
118

METHODS FOR GENERATION OF RANDOM NUMBERS IN PARALLEL STOCHASTIC
ALGORITHMS FOR GLOBAL OPTIMIZATION

Algirdas Lančinskas, Julius Žilinskas
Institute of Mathematics and Informatics

1. Introduction

Generation of random numbers plays an im-
portant role in stochastic optimization algorithms
where sequences of random numbers with particu-
lar distribution must be generated. There are many
techniques to gain random numbers but they vary in
quality and properties of produced numbers. In sto-
chastic algorithms for global optimization important
properties of random numbers can be the following:
fitness for required probability distribution, repeti-
tion of numbers, correlation between sequences of
generated numbers, and speed of generation.

There are two principal methods to generate
random numbers. One measures a physical phe-
nomenon that is expected to be random. Usually it
is called hardware random number generation. The
other method uses deterministic computational al-
gorithms that produce long sequences of apparent-
ly random numbers. The latter type is often called
pseudo random number generator (PRNG). Most of
PRNGs must have initial number that is used to start
generation of sequence and called a “seed”. The re-
sults are the same each time when the same seed is
used. In parallel computing seeds should be chosen
so that the sequences of random numbers in different
processes are independent and uncorrelated.

2. Pseudo random number generators

Linear congruential generator (LCG) is a
classic random number generator. It generates a se-
quence of nonnegative integers. It was introduced
by Lehmer D. H. (1949) and has become the basis
for many random number generators in use today
(Moler, 2004). A simple LCG is defined by a recur-
sive relation

1 () modk kx ax c m+ = + . (1)

Like most generators it requires an initial seed
value x0. The constant a is called a multiplier, c is
an increment and m is a modulus. LCG has at most
m distinct values in its sequence thus LCG can gen-

erate no more different numbers than its modulus.
LCG generates the maximum quantity of different
random numbers if and only if (Wehrwein, 2007) c
and m are relatively prime, a–1 is divisible by all
prime factors of m, and a–1 is multiple of 4 if m is
multiple of 4.

If uniformly distributed pseudo random inte-
gers from 0 to m–1 are divided by m–1, the resulting
floating-point numbers are uniformly distributed in
the interval [0,1].

LCG algorithm is used in programming en-
vironments such as Visual C/C++, Borland C/C++,
Borland Delphi, etc. Crucial differences of usage of
LCG are choice of parameters and utilization of bits
of produced result, i.e. Borland C/C++ built-in func-
tion rand() uses parameters a = 214013, c = 2531011,
m = 232 and bits from 16 to 30 of produced number.

Good results are achieved by experimentally
testing LCG with parameters a = 7777, c = 101,
m = 32771. Description of experiments and their re-
sults is given below.

Another algorithm for generation of random
numbers is Mersenne twister. It is developed by Mat-
sumoto M. and Nishimura T. (1998) and based on a
matrix linear recurrence over a finite binary field. Its
name derives from the fact that period length is cho-
sen to be a Mersenne prime. Implementation of the
algorithm was downloaded from Agner.org.

Marsaglia G. (2005) invented multiply with
carry method for generating sequences of random
integers. Suppose the digits x, y, z and ‘carry’ c are
represented in the form x, y, cz. The iteration rule is
as follows (Marsaglia, 2005):

7()t x y c= + + ,
x y← , y z← , /10c t← ⎢ ⎥⎣ ⎦ , mod 10z t← ,
output z.

For example, given initial x = 9, y = 2, z = 1
and c = 13 we have a sequence

13 9 3 1 0 0 0 0 49, 2, 1, 0, 0, 0, 1, 0, 7, 7, 9,...

and an output sequence

00010779229603364764998524975161440043812183534257398185084007...

119

FIZINIAI MOKSLAI

A multiply-with-carry generator with more
than one factor is called the Mother-Of-All random
number generator that is also invented by Marsa-
glia G. (Agner. org). Implementation of Mother Of
All algorithm was downloaded from Agner.org.

3. Investigation of randomly generated numbers

One criterion of random number generator
is fitness for required distribution of randomly
generated numbers. We use Kolmogorov-Smirnov
(K-S) statistics to test this property. It quantifies the
maximum distance between the empirical distribution
function of the sample and the cumulative function
of the expected distribution.

Empirical function Fn for sequence of numbers
xi, i = 1, 2, ..., n can be defined as

1

1()
i

n

n x x
i

F x I
n ≤

=

= ∑ , (2)

where

1, if ,
0, otherwise.i

i
x x

x x
I ≤

≤⎧
= ⎨
⎩

Expected (theoretical) uniform distribution
cumulative function F(x) and empirical cumulative
function Fn(x) when numbers are uniformly distrib-
uted in [0; 1] are presented in Figure 1.

Figure 1. Expected uniform distribution and empirical cumulative functions

Kolmogorov-Smirnov statistics for given cu-
mulative distribution function F(x) are

sup | () () |n n
x

D F x F x= − .

Kolmogorov-Smirnov test may be used to reject
a hypothesis that the considered sequence follows
the required distribution (uniform distribution in our
case). Let us define the hypothesis H0: the sequence
follows uniform distribution.

The hypothesis H0 is rejected if the test statis-
tic Dn is greater than the critical value obtained from
a table. The hypothesis can be tested using MATLAB
function [h,p,ksstat,cv]=kstest(x,[x;unifcdf(x)]’,0.05),
where x is a testing sequence, [x;unifcdf(x)] is the
required distribution cumulative function (uniform
distribution in our case), 0.05 is the significance lev-
el, h shows the result of hypothesis testing (0 means
that H0 is not rejected, 1 means that H0 is rejected),
p is p-value, ksstat is Kolmogorov-Smirnov statistic
and cv is critical value.

Important criterion is quantity of different

numbers in generated sequence which can be ex-
pressed in percents. For example, if in a sequence of
100 random numbers one number is repeated once,
we can say that 99% of generated numbers are dif-
ferent.

Another criterion is correlation between se-
quences of randomly generated numbers. Suppose
we have k independently generated sequences X1, X2,
..., Xk. We evaluate correlations ρ(Xi, Xj), and present
either the maximum of absolute value or both the
minimum and the maximum.

The last criterion used in this paper is the
speed of generation of random numbers. It can be
measured by generating huge sequence of random
numbers observing time elapsed during the genera-
tion. Note that the previous criteria do not depend
on computer parameters while speed of generation
can vary depending on CPU speed, virtual memo-
ry size, operating system, running processes, other
conditions. Therefore speed of generation must be
measured on identical systems under identical con-
ditions.

120

ISSN 1648-8776
JAUNŲJŲ MOKSLININKŲ DARBAI. Nr. 2 (27). 2010

4. Techniques for generating seed for random
number generator

A seed is a starting value that is necessary for
random number generators. If you run a program
again with the same seed value then you will get
exactly the same sequence of random numbers. If you
use a different seed value then you will get a different
sequence of random numbers. Computer time is
usually used as the seed value to get unpredictable
randomness. However this method is not acceptable
in parallel computing since different nodes must use
different seed values to make sure that each node
generates a unique sequence of random numbers. This
is complicated when two or more nodes use the same
clock, for example in multi-tread systems. Therefore
other techniques for generation of seed values are
necessary. We have investigated several techniques
to generate seed values for parallel computing.

S1. Time in seconds given by computer clock
is multiplied by processor’s ID:

1Sseed time id= ⋅ .

S2. The number of clock ticks elapsed since the
program was launched is multiplied by processor’s
ID:

2Sseed tics id= ⋅

S3. The required number of seeds is generated
using random number generator on one of the
processors and distributed to others.

S4. The current time, the number of tics and
processor ID are composed using the formula:

4 (mod32768) rotr (mod31)Sseed time id= +

(mod32768) rotr (mod31)tics id+ ,

where rotr means rotation of bits, i.e. a rotr r
means the bits of a rotated by r places to the right,
(000011112 rotr 3 = 111000012).

S5. The current time, the number of tics and
processor ID are composed using the formula:

()mod15 30
5 2 2 mod 2 1id

Sseed time tics= ⋅ ⋅ ⋅ − .

All techniques have been investigated consi-
dering correlation between generated sequences.

5. Experimental investigation of random number
generators

Seven methods for generation of random
numbers were experimentally investigated consid-
ering Kolmogorov-Smirnov statistics (2), repetition
of numbers in one sequence (3), correlation between
sequences (4) and time of generation. 40 sequences
of 108 random numbers with uniform distribution
in range [0, 1] were generated to measure time and
100 sequences of 104 numbers were generated for
other experiments. The same set of seeds was used
for each method. Parameters a = 7777, c = 101 and
m = 32771 (1) were used for LCG. Averaged results
are shown in Table 1. In column “K-S statistic” aver-
aged Kolmogorov-Smirnov statistic values are pre-
sented. Critical value is 0.0136 in our case. It means
that a sequence with K-S statistic larger than the crit-
ical value did not pass fitness for uniform distribu-
tion test (see Section 3). The numbers of sequences
that fail K-S test are presented in column “Rejected”.
Correlations with the largest absolute value (except
5% largest) are presented in column “Correlation”.

Table 1. Average values of criteria of investigation of random number generators

Generator Different numbers (%) K-S statistic Rejected Correlation Time of generation
Matlab 99.996 0.00853 3 0.0047 2.105
Visual C++ 86.156 0.00879 4 0.0050 4.374
LCG 100.00 0.00809 0 0.0023 3.124
Turbo Pascal 92.725 0.00856 1 0.0030 43.750
Mersenne Twister 99.995 0.00823 0 0.0098 10.250
Mother Of All 99.994 0.00836 1 0.0032 9.274
FORTRAN 99.983 0.00838 1 0.0158 2.002

As we can see in Table 1 LCG produces the
largest quantity of different numbers in generated
sequences (100% of produced numbers are
different). That means that there are no sequences
with repetitive numbers. The smallest Kolmogorov-
Smirnov statistics and correlation are given with

LCG, too. All of the generators except LCG and
Mersenne twister produced at least one sequence
that did not pass K-S test. Turbo Pascal generator
provides small correlation, but larger repetition of
numbers, Kolmogorov-Smirnov statistic and critical
time of generation. FORTRAN generator seems

121

FIZINIAI MOKSLAI

to be the fastest but produces the most correlated
sequences.

95% confidence intervals for mean of K-S
statistics are calculated and presented in Figure 2.
We can see that K-S statistics are less than 0.0095

with probability of 0.95 for all generators. But there
are few sequences with K-S statistics larger than
critical value of 0.0136 and rejected to be uniformly
distributed (see Table 1).

Figure 2. Confidence intervals for mean of K-S statistics of generated sequences

Intervals between minimum and maximum
values (excepting 5% largest in absolute value) of

correlations of sequences are presented in Figure 3.

Figure 3. Minimum and maximum values of correlations of generated sequences

As we can see in Figure 3, correlations of se-
quences generated with LCG are the smallest. Corre-
lations of sequences generated with FORTRAN and
Mersenne Twister generators are most scattered.

Five techniques for generating seed values for
random number generation in parallel computing (see
previous section) have also been tested considering

correlation between sequences of generated numbers.
100 sequences of 103 random numbers with uniform
distribution in the range [0, 1] have been generated
using 100 parallel processes. Averaged correlations
of sequences of 10 experiments are presented in
Table 2.

Table 2. Average correlation of sequences when seeds are generated using techniques S1-S5

Technique S1 S2 S3 S4 S5
Averaged correlation -0.0002512 0.0001007 0.0000388 -0.0000034 -0.0000022

95% confidence intervals for mean of correla-
tions are calculated and presented in Figure 4.

122

ISSN 1648-8776
JAUNŲJŲ MOKSLININKŲ DARBAI. Nr. 2 (27). 2010

Figure 4. Confidence intervals for results of tests of techniques for generating seeds

As we can see from the results techniques in-
volving larger number of parameters such as proces-
sor id, time in seconds, processor tics leads to gen-
eration of less correlated sequences.

6. Conclusions

The paper presents an overview of widely used
methods for generation of random numbers and their
experimental investigation. Seven methods have
been investigated considering four criteria important
in stochastic algorithms for parallel optimization.
The best results have been achieved using Linear
Congruential Generator with parameters a = 7777,
c = 101 and m = 32771. Turbo Pascal internal gen-
erator produces sequences with the smallest correla-
tion but it is the slowest. The fastest generator seems
to be FORTRAN internal generator but it generates
most correlated sequences.

Five techniques of seed construction for paral-
lel generation of sequences of random numbers have
also been experimentally tested. Results show that
technique involving larger number of parameters

(processor id, time in seconds, processor tics) leads
to generation of less correlated sequences.

References
1. Moler C., 2004, Numerical Computing with MATLAB.

Society for Industrial and Applied Mathematics,
Philadelphia.

2. Wehrwein J., 2007, Random Number Generation.
Senior Thesis, Middlebury College.

3. Matsumoto M., Nishimura T., 1998, Mersenne Twist-
er: A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM Transac-
tions on Modeling and Computer Simulation. Vol. 8.
No. 1. P. 3–30.

4. Marsaglia G., 2005, On the Randomness of Pi and
Other Decimal Expansions. Florida State University.
Available online at <http://interstat.statjournals.net/
YEAR/2005/articles/0510005.pdf>.

5. Agner.org. Available online at <http://www.agner.
org/random/>. [Accessed on 04-03-2010].

6. Lehmer D. H., 1949, Mathematical methods in large-
scale computing units. Proc. 2nd Sympos. on Large-
Scale Digital Calculating Machinery. P. 141–146.
Harvard University Press.

METHODS FOR GENERATION OF RANDOM NUMBERS IN PARALLEL STOCHASTIC
ALGORITHMS FOR GLOBAL OPTIMIZATION

Algirdas Lančinskas, Julius Žilinskas

Summary

Performance of stochastic algorithms for global optimization crucially depends on generation of random numbers.
Random number generation methods may vary on features as independence of the generated random numbers, fit to the
required distribution, and speed of generation. This paper reviews the main idea and several algorithms for generation of
pseudo random numbers. Evaluation criteria of pseudo random numbers generators are also reviewed. Seven widely used
random numbers generators (Linear Congruential Generator, Mersenne Twister, Mother At All, C++, Pascal, Matlab and
Fortran) are experimentally compared evaluating the distribution of random numbers, correlation of sequences and speed
of generation. In parallel computations correlation of sequences may depend on the seed of pseudo random numbers
generators. Therefore several ways for construction of the seeds are compared considering correlation of generated
sequences of random numbers when computations are performed in parallel computers.

Keywords: random numbers, random number generators, parallel stochastic algorithms, global optimization.

123

FIZINIAI MOKSLAI

ATSITIKTINIŲ SKAIČIŲ GENERAVIMO PARALELINIUOSE STOCHASTINIUOSE
ALGORITMUOSE BENDRAJAM OPTIMIZAVIMUI METODAI

Algirdas Lančinskas, Julius Žilinskas

Santrauka

Bendrojo optimizavimo stochastinių algoritmų efektyvumas itin priklauso nuo atsitiktinių skaičių generavimo.
Atsitiktinių skaičių generavimo metodai gali skirtis tokiais bruožais, kaip sugeneruotų atsitiktinių skaičių nepriklausomu-
mas, tinkamumas reikiamam skirstiniui ir generavimo greitis. Šiame straipsnyje apžvelgiama pagrindinė idėja ir keletas
pseudoatsitiktinių skaičių generavimo algoritmų. Taip pat apžvelgiami pseudoatsitiktinių skaičių generatorių vertinimo
kriterijai. Eksperimentiškai lyginami septyni plačiai naudojami atsitiktinių skaičių generatoriai (Linear Congruential
Generator, Mersenne Twister, Mother At All, C++, Pascal, Matlab ir Fortran) vertinant atsitiktinių skaičių distribuciją, sekų
koreliaciją ir generavimo greitį. Lygiagrečiuosiuose skaičiavimuose sekų koreliacija gali priklausyti nuo pseudoatsitiktinių
skaičių generatorių pradinių skaičių. Todėl lyginami keli būdai sudaryti pradinius skaičius atsižvelgiant į sugeneruotų
atsitiktinių skaičių sekų koreliaciją skaičiuojant paraleliais kompiuteriais.

Prasminiai žodžiai: atsitiktiniai skaičiai, atsitiktinių skaičių generatoriai, paraleliniai stochastiniai algoritmai,
bendrasis optimizavimas.

Įteikta 2010 06 15

