACTIONAL FUNCTION

PROPOSITION1. Let a0, a1,w0,w1 ∈ C be such that w0/w1 ∈ C \ IR. Then

ξ(t) = a0w0(1− t) + a1w1t

w0(1− t) + w1t
, t ∈ [0,1], (4)

is the arc of a circle with the first point a0 and the last a1. This circle has a center ξ0
and the radius R, i.e., |ξ(t) − ξ0| = R, where

ξ0 = i(w0w̄1a0 − w1w̄0a1)

2�(iw0w̄1)
= w0w̄1a0 − w1w̄0a1

w0w̄1 − w1w̄0
, (5)

R = |a0 − ξ0| = |a1 − ξ0| =
∣∣∣ i(w̄0w1(a0 − a1))

2�(iw0w̄1)

∣∣∣, (6)

(a1 − ξ0)

(a0 − ξ0)
= w̄0w1

w0w̄1
= e2φi (i.e., the circular arc angle is 2π − 2φ), (7)

cosφ = w1w̄0 + w0w̄1

2|w0||w1| . (8)

Proof. It is well known that the mapz → ξ, ξ = az+b
cz+d

for z, ξ ∈ C is conformal. The
image of circles and lines are lines and circles (see [1], [5] Section 7.2). The formulas
for ξ0,R are taken from [1].
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Figure 1. The arc of the circle:c0 = (−1+ i,1), c1 = (1,e8iπ/7), ξ0 = −1.03− 1.57i, R = 2.57.

We say that pointsc0 = (a0w0,w0), c1 = (a1w1,w1) with weightsw0,w1 define
the arc (4) and denote it byξ(c0, c1)(t). We omit(c0, c1) if from the context it is clear
(or not important) which points are taken.

Remark 1. If we change the weightsw0,w1 to 1,w1/w0, the arcξ(t) remains the
same. Moreover, if we change the parametert to ρt/(1− t + ρt) (ρ ∈ IR) and weights
w0,w1 to w0,w1/ρ, then the arc also is the same. Therefore, we can always assume
that the weights are normalized, i.e.,w′

0 = 1,w′
1 = eiφ = w1|w0|

w0|w1| . For example, if we

takew0 = 1,w1 = i, then three pointsa0, ξ0 = a0+a1
2 , a1 are collinear and the radius

is R = ∣∣ a0−a1
2

∣∣.
Remark 2. Usually, the circle is uniquely defined by three pointsa0, b, a1 ∈ C.

If we setw1 = b − a0,w0 = a1 − b, then the arc (4)ξ(t) goes through three points
a0, b, a1 (in fact,ξ(1/2) = b).

PROPOSITION2. We have

ξ(t) = a0|w0|2(1− t)2 + (a0w0w̄1 + a1w1w̄0)(1− t)t + a1|w1|2t2

|w0|2(1− t)2 + (w0w̄1 + w1w̄0)(1− t)t + |w1|2t2
, (9)

i.e., ξ(t) is a rational quadratic Bézier curve with three control points and real weights

(
a0|w0|2, |w0|2

)
,

(a0w0w̄1 + a1w1w̄0

2
,
w0w̄1 + w1w̄0

2

)
,

(
a1|w1|2, |w1|2

)
. (10)

Proof. According to Remark 1, the arcξ(t) remains the same if we normalize the
weights, i.e.,w′

0 = 1,w′
1 = eiφ = w1|w0|

w0|w1| . Therefore, we have

ξ(t) = (a0w
′
0(1− t) + a1w

′
1t)(w̄

′
0(1− t) + w̄′

1t)

(w′
0(1− t) + w′

1t)(w̄
′
0(1− t) + w̄′

1t)

= a0(1− t)2 + (a0e−φi + a1eφi)(1− t)t + a1t
2

(1− t)2 + 2 cos(φ)(1− t)t + t2
.
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In the book [3], Chapter 14, we find that the last rational expression is a circle
parametrization.

4. QUATERNION

For representing a circle in IR4 or IR3, we use the linear space of quaternion IH= IR4.
Let

ξ(t) = qd−1, whereq = a0w0(1− t) + a1w1t, (11)

d = w0(1− t) + w1t, a0, a1,w0,w1 ∈ IH, t ∈ [0,1], (12)

denote a linear fractional function in a quaternion algebra IH.

PROPOSITION3. ξ(t), t ∈ [0,1], is an arc of a circle in IR4 with end points ξ(0) =
a0, ξ(1) = a1 ∈ IH = IR4. This circle has a center ξ0, a radius R, and 2α is the circular
arc angle

ξ0 = a0 + a1 − 2w′2p1

2(1− w′2)
, R = |a0 − a1|

2
√

1− w′2 , where (13)

p1 = a0w0w̄1 + a1w1w̄0

w0w̄1 + w1w̄0
, w′ = (w0w̄1 + w1w̄0)/(2|w0||w1|) = cosα. (14)

Moreover, ξ(t) is a rational quadratic Bézier curve which has three control points with
real weights

(
a0|w0|2, |w0|2

)
,

(a0w0w̄1 + a1w1w̄0

2
,
w0w̄1 + w1w̄0

2

)
,

(
a1|w1|2, |w1|2

)
. (15)

Proof. Sinced−1 = d̄/|d|2, we have

ξ(t) = qd−1 = qd̄

|d|2 (16)

= a0|w0|2(1− t)2 + (a0w0w̄1 + a1w1w̄0)(1− t)t + a1|w1|2t2

|w0|2(1− t)2 + (w0w̄1 + w1w̄0)(1− t)t + |w1|2t2
, (17)

i.e.,ξ(t) is a rational quadratic Bézier curve with three control points and real weights
as in (15).

Note that we can change the weightsw0,w1 to 1,w1w
−1
0 , then the arcξ(t)

will remain the same. Moreover, if we change the parametert to ρt/(1 − t + ρt)

(ρ ∈ IR) and weightsw0,w1 to w0,w1/ρ, then the arc will also remain the
same. Therefore, we can always assume that the weights are normalized, i.e.,
w′

0=1, w′
1 = w1w

−1
0 |w0||w1|−1 = w1w̄0/(|w0||w1|). Since|w′

1| = 1, we havew′
1 =
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Figure 2. A center of an arc.

(cosα, (sinα)u) = eαu for some α and u ∈ IR3, 〈u,u〉 = 1. Therefore,(w′
0w̄

′
1 +

w′
1w̄

′
0)/2 = cosα. Hence,

ξ(t) = a0(1− t)2 + (a0w̄
′
1 + a1w

′
1)(1− t)t + a1t

2

(1− t)2 + 2(1− t)t cosα + t2
, (18)

i.e.,ξ(t) is a circle with three control points

P0 = (a0,1), P1 = (
(a0w̄

′
1 + a1w

′
1)/2,cosα

)
, P2 = (a1,1)

(see [3], Chapter 14).
For computation of the centerξ0, note that three pointsξ0,m = (a0 + a1)/2 and

p1 = (a0w̄
′
1 + a1w

′
1)/2 cosα) are collinear. An elementary observation shows that

|p1m|/|mξ0| = sin2 α/cos2 α (see Fig. 2). Therefore, we obtainm = (sin2 α)ξ0 +
(cos2 α)p1. Hence,ξ0 = (a0 + a1 − 2 cos2 αp1)/(2 sin2 α). Since cosα = (w1w

−1
0 +

w̄−1
0 w̄1)|w0||w1|−1/2 = (w0w̄1 + w1w̄0)/(2|w0||w1|), we prove the formula for the

center. The formula for the radius follows from the sinus theorem.

Remark 3. If we takew0 = a1 − b′ andw1 = b′ − a′
0, wherea′

0 = a−1
1 a0a1, b′ =

(a1 − a0)
−1b(a1 − a′

0), then ξ(1/2) = b. Indeed,ξ(1/2) = (a0(a1 − b′) + a1(b
′ −

a′
0))(a1 − b′ + b′ − a′

0)
−1 = (a1 − a0)b

′(a1 − a′
0)

−1 = b. So, for the construction of
the circular arc with three given pointsa0, b, a1, we can take weightsw0,w1 as above.

The following proposition shows how to use pure imaginary quaternions for mod-
elling a circle in IR3.

PROPOSITION 4. Let a0 = (0, q0), a1 = (0, q1) ∈ Im(IH) = IR3, and w1w̄0 =
(r,p) be such that 〈q0,p〉 = 〈q1,p〉. Then ξ(t) ∈ Im(IH) = IR3 and ξ(t) belongs to
the plane L in Im(IH) = IR3 which is orthogonal to the vector p for any t . Moreover,
if a1 = w1w

−1
0 a0w0w

−1
1 , then the arc ξ(t) is the trace of the rotation around the vector

p from the point q0 to the point q1 .
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Proof. By Proposition 3ξ(t) has a representation as a Bézier curve with three con-
trol pointsa0,p1, a1. Sincep1 = (a0w0w̄1 + a1w1w̄0)/(w0w̄1 + w1w̄0) = (〈q1,p〉 −
〈q0,p〉, r(q0 + q1) + (q0 − q1) × p)/(w0w̄1 + w1w̄0) ∈ Im(IH) for any t , we have
ξ(t) ∈ Im(IH). Moreover,ξ(t) belongs to the planeL which passes through three
pointsa0,p1, a1. In this plane, we have two vectorsIm(p1 − a0) andIm(p1 − a1).
Since

(p1 − a0) = (a1 − a0)w1w̄0/(w0w̄1 + w1w̄0) = (
0, r(q1 − q0) + (q1 − q0) × p

)
,

we see that〈Im(p1−a0),p〉 = 0. In a similar way, we show that〈Im(p1−a1),p〉 = 0.
Hence, the planeL is orthogonal to the vectorp.

If we takea1 = w1w
−1
0 a0w0w

−1
1 , then

ξ(t) = (1− t + w1w
−1
0 t)a0w0

(
(1− t + w1w

−1
0 t)w0

)−1 (19)

= (1− t + w1w
−1
0 t)a0(1− t + w1w

−1
0 t)−1. (20)

Let x = |x|xn = |x|(cosα, (sinα)p) be given. It is well known that the mapIm(IH) =
IR3 → Im(IH) = IR3, q → xqx−1 = xnqx̄n, is a rotation of the vectorIm(q) around
the vectorp by the angle 2α (see, for example, [4]). The formula (20) shows thatξ(t)

is a rotation around the vectorIm(w1w
−1
0 ) = p. Sinceξ(t), t ∈ [0,1] is an arc of the

circle with end pointsa0, a1, we see thatξ(t) is the trace of the rotation around the
vector from the pointIm(a0) = q0 to the pointIm(a1) = q1.

5. SPLINES

LEMMA 5. Let ξ(t) = q(t)(d(t))−1 ∈ IH. Then we have

ξ ′(t) = q ′(t)(d(t))−1 − q(t)d̄(t)d ′(t)d̄(t)/|d(t)|4, (21)

where f ′(t) denotes the derivative of a function f (t) at a point t .

Proof. It is easy to see that(q1(t)q2(t))
′ = q ′

1(t)q2(t)+ q1(t)q
′
2(t) and(d−1(t))′ =

(d̄(t)/|d(t)|2)′ = (d̄ ′|d|2 − d̄(dd̄)′)/|d|4 = −d̄d ′d̄/|d|4. The combination of these two
formulas gives (21).

Now it is easy to find the derivatives forξ(t) at the end points (see also [6]):

ξ ′(0) = v0 = (a1 − a0)w1w0
−1, (22)

ξ ′(1) = v1 = (a1 − a0)w0w1
−1. (23)

Remark 4. For the construction of a circle arc by two pointsa0, a1 and initial
tangent vectorv0 pointing into the arc, we can use formula (22) for computing the
weight w1 = (a1 − a0)

−1v0 (here we assume thatw0 = 1). This representation of
a circle by two end points and an initial tangent is more intuitive than that be the
weightw1.
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Now assume that we have three pointsc0 = (a0w0,w0), c1 = (a1w1,w1), c2 =
(a2w2,w2) and two arcsξ1(c0, c1)(t), ξ2(c1, c2)(t). We are going to find aG1 rational
(tangent continuity) spline, i.e.,

hξ ′
1(1) = ξ ′

2(0), where h > 0. (24)

So, if we take anyc0, c1 anda2, condition (24) givesw2 = h(a2 − a1)
−1(a1 − a0)w0,

and we obtain aG1 spline.

Definition. We say that the sequenceck = (akwk,wk) ∈ C
2, k = 0, ..., n, is G1

compatible if

wk+2 = hk+2(ak+2 − ak+1)
−1(ak+1 − ak)wk, 0 � k � n − 2, (25)

for somehi > 0.

A G1 compatible sequence defines theG1 curve

C =
n−1⋃
k=0

ξ(ckck+1)(t).

It is interesting to note that the curvature of this curve is the constant 1/Rk on every
pieceξ(ckck+1)(t), whereRk is the radius of the circle arcξ(ckck+1)(t). Therefore,
the splineC is only aG1 (notG2) curve or aG∞ if C is a circle.

There are a few examples of splines which are on one circle.

Example 1. If c0 = (a0,1), c1 = (a1w1,w1), c2 = (a0w
2
1,w

2
1), thenξ(c0c1)(t) ∪

ξ(c1c2)(t), 0� t � 1, is a full circle.

Example 2. If c0 = (a0,1), c1 = (a1w1,w1), c2 = (−a1w1,−w1), thenξ(c0c1)(t)

∪ ξ(c0c2)(t), 0� t � 1, is a full circle.

Figure 3. The spline of two circular arcsξ1(t), ξ2(t).
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Example 3. If c0 = (a0,1), c1 = (a1i, i), c2 = (−a1i,−i) ∈ C
2, thenξ(c0c1)(t) ∪

ξ(c0c2)(t), 0 � t � 1, is a full circle in a plane with a center(a0 + a1)/2.

6. SUBDIVISION OF A CIRCULAR ARC

In this section, we describe subdivision of a circular arc. This does not gives nonsta-
tionary subdivision schemes which reproduce a circle as in the sense of book [7]. A
circle reproducing subdivision scheme (in [7]) is a circle approximative scheme which
uses linear formulas for computation of new control points by old points. Below, we
present subdivision of a circular arc which is not linear and not approximative. For
one step of this subdivision we use two control points and its weights. The computa-
tion of a new point and new weight is not linear and involves calculation of two square
roots. While there is the advantage that computation of a new point involves only two
points with weights, the disadvantage is that the coordinates of new points have to be
calculated by a computation of square roots.

PROPOSITION 6. Let c0 = (a0w0,w0) and c1 = (a1w1,w1) ∈ C
2(orIH2) be as

above, and let c1/2 = (a1/2w1/2,w1/2) = f (c0, c1), where

c1/2 = c0|w1| + c1|w0| =
(
a0w0|w1| + a1w1|w0|,w0|w1| + w1|w0|

)
, i.e., (26)

a1/2 = (
a0w0|w1| + a1w1|w0|

)(
w0|w1| + w1|w0|

)−1
, (27)

w1/2 = w0|w1| + w1|w0|. (28)

Then three arcs ξ(c0, c1/2)(t), ξ(c1/2, c1)(t), and ξ(c0, c1)(t) are on the same circle.
Moreover,

|a1/2 − a0| = |a1 − a1/2|, (29)

i.e., the point a1/2 is the middle point of the arc ξ(c0, c1)(t).

Proof. An easy computation shows that

ξ(c0, c1)
( |w0|
|w0| + |w1|

)
= a1/2,

Figure 4. Uniform subdivision of an arc.
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Figure 5. The subdivision of the arcξ(t), 33 points,k = 5.

ξ(c0, c1)
( |w0|

1+ |w0| + |w1|
)

= ξ(c0, c1/2)
(1

2

)
,

ξ(c0, c1)
( 1+ |w0|

1+ |w0| + |w1|
)

= ξ(c1/2, c1)
(1

2

)
.

Since two circle arcsξ(c0, c1)(t) and ξ(c0, c1/2)(t) have three common points
a0, ξ(c0, c1/2)(1/2), a1, we conclude that

{
ξ(c0, c1/2)(t) | t ∈ [0,1]} ⊂ {

ξ(c0, c1)(t) | t ∈ [0,1]}.

In a similar way, we see that

{
ξ(c1/2, c1)(t) | t ∈ [0,1]} ⊂ {

ξ(c0, c1)(t) | t ∈ [0,1]}.

A straightforward computation shows that formula (29) also is true.

Now we can define a subdivision process. Let

cj/2k = f
(
c(j−1)/2k , c(j+1)/2k

) = (aj/2kwj/2k ,wj/2k ) (30)

by induction onk and for oddj . The pointsaj/2k define a uniform subdivision of the
arcξ(t).

If we take aG1 compatible sequenceck, k = 0, ..., n, then the subdivision process
gives points on aG1 curve.

7. APPLICATIONS

A surface of revolution

Assume that a parametrization of a curveC = {q(u) ∈ IR3} is given. Then, using
Proposition 4, we get the parametrization of a surface which is obtained as the rotation
of the curveC around the axisp. Indeed, leta0 = (0, q(u)), w0 = (1,0), w1 = (0,p),

a1 = w1a0w
−1
1 . Then we have

par(u, t) = (
a0w0(1− t) + a1w1(t)

)(
w0(1− t) + w1(t)

)−1
, u, t ∈ [0,1],

a parametrization of the surface of revolution.
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Figure 6. A hyperboloid.

For example, consider the parametrization of a segment of a lineL through two
points q(u) = (1,0,0)(1 − u) + (1,1,1)u and p = (0,0,1). Then par(u, t) is a
parametrization of the hyperboloid which is the rotation of the lineL segment around
z axis (see Fig. 6).

A pipe surface

As an example, consider a part of a pipe surface smoothly blended with a cylinderC

and a planeP . For the construction of this surface, we move around a rolling ball
touching the cylinder and the plane. LetL(s), s ∈ I , denote a pencil of planes through
the center line of the cylinder, and letq0(s) ∈ L(s) ∩ C be the point where the rolling
ball touches the cylinder lineL(s) ∩ C. Also, denote byq1(s) a point in the planeP
where the rolling ball touches the lineL(s) ∩ P . We choosea0(s) = (0, q0(s)), w0 =
1, a1(s) = (0, q1(s)) and by formula (22) we findw1(s) = (a1(s) − a0(s))

−1(0, v0),
wherev0 is the direction vector of the cylinder axisC. Now, the map

ξ(s, t) = (a0(s)w0(1− t) + a1(s)w1(s)t)(w0(1− t) + w1(s)t)
−1, (31)

t ∈ [0,1], s ∈ I,

gives a parametrization of a neck blending the cylinder with the plane (see Fig. 7).
This is a part of the pipe surface.

For example, consider the cylinderC: x2 + y2 = 1 and the planeP : z = ay. Then
the centers of rolling balls with radiusr are on the planeP1: z = ay + r

√
a2 + 1

(since the distance betweenP andP1 is r) and on the cylinderC1: x2 + y2 = (1 +
r)2. Let [cs(s), sn(s)] be a parametrization of the circlex2 + y2 = 1, and letL(s):
x · sn(s) = y · cs(s) be the plane through the center of the cylinderC. It is easy to
see thatq0(s) = [cs(s), sn(s), a · sn(s)+ r

√
a2 + 1] is the point where the rolling ball

touches the lineL(s) ∩ C on the cylinderC. One can check that
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Figure 7. A part of the pipe surface smoothly connecting the cylinder and the plane.

q1(s) =
[
(r + 1)cs(s), (r + 1)sn(s), a(r + 1)sn(s) + r

√
a2 + 1

]

+ r[0, a,−1]/
√

a2 + 1

is the point where the rolling ball touches the lineL(s) ∩ P . If we takev0 = [0,0,−1]
as the direction vector of cylinder axis and use parametrization (31), we obtain the
blending of the plane and the cylinder see Fig. 7.

A circular surface

Another application of the previous construction can be a circular surface, i.e., a sur-
face with one parameter family of circles. For example, consider two ellipsese0:
x2/a2 + y2/b2 = 1 ande1: x2/c2 + y2/d2 = 1 in the planeP : z = 0 with the same
centerO. Let us denote byq0(s) = [a · cs(s), b · sn(s)], q1(s) = [c · cs(s), d · sn(s)]
the parametrization of ellipses, wherecs(s)2 + sn2(s) = 1. Assume thata0(s) =
(0, (q0(s),0)), a1(s) = (0, (q1(s),0)),w0 = 1, v0 = (0,0,0,1) (herev0 corresponds
to the directional vector of lines on the elliptic cylinder). Then by formula (22) we
computew1(s) = (a1 − a0)

−1v0. Hence,

ξ(s, t) = (
a0(s)w0(1− t) + a1(s)w1(s)t

)(
w0(1− t) + w1(s)t

)−1 (32)

is a parametrization of a circular surface. This surface intersects the planeP in two
ellipses and all circles belong to planes perpendicular to the planeP (see Fig. 8).
Note that this surface is not a canal surface. Then upper half of this surface may join
smoothly (G1-continuity) two elliptic cylinders (see Fig. 8).

A smooth “offset” of convex polyhedron

In the following example, we represent a smooth “offset” of convex polyhedron. By
definition, this surface is the envelope surface of the rolling ball moving over the poly-
hedron. It is easy to see that the envelope consists of faces of the polyhedron moved
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Figure 8. A circular surface and a part of it connecting two elliptic cylinders.

Figure 9. A polyhedron and a smooth “offset” of a polyhedron.

in its normal direction by a fixed distance. Instead of edges, we obtain a part of cylin-
ders, and a vertex is replaced by an n-sided spherical patch. Using the construction of
circular an arc (32) as above, we easily obtain a parametrization of parts for cylinders
and n-angle in the sphere (see Fig. 9).

8. CONCLUSION AND FUTURE RESEARCH

We have represented a circular arc in the space by using end points and a vector perpen-
dicular to the arc plane. Especially, this representation is useful for modelling surfaces
with one parameter family of circles since in our construction of a circle, we do not
need computation of the circle center.

There are possibilities for extensions and future research:
– Investigation of the geometry of higher degree Bézier curve (or surface) with

complex (or quaternion) points and weights. Find an implicit equation for such
curves (surfaces).

– An interesting extension concerns the Clifford algebra. For example, we can use
control points and weights as elements of the Clifford algebra. Note that the
quaternion algebra is isomorphic to the two dimensional Clifford algebra.
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REZIUMĖ

S. Zubė. Apskritimo konstravimas su kompleksiniais ir kvaternioniniais skaičiais

Darbe pateikta erdvinio apskritimo lanko dalies konstrukcija naudojant kvaterionus. Šios konstrukcijos

privalumas prieš tradicin
↪
e Bezier apskritimo reprezentacij

↪
a yra tai, kad ji leidžia sumodeliuoti apskritimo

lank ↪a žinant tik jo pradži↪a, gal↪a ir pradžios (arba galo) liestinės vektori↪u. Tai labai supaprastina apskritim↪u

šeimos modeliavim↪a, nes nereikia rasti apskritimo centro ir lanko kampo. Darbe pateikti pavirši↪u modelia-

vimo pavyzdžiai gauti naudojant minėt
↪
a konstrukcij

↪
a. Taip pat aprašyti apskritiminiai splainai ir pristatytas

j
↪
u padalinimo algoritmas.


