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Abstract. This paper deals with a method, called the relational perspective map that visualizes multidimensional data

onto two-dimensional closed plane. It tries to preserve the distances between the multidimensional data in the lower-

dimensional space. But the most important feature of the relational perspective map is the ability to visualize data in a

non-overlapping manner so that it reveals small distances better than other known visualization methods. In this paper,

the features of this method are explored experimentally and some disadvantages are noticed. We have proposed a

modification of this method, which enables us to avoid them.
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1. Introduction

Data perception is frequently a complex problem, espe-

cially when data arise from a complicated phenomenon

described by many parameters, i.e., multidimensional data

are analyzed. In order to better perceive multidimensional

data, to establish their interrelations, and the groups (clus-

ters) formed, we often have to visualize them. A human

being is capable to perceive visual information much faster

than textual.

Visualization methods of multidimensional data can be

partitioned into several groups: direct visualization meth-

ods, projection methods, clustering methods, and methods

based on artificial neural networks. Projection methods are

frequently used, the aim of which is to present multidimen-

sional data in a space of smaller dimension so as to pre-

serve the analyzed data structure as precisely as possible.

There are linear projection methods (Principal Component

Analysis (PCA) [1], Projection Pursuit [2], etc.) and non-

linear projection methods (Multidimensional Scaling

(MDS) [3], Sammon’s algorithm [4], Principal Curves [5],

the Triangulation method [6], the relational perspective map

(RPM) [7], etc.).

In this paper, we investigate the relational perspective

map (RPM) method [7]. It visualizes multidimensional data

onto the closed plane (torus surface) so that the distances

between data in the lower-dimensional space would be as

close as possible to the original distances. But what is more

important, the RPM method also gives the ability to visual-

ize data in a non-overlapping manner so that it reveals small

distances better than other known visualization methods. It

is shown in [7].

In this paper, we also propose a modification of the RPM

method and experimentally explore the features of the RPM

method and its modification. The main feature of this modi-

fication is its independence on a size of torus.

2. The RPM method

In this section, we present some essential details on the

RPM method from [7]. Assume, we have a set of data points

{ }1( ,..., ), 1,..., , n

i i ni i
S s s s i N s R= = = ∈  with a distance

matrix , , 1,..., ;ij i j Nδ =  N  is the number of data points.

The RPM algorithm maps data points is  into image points

it  in a two-dimensional space (torus surface) in such a way

that visual distances between the image points, denoted by

, , 1,..., ,ijd i j N=  resemble the distances ijδ . We call ijδ

and ijd , respectively, relational and image distance matri-

ces.

As illustrated in Fig 1, the RPM algorithm first maps

data points onto the surface of a torus, then onto the flat

rectangle by a vertical and a horizontal cut.
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Fig 1. The model of the RPM method

From the physical point of view, the torus is a force-

directed multiparticle system: the image points are consid-

ered as particles that can move freely on the surface of the

torus, but cannot escape the surface. The particles exert re-

pulsive forces on one another so that, guided by the forces,

the particles rearrange themselves to a configuration that

visualizes the relational distances ijδ .

The RPM algorithm uses equation (1) as the total po-

tential energy to characterize a configuration.

( )0, ln
ij

p ij ijp
iji j i j

E with E d
pd

< <

δ
= = − δ∑ ∑ , (1)

( )1.0;p∈ − +∞ . The forces between the particles are cha-

racterized by:

1
, where .

p ij
ij p

ij ij

E
f i j

d d
+

∂ δ
= = − <
∂

(2)

In order to derive a practical algorithm, a more formal

specification of the torus and this visualization is given.

Let [ ] [ ] 2: 0, 0,T w h R= × ⊂  denote the rectangle plane of

w and height h in the 2-D Cartesian coordinator system. A

torus mapping is understood as a visualization of the fol-

lowing form:

( ): , : ,i i i iS T s t x yϕ → → = . (3)

Let ( ): ,i i it x y= , ( ): ,j j jt x y=  be two points from T.

Then the distance between it  and jt  is defined as follows:

( ) { }

{ }

, min ,

min , .

i j i j i j

i j i j

d t t x x w x x

y y h y y

= − − −

+ − − − (4)

With this distance function, the opposite edges of the

rectangle T are actually stuck together, so that it becomes

topologically equivalent to a torus (Fig 1).

So the torus surface used in the RPM algorithm is actu-

ally the metric space ( ),T d . The goal of the RPM algo-

rithm is thus to find a torus mapping ϕ  of form (3) that

minimizes equation (1).

The RPM algorithm adapts the Newton-Raphson (NR)

[8] method to minimize the energy function (1). Let ( )f x

be a single-variate function, then the optimum point of

( )f x  can be found by the following formula:

( ) ( )
( )( )
( )( )

1

m

m m

m

f x

x x

f x

+

′

= −

′′

. (5)

In order to apply the NR method, it is necessary to cal-

culate the first-order and second-order partial derivatives

of E with respect to all variables ix  and iy . There will be

given formulas of derivatives with respect to 
i

x ; the calcu-

lation with respect to iy  is completely analogous.

The first-order partial derivative of E is calculated as

follows:

, , 1,..., ,
p

ik ik
i i k

E
h f i k N

x
<

∂
= =

∂
∑ (6)

ikf  is defined in equation (2) and ikh  can be calculated as

follows:

1, , ,
2

1, , ,
2

1, , ,
2

1, , .
2

i k i k

i k i k
ik

ik
i

i k i k

i k i k

w
if x x x x

w
if x x x x

d
h

wx
if x x x x

w
if x x x x


+ − < >


− − < <
∂

= = 
∂ − − > >



+ − > <


(7)

If 
2

i k
w

x x− =   or 0i kx x− = , then 1ikh =  or

1ikh = −  may be used. We have chosen 1ikh =  in the real-

ization of RPM algorithm. The second-order partial deriva-

tive of E is calculated as follows:

2

2
( 1)

p ik

iki ki

E f
p

dx
<

∂
= − +

∂
∑ . (8)

By substituting (6) and (8) into formula (5), we get an

iterative formula to find the minimum energy configura-

tion:

( ) ( )1 1

1

ik ik
m m i k

i i
ik

iki k

h f

x x
fp

d

+ <

<

= +
+

∑

∑
. (9)

James Xinzhi Li [7] uses a modified variant of for-

mula (9):

( ) ( ) ( )1
.

ik ik
m m m i k

i i
ik

iki k

h f

x x c
f

d

+ <

<

= +

∑

∑
(10)

In formula (10), the constant 
1

1p +  is replaced by the

Dataset with 4
points in a three-

dimensional space

4 image points
on the torus

surface

RPM map of the
dataset



R. Karbauskaitė et al.  / ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS – 2006, Vol XII, No 4, 289–294 291

parameter ( )m
c  that is called the learning speed at the step

m. Here ( )m
c  should approach zero as m increases. ( )m

c  is

calculated by the formula:

( )
,

m mc ra= (11)

where r is the initial learning speed, ( )0;1a∈ . Both r and

a are determined empirically.

3. Results of experimental investigation of the RPM

method

The following datasets were used in the experiments:

• The spherical dataset. It is a set of 576 points, which

components  ( ), ,x y z  are calculated according to the

parametrical equations below:

2cos cosβ,

2sin cosβ,

2sinβ,

x

y

z

= α


= α
 =

(12)

varying the values of the parameters α  and β  at

equal intervals, where [0;360 ], [0;360 ]α∈ β∈� � .

• The classical Fisher iris dataset [9]. Petal weights,

petal heights, sepal weights, and sepal heights of 150

iris flowers were measured using 50 flowers of three

different kinds: Iris Setosa, Iris Versicolor, and Iris

Virginica. The dataset consists of 150 four-dimen-

sional points.

• The HBK dataset [10]. 75 four-dimensional points

comprised three separate groups: 1–10 points form

the first group, 11–14 points – the sec-ond one, and

15–75 points – the third group.

In [7], it is not indicated exactly, what values of the

parameters w (the width of the rectangle plane), h (the height

of the rectangle plane), and r (11) should be in order to

minimize the potential energy and obtain a visualization of

multidimensional points as precisely as possible.
Fig 2. Visualization of the iris dataset on the plane by the RPM

method at different values of the parameters w and h

Fig 3. Visualization of the spherical dataset on the plane by the RPM method at different values of the parameter r

We have done many experiments with three datasets –

sphere, iris, and HBK – to find out how much the obtained

visualizations of multidimensional points depend on the

values of the parameters r, w, h (Fig 2, 3). In [7], it was

proposed that a should be near to 1, and we have chosen

 

0.975a =  in our experiments. We have chosen 0p =  as

recommended in [7]. The initial coordinates of points on

the plane are generated at random.

r = 0.5, E = –3342223,523 r = 2, E = –3472738.457 r = 4, E = –3491417.189
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When visualizing the iris dataset, different values of the

parameters w and h were chosen, and the change of the

potential energy was explored. The values of the parameters

a and r were fixed: a = 0.975, r = 4. 10 experiments have

been done for every couple of parameters w and h (for ex-

ample, 100, 100w h= = ) and the obtained values of the

potential energy have been averaged. It has been observed

that the larger the ratio of these parameters, the less poten-

tial energy is obtained (Fig 4), however, the visualization

quality of data points is worse: the classes are not formed

(Fig 2 a, b). Thus, having rectangle planes of different width

and height, we cannot compare the minima of the potential

energy and state that the less potential energy, the more

precise visualization of the data points. Analogical results

are obtained when visualizing the HBK dataset.

When pursuing investigations with the spherical dataset,

we have also kept a close watch on the dependence of the

potential energy on the parameter r. The values of the pa-

rameters w, h, a  were fixed: 100, 0.975w h a= = =  Fig 5

illustrates, how the potential energy is changing at differ-

ent values of the parameter r when visualizing the dataset

of sphere. Though the relative value of the potential energy

does not change considerably (at maximum it changes be-

tween 
 

( 0.5)
p

E r =  and 
 

( 4)
p

E r =  in 4 %), when changing

r, however, even an insignificant reduction of the potential

energy substantially changes the projections of points

(Fig 3).

4. A modification of the RPM method

In this paper, we have proposed a modification of the

RPM method. The main ideas are as follows:

• the distance function on T is defined in another way;

• in each iteration we recalculate the projections not

of all the points at once, but we pick a point one by

one and recalculate its coordinates, taking into con-

sideration the points whose coordinates have already

been recalculated and those whose coordinates have

not been changed as yet.

The distance function on T is defined in such a way:

( ), min ,1

min ,1 .

i j i j

i j

i j i j

x x x x
d t t

w w

y y y y

h h

 − − 
= − 

  

 − − 
+ − 

  

(13)

Having introduced such a distance function, we obtain

that all ( ) [ ], 0;1 .i jd t t ∈  Because of the distance function

(13), we have to recalculate formulas (7), (8), and (9):

       

1
, , ,

2

1
, , ,

2

1
, , ,

2

1
, , .

2

i k i k

i k i k
ik

ik
i

i k i k

i k i k

w
if x x x x

w

w
if x x x x

d w
h

wx
if x x x x

w

w
if x x x x

w


+ − < >


− − < <
∂

= = 
∂ − − > >



+ − > <


(14)

If 
2

i k
w

x x− =  or 0i kx x− = , then 
1

ikh
w

=  or

1
ikh

w
= −  may be used. We have chosen 

1
ikh

w
= .

The second-order partial derivative of E:

2

2 2

1p ik

iki i k

E fp

dx w
<

∂ +
= −

∂
∑ . (15)

An iterative formula to find the minimum energy con-

figuration:

( ) ( )
2

1
.

1

ik ik

m m i k
i i

ik

iki k

h f

w
x x wK

fp

d

+ <

<

= + +
+

∑

∑
(16)

Fig 4. Dependence of the potential energy on the parameters w
and h while visualizing iris data by the RPM method

Fig 5. Dependence of the potential energy on the parameter r,
while visualizing the spherical dataset by the RPM method
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In (16), the product wK is added to satisfy the condition

( )1
0

m
ix w

+

≤ < , where K is the integer number, selected to

meet this rule.

The calculation with respect to iy  is completely analo-

gous.

Fig 6. Dependence of the potential energy on the parameters w
and h while visualizing iris data by the modification of the RPM

method

Fig 7. Visualization of the iris dataset on the plane by the modifi-

cation of the RPM method

Fig 8. Visualization of the spherical dataset on the plane by the

modification of the RPM method

5. Results of experimental investigation of the

modification of the RPM method

When visualizing the iris dataset, different values of

the parameters w and h were chosen and the change of the

potential energy was explored. 10 experiments have been

done for every couple of the parameters w and h (for ex-

ample, w = 100, h = 100) and the values of the potential

energy obtained have been averaged. It has been noticed

that, in the case of the RPM method modification, we avoid

a strong dependence of the energy on the width and height

of the rectangle plane (Fig 6) and the visualization of data

points is similar at different parameters w and h (Fig 7). In

the case of our modification, the relative value of the po-

tential energy changes at maximum by 0.4 % (Fig 6), while

in the case of the RPM method, it may change even up to

27 % (Fig 4). Note: the potential energy does not gradually

converge to the minimum (Fig 6).

Analogical results have been obtained when visualiz-

ing the HBK dataset. Fig 8 illustrates the visualization of

the spherical dataset when 
 

100w h= = .

6. Conclusions and discussion

Experiments with various datasets have shown that al-

gorithms of the RPM type may be helpful in visualizing

multidimensional data. The results of the basic RPM algo-

rithm strongly depend on the parameters w, h, a and r. Un-

fortunately, there are no specific rules to select the values

of these parameters. In our modification, we avoid a strong

dependence on the parameters w, h. However, having re-

jected the parameters a and r, the energy does not gradu-

ally converge to the minimum. When pursuing investiga-

tions, it has been noticed that the optimization process sta-

bilizes after 100 iterations. In order to define the stopping

condition of the algorithm, additional detailed investiga-

tions are necessary.
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The most important drawback of the RPM method is

that the function pE  is non differentiable in some points:

if there are pairs 
i

x  and jx , for which i jx x=  or

2i jx x w− = , then, in the close space of the point ix , the

values of the right and the left derivatives of the function

do not coincide. Applying the NR method, we choose the

value of the left derivative of the function. The better ap-

proach is to use search methods, which do not assume dif-

ferentiability, or the distance function on T would be de-

fined as the function differentiable in all points of the torus

surface.
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SANTYKINĖS PERSPEKTYVOS METODO, SKIRTO DAUGIAMAČIAMS DUOMENIMS VIZUALIZUOTI, TYRIMAS

R. Karbauskaitė, V. Marcinkevičius, G. Dzemyda

Santrauka

Nagrinėjamas santykinės perspektyvos metodas (angl. relational perspective map (RPM)), kuris vizualizuoja daugiamačius duomenis

į plokštumą. RPM metodas kaip ir dauguma kitų žinomų dimensijos mažinimo metodų stengiasi išlaikyti santykinius atstumus tarp

daugiamačių taškų plokštumoje. Pagrindinė RPM metodo savybė ta, kad duomenys vizualizuojami plokštumoje taip, kad jų projekcijos

nepersidengtų. Taigi RPM metodas išlaiko atstumus tarp artimų taškų daug tiksliau negu kiti vizualizavimo metodai. Eksperimentais

ištyrus RPM metodą, nustatyti šio metodo trūkumai, todėl pasiūlyta modifikacija, leidžianti jų išvengti.

Reikšminiai žodžiai: vizualizavimas, daugiamačiai duomenys, santykinės perspektyvos metodas.
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