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Notation
D – diffusion coefficient
E – the concentration of enzyme
KM – the Michaelis constant
P – the concentration of product
r – the distance (radius)
Sm – the concentration of substrate (the lower index indicate the domain m -
microbioreactor, d - diffusion layer, b - bulk.)
t – the time
Vmax – the maximal enzymatic rate

Abbreviations
BSTR – batch stirred tank reactors
CA WoS – Clarivate Analytics Web of Science
CSTR – continuous stirred tank reactors
FDM – finite difference method
HPM – homotopy perturbation method
GDH – glucose dehydrogenase
LAC – laccase
MR – microbioreactor
PDE – partial differential equation

6



Introduction

Research context and motivation

Chemical reactions surround all of us in various situations in our lives.
On the other hand, materials do not interact with each other by chemical
reactions if not all necessary conditions are met. In various fields, such as
chemical, environmental, food and pharmaceutical industries [44, 101, 112],
chemical reactions are triggered by enzymes1. This trigger effect is known
as (bio)catalysis process in which enzymes increase the rate (or enables) of
a chemical reaction. A lot of breakthroughs in recent years have been made
in applications of enzymes, e.g., the most fascinating one - ability to dissolve
plastic [87, 117]. The special environment/device, where the chemical reactions
take place is often called (bio)reactor. We use a simplified mathematical model
of process kinetics in bioreactors where (bio)catalyst is enzyme E, the material
is substrate S, and product P is produced as a result of reaction (see Figure 1).
In general, biocatalyst is such a material which allows to produce new or faster
reactions between the substances [75].

Substrate S

No reaction

+Enzyme E → Reaction

S

ES

E
P

Figure 1: The usage of biocatalyst (enzyme) to enable chemical reactions ((bio)catalysis
process).

A variety of definitions of bioreactors can be found in literature. In some
of them, it is defined as a tank or a container in which various products could
be produced; such as, manufacturing of beer [26] (see Figure 2). However,
tank or a container is limited in terms of number of controllable reactions
that can take place. According to other definitions, a bioreactor is a chemical
device or designed material that enables chemical reactions [94]. An example
could be bioreactor based on microbioreactors, which are immobilized with

1Enzymes are biological catalysts (biocatalysts).
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enzyme2 (see Figure 2). In this thesis we concentrate on bioreactors based on
microbioreactors.

S

ES

E
P Ωc

Ωd

Ωm

≈ 200µm

Figure 2: The bioreactor (left) and bioreactor based on microbioreactors (right).

The usage as well as demand of bioreactors are growing. According to the
report by Global Market Insights, the global demand for bioreactors in the USA
reached US$270 million by the year 2018 and expected to be expand up to
US$700 million till 2025 3. A similar growth is expected in other markets for
bioreactors globally.

Similar trends can be found in scientific community. The Clarivate Analytics
Web of Science 4 database indicates that the number of scientific papers on
immobilized enzymes gradually increases, while applications of bioreactors are
in high demand since 2004 (see Figure 3).

This research concentrates on the investigation of enzyme immobilized
bioreactors, which have proved to be reliable and low-cost in various com-
mercial systems within chemical, environmental, food and pharmaceutical
industries [44, 101, 112]. The particle-based bioreactor systems are typically
compared based on their effectiveness [19–21]. However, usually the system
is simplified and the reaction part is assumed to be linear, which covers only
small range of practical cases. Mathematically microbioreactors are modeled as
a core and outer (Nernst) layer. Model which have two layers is called bi-layer
model.

The recent experiments have demonstrated the construction of microcata-
lysts using non-specific glucose dehydrogenase (GDH) and oxygen reducing
laccase (LAC) that have been wired via carbon nanotubes and gold nano-
particles [93, 94]. In this thesis the hypothesis: is it possible to model the
chemical kinetics of a microbioreactor with nanotubes, with a model model for-
mulated in one-dimensional space (unitary microbioreactor with a shell layer)
is investigated.

2Immobilized enzymes – are enzymes which are inert or insoluble into material. In our case
this material is a microbioreactor.

3https://www.gminsights.com/industry-analysis/bioreactor-market
4wcs.webofknowledge.com

8

https://www.gminsights.com/industry-analysis/bioreactor-market
https://wcs.webofknowledge.com/RA/analyze.do?product=WOS&SID=D2beqrCsunrnCy6fif1&field=TASCA_JCRCategories_JCRCategories_en&yearSort=false


1990 1995 2000 2005 2010 2015

0
5

0
0

1
0

0
0

2
0

0
0

years

#
 p

u
b
lic

a
ti
o

n
s
 p

e
r 

y
e

a
r

immobilized enzyme

bioreactor

Figure 3: The number of scientific papers per year for separate keywords: bioreactor
and immobilized enzyme in CA WoS database

Aim, object and objectives of the thesis

The object of investigation are mathematical and computational models
describing chemical kinetics of bioreactors based on microbioreactor particles.
The aim of this work is to properly simulate and optimize bioreactor systems,
based on microbioreactors, by suggesting original mathematical and computa-
tional models. The objectives are as follows:

1. To generalize existing mathematical models of bioreactors,

2. To develop a mathematical and computational models for a microbiore-
actor with carbon nanotubes,

3. Propose an algorithm based on the homotopy perturbation method, for
mathematical model not considered in literature before, for approximate
analytical solution of the nonlinear boundary value problem describing a
bi-layer biocatalytic the system,

4. To develop a computational model to be used for the multi-objective
optimization of a batch stirred tank reactor based on spherical catalyst
microbioreactors,

5. Investigate properties of the open and closed bioreactor systems by using
the developed mathematical and computations models.
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Research approach and methods

In the dissertation we use numerical schemes (the finite difference method
(FDM)) from mathematical modelling theory, the methods of perturbation
analysis from the theory of aproximations, scalability analysis from the theory
of parallel computing, the three-objective optimization to find the Pareto front
from the optimization theory.

Scientific novelty and results

A novel mathematical model of a bioreactor based on carbon nanotubes
was proposed. Various bioreactor properties were investigated under different
conditions as well as at variuos extensions like additional layers, and non-linear
boundary conditions. In more detailed, the results are as follows:

1. A mathematical model of bioreactors was generalized in terms of addi-
tional layers, and initial boundary conditions,

2. A new mathematical model for a microbioreactor based on carbon nan-
otubes substrates conversion was developed,

3. Limitations of the homotopy perturbation method were demonstrated,
and recommendations on the method usage were provided,

4. A computational model for the multi-objective optimization of microbi-
oreactor configuration was developed,

5. The model parameter values for all considered microbioreactor models,
at which the bioreactor transient effectiveness significantly increases,
have been determined.

Practical significance of the results

The mathematical models presented in this thesis describe the bioreactors
based on spherical microbioreactor partials. The developed and implemented
computational models can be used to numerically investigate the behaviour of
such bioreactors, as well as to create more efficient bioreactors in the design
phase. The analytical approximations were produced for the limiting cases
which allow the biochemists to have analytical solutions of the investigated
systems.

By using the developed programs to model microbioreactor action, the
dependency of systems efficiency on various parameters, like particle size, and
physical conditions, like diffusion and number of outer layers, was investigated.
The obtained results show the dependencies of analysed microbioreactor on
various physical conditions.
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The investigation of various properties described in this thesis can be applied
for creation and development of microbioreactors utilizing multiple reactions
behaving according the Michaelis-Menten kinetics [6, 12, 44].

The results were used to accomplish the goals of the following project:
‘Computational modeling of open biological systems: bacteria grow and micro-
bioreactors’ funded by the grant project No. S-MIP-17-98 from the Research
Council of Lithuania (Researcher groups projects Grant).

Statements promoted to defend

The main contributions formulated to defend are as follows:

1. The proposed novel mathematical model can be successfully applied to
modeling the kinetics for a microbioreactor with carbon nanotubes,

2. The transient effectiveness of a closed system (batch type model) reduces
to the effectiveness of an open steady-state system (continuous type
models) under large time,

3. Approximations of limiting system cases obtained by the homotopy
perturbation method are valid only when the small parameter value falls
into the convergence region. For different bioreactor configurations,
different values of the of small parameter are needed.

4. The chemical kinetics of a bioreactor, based on a large number of unin-
teracting microbioreactors, can be successfully modeled by a unit cell (a
microbioreactor) and the surrounding shell in one dimensional space.

Results approbation

Three articles were published in the journals with citation index in Clarivate
Analytics Web of Knowledge database (WoS) [A1–A2, A4], the forth publica-
tion [A2] is in review process stage, one publication was published in periodical
and peer-reviewed [A5] journal. The main contribution for the thesis, which
was published in articles, covers the development of numerical models and the
software for numerical and symbolic solving and validation of these models,
digital investigation of the kinetic process behavior under various scenarios.

Additionally, the results were presented in four international conference
proceedings [A6–A9].

The results were presented at the following scientific conferences:

1. ESM 2019 (Palma, Spain): The 33rd annual European Simulation and
Modelling Conference. 28–31th October 2019.

2. ECMS 2019 (Caserta, Italy): 32th European Conference on Modelling
and Simulation. 10–14th June 2019.
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3. DAMSS 2018 (Druskininkai, Lithuania): Data analysis methods for
software systems. 29th November–1st December 2018.

4. AIEEE 2018 (Vilnius, Lithuania): 6th IEEE Workshop on Advances in
Information, Electronic and Electrical Engineering. 8–12th November
2018.

5. NESUS 2018 (Zagreb, Croatia) 3rd NESUS Winter School and PhD
Symposium. 22–25th January 2018. (COST Action IC1305)

6. SIMUL 2017 (Athens, Greece): The Ninth International Conference on
Advances in System Simulation. 8–12th October 2017.

7. LMD 2017 (Vilnius, Lithuania): Lithuanian Mathematical Society 58th
Conference, 21–22th June 2017.

8. OR 2017 (Vilnius, Lithuania): Open Readings. 14–17th March 2017.

9. DAMSS 2016 (Druskininkai, Lithuania): Data Analysis Methods for
Software Systems. 1–3rd December 2016.

Structure of the thesis

The thesis consists of four chapters. In Chapter 1 the overview of the
researched domain as well as the state-of-the-art models are presented: an
introduction to bioreactors, their properties and classification, an overview of
the existing mathematical models, as well as the methods and tools used to
carry out the simulation processes. Chapter 2 presents the mathematical models
including the proposed novel mathematical model of a microbioreactor with
carbon nanotubes. Chapter 3 presents the solving of mathematical models of
the bioreactors utilizing intermediate substances: the homotopy perturbation
method, numerical methods, as well as parallelization of simulation. The
investigation of bioreactors based on spherical microbioreactors is presented
in Chapter 4, were the modelling results of a microbioreactor with carbon
nanotubes are compared with the experimental data.
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1. Mathematical Modeling of Process
Kinetics in Microbioreactors

In this Chapter scientific literature review is presented. All the necessary
definitions, types of bioreactors, general mathematical models as well as com-
putational methods are introduced.

1.1. Bioreactors

The history of bioreactors dates back to the year 1944 when De Beeze and
Liebmann have used the first large scale fermentor for the production of yeast
[78]. It was a large tank of enzymes. In 1950 Monod, and Novick and Szilard
have developed the concept using continuous stirred tank bioreactors [36].

For a long time, in order to receive a reaction product, the initial materials
were mixed in stirred bioreactors. In 1974 a particle-based bioreactor was intro-
duced [114]. Particle-based bioreactor containe (commonly, catalyst) particles
which enable chemical processses. Such a process mixes particles constantly,
therefore it is also called as stirred bioreactors. The use of stirred bioreactors
brings some benefits; such as the ability to produce product constantly in large
quantities [114]. One of the common assumptions in the analysis of chemical
kinetics is that the provided catalyst deactivation is negligible [12]. Such a
formulation assume, that under enzyme conservation law the process eventually
(under large time) settle the down, so it is called steady state. Steady state
processes allow simplification of the whole chain of reactions as it is reduced to
a simpler reaction network [4, 107].

The microbioreactors containing immobilized enzyme permit substrate
conversion, a use of small volumes of samples and reagents, reduced costs,
short processing time and system compactness [60, 101]. Although some
enzyme activity is often lost upon the immobilization, improved stability is
often gained by confining the enzymes in support materials [77, 88]. Porous1

silica-based materials are promising supports as their properties can be varied to
achieve efficient enzyme loadings to a particle (microbioreactor) [60, 66, 118].

For the development and improvement of highly efficient and productive
biotechnological processes a number of physical and biochemical characteristics
should be measured and analysed [44, 60, 112]. In many bioreactors, liquid and
solid phases are present and the mass transfer is an important consideration [41,

1Porous means microbioreactor have voids and enzyme take only fraction of the volume.
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44]. In particular, pore and particle sizes determine the total surface area and,
therefore, critically affect the ability for binding enzymes [2].

1.1.1. Continuous stirred tank reactors

Continuous stirred tank reactors (CSTR) were developed by Monod, and
Novick and Szilard [80, 81, 85]. CSTR kinetics sometimes refers to a black box
model, since all of the reactions are lumped into one overall reaction. Typical
equations describing the enzymatic kinetics (where there is often one substrate
and one product in one reaction), such as the Michaelis-Menten kinetics have
been used to formulate steady state processes. Since the tank is continuously,
replenishing and mixing, the modeled system is known as an open system.

1.1.2. Batch stirred tank reactors

Batch stirred tank reactor (BSTR) and continuous stirred tank reactor
(CSTR) are usually the most commonly used configurations of chemical biore-
actors [62, 90]. The most prominent advantages of BSTR are its simplicity
and versatility [41, 44]. Typically, the biocatalyst particles are dispersed in the
solution, the reactants are injected and the agitation is provided by mechanical
stirrers [19, 23]. BSTR, differently from CSTR, is not refilled by the substrate.
When the tank is continuously mixed and no new substrate is injected into the
system, the modeled system is known as a closed system.

1.1.3. Microbioreactors based on carbon nanotubes

In real world, the chemical processes are much more complicated and
involve more substances. In this Section a description of real experiments
[93, 94] is presented. The purpose of these experiments were to create synthesis
of artificial multi-enzyme systems and demonstrate better understanding of
natural electron transfer networks and chains. Based on these experiments the
novel model of microbioreactors with carbon nanotubes is presented in Section
2.3.

Recently, the non-specific glucose dehydrogenase (GDH) and oxygen redu-
cing laccase (LAC) have been wired via carbon nanotubes or gold nanoparticles.
As a result, the system have demonstrated effective carbohydates conversion by
oxygen in the absence of a mediator [93, 94].

Ratautas et al. proposed a microbioreactor based on entraping modified by
GDH and LAC nanotubes into controlled pore glass (CPG) carrier (microbi-
oreactor) [93, 94]. The computational model for a batch stirred tank reactor
(BSTR) is based on an array of spherical porous microbioreactors loaded with

14



these enzymes [30]. An investigation of the influence of the physical and
kinetic parameters on the transient effectiveness of the bioreactor is presented
in Chapter 4.3. The microbioreactor was mathematically modeled by a two-
compartment model, based on transient reaction-diffusion equations containing
nonlinear terms related to the Michaelis-Menten kinetics of two enzymatic
reactions with addition of the mass transfer of the substrate outside the catalyst
region [6, 110].

For the modeling the following biochemical reactions taking place in the
microbioreactor:

L+E1ox
k1−→ P+E1red, (1.1a)

E1red
k2−→ E1ox +2e−, (1.1b)

E2ox +4e− k3−→ E2red, (1.1c)

E2red +O2
k4−→ E2ox +2H2O, (1.1d)

where L – lactose, O2 – oxygen, H2O – water, Ei,ox and Ei,red are the oxidized
and reduced forms of the enzyme Ei, i = 1,2, E1 stands for GDH, E2 – for LAC,
P is the reaction product, k1 and k4 are the rate constants of the enzyme reactions,
and k2, k3 are the rate constants of the electron transfer (ET) reactions. It is
assumed that both enzyme catalyzed processes (1.1a)–(1.1b) and (1.1c)–(1.1d)
obey the Michaelis–Menten kinetics.

In this thesis the novel mathematical and computational models for mi-
croreactor utilizing reactions (1.1a)–(1.1d) are proposed. Since such a system
was not yet investigated, the transient effectiveness of a microbioreactor with
carbon nanotubes in the BSTR is analysed. The process duration is numeric-
ally analysed for different initial concentrations of the substrate as well as for
internal and external diffusion resistances. The performed analysis of CSTR
and BSTR allowed us to formulate the resulting model. The comparison of
proposed model with the experimental data presented in Section 4.3.

1.2. Mathematical model

The physical experiments are common practice to investigate and create
new bioreactors. Another way is to model and simulate the bioreactor action
using state-of-the-art techniques of computational modeling [6].

Mathematical modeling of biochemical processes is regarded as an import-
ant tool to provide useful information for the analysis, design and operation
conditions for the production of various materials including enzymes, proteins
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Figure 1.1: Schematic view of a modeled unit cell: a microbioreactor and the surround-
ing shell

and biofuel [50, 77, 96]. These models are useful for planning efficient pro-
cess control strategies and predicting the production performance [74, 82, 88].
The computer simulation approach allow us to optimize the microbioreactor
configuration with substantially reduced time and cost [77, 89, 111].

For an enzyme-loaded microbioreactor, the enzyme-catalyzed reaction
considered:

S E−→ P, (1.2)

where the substrate (S) binds to the enzyme (E) and is converted to the product
(P) [41, 44]. The principal structure of the modeled unit cell is presented in
Figure 1.1. The lower letter notations, like s = s(r, t), are representing the model
in one dimensional space, where r – the radius of a microbioreactor, t – the time.
The capital letters indicate dimensionless models. For example, r0 represents
the radius of a microbioreactor in meters.

At the quasi-steady-state conditions, the kinetics of most enzyme reactions
are reasonably well represented by the Michaelis-Menten equation

v(s) =
Vmaxs
KM + s

, (1.3)

where s = s(r, t) is the substrate concentration, v is the volumetric reaction rate
expressed as a function of the substrate concentration s, Vmax is the maximal
enzymatic rate, and KM is the Michaelis constant [54, 102].
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1.2.1. Categorization of chemical kinetic processes

Stochasting modeling [120], Monte-Carlo methods [17] and PDE [19, 23]
have been successfully applied to modeling of chemical kinetics. The perform-
ance of microbioreactors based on particles has been successfully modeled by
second order partial differential equations [19, 23]. Usually, a equations system
belongs to the parabolic-type reaction-diffusion equations [4, 41, 44],

τ
∂ s(r, t)

∂ t
= D ·4s(r, t)+ f (s(r, t),Os(r, t),r, t), (R-D)

where 4 – the Laplace operator to define the diffusion process, f – reaction
term2, D – the diffusion coefficient. The most common forms of the reaction-
diffusion processes (reaction term f ) are as following:

τ
∂ s(r, t)

∂ t
= D ·4s(r, t)+

Vmaxs(r, t)
KM + s(r, t)

, (RMM-D)

τ
∂ s(r, t)

∂ t
= D ·4s(r, t)+A+B · s(r, t). (Rt-D)

The reaction-diffusion processes with the non-linear Michael-Menten
kinetics part (RMM-D) are considered. The limiting cases are: τ = 0 or
limt→∞ f (r, t) = g(r) called steady-state (SS) or stationary; D = 0 no diffusion;
Vmax = 0 no chemical reactions;

Limiting cases for (Rt-D): when KM� s0, then A = 0 – the reaction term
approches a linear process, while case s(r, t)� KM or s∼ 0 – barely depends
on the concentration.

1.2.2. Governing equations

The equations of the simplest bioreactor model (see Figure 1.1) have the
following form:

∂ sm(r, t)
∂ t

= D ·4sm(r, t)︸ ︷︷ ︸
diffusion term

+
Vmaxsm(r, t)
KM + sm(r, t)︸ ︷︷ ︸

reaction term

, (1.4)

where s = sm(r, t) is the concentration of substance in a microbioreactor, t
is time, r is the distance from the particle center, D is the diffusion coefficient,
KM is a constant describing the chemical kinetics also known as the Michaelis

2Reaction–diffusion systems contains two term: difusion and reaction, respectively.

17



constant, and 4 is the Laplace operator, defined in spherical coordinates. A
microbioreactor is defined in region 0 < r < r0 [4]. In such a case the radius of
a microbioreactor is r0 (see Figure 1.1).

The first part (diffusion term) of the differential equation defines the diffu-
sion of matter by the Second Law of the Fick [48]. The second part (reaction
term) of the equation defines the chemical reaction. This part is required if the
substance undergoes chemical reactions as a reagent or as a reaction product.
Depending on the type of bioreactors and the chemical reactions that take place
therein, the chemical kinetics can be defined by the Michael-Menten kinetic
equation [12, 102].

Having an equation system that defines the concentration of substances in
bioreactors, the process dynamics is formulated as a partial differential equation
(PDE) [14, 75].

In order to uniquely define the formulated task, the concentrations of sub-
stances are usually defined by the initial conditions inside and outside the
domain Ω and boundaries Γ at the initial time (t = 0), i.e.,

sm(r,0) = f (r), r ∈Ω; (1.5)

sm(r,0) = g(r), r ∈ Γ, (1.6)

where Ω is open domain, while Γ is the boundary of the domain, f and g
are known functions under consideration [12, 102]. In open systems the initial
conditions are defined as follows:

sm(r,0) = 0, 0 < r < r0; (1.7)

sm(r,0) = s0, r = r0, (1.8)

i.e, no substrate appears in a particle (for example when particle is thrown
into the solution), and the uniform concentration within a solution [4, 18]. The
boundary conditions define the concentrations of substances at the border of
the domain boundaries.

The simplest boundary condition states that the concentration of the sub-
stance on the border is constant and does not change over time (t = 0), i.e.,

sm

∣∣∣
Γ

= const. (1.9)

The iliustrative example of equation (1.9) is:

sm(r0, t) = s0, t > 0. (1.10)

1.2.3. Dimensionless model

The system described above have multiple dimensional parameters. To
simplify the model, dimensionless models are considered [12]. In order to
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define the main governing parameters of the one layer model (1.4)–(1.9), the
dimensional variable r and the unknown concentration sm(r, t) are replaced with
the following dimensionless parameters:

R =
r
r0
, Sm =

sm

KM
, S0 =

s0

KM
, T =

Dmt
r2

0
, (1.11)

where R is the dimensionless distance from the microbioreactor center and
Sm(R) is the dimensionless concentration, while S0 is the dimensionless sub-
strate concentration in the bulk solution. Finally, T is dimensionless time. The
dimensionless thickness of the microbioreactor equals one R0 =

r0
r0
= 1.

The governing equations (1.4) in the dimensionless coordinates are ex-
pressed as follows (0 < R < 1):

∂Sm

∂T
=4Sm−σ

2 Sm

1+Sm
, (1.12)

where σ is the Thiele modulus or the Damköhler number [49, 103, 112]
defined as:

σ
2 =

Vmaxr2
0

KMDS,m
. (1.13)

The dimensionless factor σ2 essentially compares the rate of enzyme reac-
tion (Vmax/KM) with the diffusion through the enzyme-loaded microbioreactor
(Dm/r2

0). If σ2� 1, the enzyme kinetics controls the bioreactor action. On the
other hand action is under diffusion control, when σ2� 1 [12].

In case when KM� s0, the reaction term (1.12) approaches a linear function
(see categorization (Rt-D)) of concentration under steady-state ∂Sm/∂T = 0,
then the analytical solution of concentration S is known:

S(r) =
S0 sinh(σR)
Rsinh(σ)

. (1.14)

1.2.4. Characteristics of microbioreactors

In many industrial processes, especially in the production of low-value
added products like bio-pesticides, bio-fertilizers, bio-surfactants [116], it is
important to continuously improve efficiency [42, 44]. The productivity is
especially important, since this ensures an efficient utilization of the production
capacity, i.e., bioreactors [19–21].

The effectiveness factors characterize the interaction between diffusion
and reactions in microbioreactors, the outer layer and the bulk [15, 42]. Re-
actants have to diffuse through the external diffusion layer and pores of the
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support for the reaction to take place, and, therefore, the actual rate can be
limited by the rate at which the diffusing reactants reach the catalyst. Typically,
the designers seek for reaction-limited regime in a microbioreactor, since in
this case reaction and diffusion occur on different time scales and one is in the
best possible position to measure reaction [45].

Since the effectiveness of a bioreactor can be defined with respect to the
substrate concentration at the catalyst surface or with respect to the bulk con-
centration, the internal and external effectiveness factors are often used in
biochemical engineering [42, 44]. Additionally, the effectiveness factor is also
used when taking into consideration the partitioning effect [113].

The effectiveness factors are usually defined for the stationary mode of
biocatalytic systems [15, 44, 55]. Although the transient effectiveness factors
in porous catalyst particles can be considered [19], after a very short time
the substrate concentration inside the particles becomes constant. Then the
effectiveness of a bioreactor system in the beginning of the process is not
important for overall effectiveness of the system acting in the flow mode [44].

The internal effectiveness factor ηi for the microbioreactor can be defined as
the ratio of the actual volume-averaged rate of the reaction over the whole micro-
bioreactor to the rate of the reaction at the inner surface of the microbioreactor
[14, 41, 44],

ηi =

(
4π
∫ r0

0 v(sm,s(r))r2dr
)
/(4πr3

0/3)
v(sm,s(r0))

=
3
∫ r0

0 v(sm,s(r))r2dr
r3

0 v(sm,s(r0))
. (1.15)

The factor ηi can be also expressed in terms of the dimensionless model, as
follows:

ηi =

(
3
∫ 1

0

Sm,s(R)
1+Sm,s(R)

R2dR
)(

1+Sm,s(1)
Sm,s(1)

)
. (1.16)

For ηi values near one, the entire microbioreactor is reacting at the same
rate as at the inner surface because the substrate concentration decrease in
the microbioreactor is insignificant. For ηi values near zero, almost all the
substrate reacts at the surface of the microbioreactor, while the reaction rate
decreases in comparison to the rate at the inner surface at the same substrate
concentration [44].

The external effectiveness factor ηe is defined as the ratio of the reaction rate
that would occur if the substrate concentration over the whole microbioreactor
equal to the concentration at the outer surface of the microbioreactor. It would
be obtained if the concentration everywhere in the microbioreactor is equal to
the concentration S0 in the bulk [44, 113],

ηe =
v(sd,s(r0))

v(s0)
=

(1+S0)Sd,s(1)
(1+Sd,s(1))S0

. (1.17)

The external effectiveness factor is a measure of the influence of the external
mass transfer resistance on the rate of the observed reaction. If it is significantly
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less than unity, the mass transfer resistance restricts the supply of the substrate
to the microbioreactor surface. Thus limits the catalytic activity of the enzyme,
whereas the reaction is not limited by the external mass transfer if the factor
equals unity [44].

The influence of partitioning can be expressed as follows:

ηp =
v(sm,s(r0))

v(sd,s(r0))
=

(1+Sd,s(1))Sm,s(1)
(1+Sm,s(1))Sd,s(1)

. (1.18)

The overall effectiveness factor ηo can be calculated from the internal and
external effectiveness factors as well as from the effectiveness factor due to
partitioning [113],

ηo = ηi×ηe×ηp =
3
∫ r0

0 v(sm,s(r))r2dr
r3

0 v(s0)

=

(
3
∫ 1

0

Sm,s(R)
1+Sm,s(R)

R2dR
)(

1+S0

S0

)
. (1.19)

Summarising definitions (1.15)–(1.19), the overall (total) effectiveness factor
ηo can be defined also as the ratio of the average reaction rate actually observed
in the microbioreactor to the rate evaluated at the bulk concentrations of the
substrate [102, 113].

The process duration is another important characteristic of biotechno-
logical processes [55]. A minimization of time-cost is often sought by the
designers of biotechnological processes [108]. The holding time th and the
corresponding dimensionless time Th required for complete enzymatic conver-
sion of the whole amount of the substrate initially added to bioreactor system
(spherical diffusion shell) were accepted as the measures of time-cost of the
bioreactor operation,

th =
{

t :
∫ t

0

∫ r0

0
v(sm(r, t))r2 dr dt =

(r3
1− r3

0)s0

3

}
, Th =

Dmth
r2

0
. (1.20)

Since radius r0 fixed and the commulatively used concentration is monotonicaly
increasing, the time th is set to.

1.3. Perturbation methods for approximate solutions

Over the last two decades, some nonlinear reaction-diffusion equations
have been analytically solved by applying the homotopy perturbation method
(HPM) [56]. This method, which is a combination of homotopy in topology and
classic perturbation techniques, provides a convenient way to obtain approxim-
ate solutions for a wide variety of problems arising in different fields, including
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reaction-diffusion equation involving the Michaelis-Menten kinetics [67, 100].
However, often accurate analytical solutions obtained by HPM are not expressed
in the closed form and the accuracy of the constructed closed-forms of analytical
expressions of the substrate concentration is not satisfactory: approximation is
not sufficient enought or not valid [92]. Nevertheless, a variety of applications
show the usefulness of HPM in solving reaction-diffusion equations [7].

Let us consider a non-linear differential equation in a domain Ω with a
solution function S = S(r):

A(S) = f (b), b ∈Ω, (1.21)

with the boundary conditions:

B(S,Sb) = 0, b ∈ ∂Ω, (1.22)

where A is a differential operator, f (b) is a known analytical function, B is a
boundary operator, ∂Ω is a boundary of an area Ω.
By splitting the expression A(S) to the linear L(S) and non-linear N(S) parts,
we get:

A(S) = L(S)+N(S). (1.23)

Then the equation (1.21) can be rewritten as:

L(S)+N(S)− f (b) = 0. (1.24)

Using the homotopy technique [57], we construct a homotopy with, parameter
ε that satisfies the following equation:

H(u,ε) = (1− ε) · [L(u)−L(uin)]︸ ︷︷ ︸
linear part

+

+ ε · [A(u)− f (b)]︸ ︷︷ ︸
solution

= 0. (1.25)

By inserting (1.23) into (1.25), we can rewrite the homotopy:

H(u,ε) = [L(u)−L(uin)]︸ ︷︷ ︸
linear part

+ε ·L(sin)+

+ ε · [N(u)− f (b)]︸ ︷︷ ︸
non-linear

= 0,

where ε is a also known as the deformation parameter, ε ∈ [0,1], and uin is
a a known function which satisfies the boundary conditions (1.22). From Eq.
(1.26) we have the limiting cases of the homotopy H when the parameter ε

equals zero or one:

H(u,0) = L(u)−L(sin)︸ ︷︷ ︸
f1

= 0 ⇒ L(u) = L(sin),

H(u,1) = A(u)− f (b)︸ ︷︷ ︸
f2

= 0 ⇒ A(u) = f (b).
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Therefore, changing the parameter ε should allow the continuous transition
from the initial solution to a solution of equation (1.21). The variation of the
parameter ε from 0 to 1 results in the corresponding transformation of S from
uin(r) to u(r). If the embedding parameter ε (0 < ε < 1) is considered as a
small parameter, the solution can be written as a power series in ε by applying
the classical perturbation technique:

u = u(r) =
∞

∑
i=0

ui(r)ε i. (1.26)

Hence, when ε is set to unity (ε = 1), it produces an approximate solution of
Eq. (1.21)

S(r) = S = lim
ε→1

∞

∑
i=0

ui(r)ε i =
∞

∑
i=0

ui(r). (1.27)

Typically, the series (1.26) converges and ε = 1 is inside the radius of conver-
gence. For most cases, the general form of ui(r) is hard to find, so the solution
S(r) = ∑

k
i=0 ui(r) is called the k-th order HPM approximation of equation (1.21)

[56].

1.4. Numerical modeling

In bioreactor models the chemical kinetics is often expressed by the non-
linear Michaelis-Menten kinetics [12, 30]. The analytical solution of the con-
centration distribution in space and time is usually a hard task [67, 100]. The
main issue is the non-linear reaction part. Only in some specific (usually sta-
tionary or limiting) cases analytical solutions can be found [13]. For example,
under small concentration the limiting case occurs: KM� S(r, t),∀r ∈Ω, t > 0:

v(s) =
VmaxS
S+KM

≈ VmaxS
KM

. (1.28)

In such a case the reaction term (RMM-D) reduces to (Rt-D). Then the PDE
system can be solved analytically and an analytical solution can be found (see
Section 3.1).

To solve the problem of bioreactor modeling in general, numerical methods
might be considered [5, 12]. One of the most extensive ways to solve problems
defined by partial differential equations is to use the finite difference method
[71].

Solving the bioreactor model using the finite difference method, firstly a
differential equation should be transformed into simple linear equations defined
by the finite difference method [40]. In practice the finite difference method can
be implemented in multiple ways. The author chose to use the programming
language c++ [91]. The explicit schemes as well as computation pipeline were
implemented from scratch.
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Let us consider a one-dimensional, mathematical model of a single-layer
bioreactor. The variables r and t are defined in the area as follows:

Ωh = {0 6 r 6 r0,0 6 t 6 t0}. (1.29)

The range of continuous variables Ω (theoretical) is replaced by a discrete
set of points Ωh. One of the simplest and most commonly used applications is
the usage of two discrete domains [13, 71]:

r = ih, i = 0,1, ...,N,N =
r0

h
; (1.30)

t = jτ, j = 0,1, ...,M,M =
t0
τ
. (1.31)

These points divide the area Ω to uniform rectangles. The set of those points is
also called the grid and intersections are called nodes [12, 40]. The constants h
and τ represent the steps in space and in time, respectively. The grid and nodes
give the discrete set Ωh.

The nodes (i, j), when i = 1,2, ..,N− 1 and j = 1,2, ..,M, are called the
inner nodes. For each inner node the finite difference scheme equations are
created. The boundary conditions are formulated at nodes at i = 0 and i = N
time boundaries are j = 0 and j = M.

The second derivative in space is replaced as follows:

∂ 2s
∂ r2 ≈

si+1, j−2si, j + si−1, j

h2 . (1.32)

The first derivative can be expressed as a left or right derivatives:

∂ s
∂ r
≈ si, j− si−1, j

h
, (1.33)

∂ s
∂ r
≈ si+1, j− si, j

h
. (1.34)

The explicit scheme allows to formulate the difference equation in such a
order that each inner point depends only on the previous time values. Such a
type of equations allows to apply the boundary conditions easily. After each
iteration at fixed time t, the next step t + τ can be calculated.

The explicit scheme calculation algorithm is easily implemented in pro-
gramming languages. However, in order to use the explicit scheme, the stability
condition must be satisfied [13]:

τ 6
h2

2D
. (1.35)
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This condition must be satisfied for every equation in the system of equations.
In order to ensure the stability of the scheme, it may be necessary to take a very
small step in time. This obviously slows down the computations.

Recently the team of R. Čiegis have developed efficient [34, 35] numerical
schemes for tasks similar to that formulated in this thesis. However, those
schemes were not used in this thesis since the main results had been already
received at the time those papers were published.

1.5. Other modeling approaches

Differential equations, especially partial differential equations (PDEs), play
a crucial role in many disciplines including the modeling of chemical kinetic
processes. Traditionally, PDEs are solved mathematically or physically based
on some basic principles, e.g., molecular dynamic models. However, many
complex systems in modern applications (such as neuroscience, finance, biolo-
gical science) including the Michaelis-Menten reaction equation still can not be
solved, and the governing equations of these systems are commonly obtained by
empirical formulas [27, 46]. The successful applications of using deep neural
networks to modeling ODEs was presented [33]. It has even been suggested to
create PDE based neural networks [97], but no significant practical applications
have been delivered yet.

The stochastic approaches [120] to modeling chemical kinetics provide
different challenges. While stochastic modeling can be used to the same task,
the evaluation of system parameters without an experimental data is an issue
[86].

1.6. Related Work

The mathematical models of spherical one and two layer microreactors are
known and intensively analysed [44]. However, the substrate conversion is
often studied only in the case were the enzyme kinetics approaches either first
or zero order kinetics [44, 68, 96]. In bioreactors linear reaction appears on rare
occasions. In practice the non-linear Michaelis-Menten reaction term leads to
non-linear behaviour on internal and external diffusion impact. When modeling
microbioreactors where the intraparticle and external diffusion resistance is con-
sidered, multi-compartment models are required to achieve a sufficient accuracy
of the model [11, 102, 110]. Nevertheless, mono compartment models, in which
the internal mass transport by diffusion and substrate conversion is considered,
are still used in different applications due to the model simplicity [8]. The
external diffusion is usually modeled by the mass flux boundary condition
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involving the mass transfer rate of the boundary layer in the presence of dif-
fusive and convective flows [1, 31, 83]. Adequate mass transfer is required in
order to successfully model bioprocess experiments [101]. However, the mass
transfer coefficient can only be estimated on the basis of rather sophisticated
measurements [96].

One of the objectives of this thesis was to investigate in detail the influence
of the physical and kinetic parameters on the effectiveness of the bioreactor
system based on a porous spherical mircrobioreactors acting in the continuous
flow mode.

For BSTR, a pseudo-homogeneous model to calculate the transient effect-
iveness factor in spherical porous catalyst particles in gradient less reactors,
where the first-order reaction and intraparticle mass transfer are considered, has
been recently developed [19, 21]. However, in practical systems, the microre-
actor response may be greatly affected by the mass transfer outside the catalyst
region even when the medium is highly stirred [11, 25, 51, 52].

One of the objectives of this thesis was to develop a computational model
for simulation and investigate the dynamics of BSTR based on an array of
spherical microbioreactors until the steady-state is reached. Another objective
was to investigate the influence of the physical and kinetic parameters on the
transient effectiveness of bioreactor system.

A system of co-immobilized enzymes provides a practical method to in-
crease their efficiency [77, 88]. Recently, artificial microcatalysts containing
two conjugated enzymes have been investigated [93, 94]. The non-specific
glucose dehydrogenase (GDH) and oxygen reducing laccase (LAC) have been
wired via carbon nanotubes or gold nanoparticles. The systems demonstrated
effective carbohydates conversion by oxygen in the absence of a mediator.

One of the objectives of this thesis was to propose a MR mathematical
model, develop a computational model for a batch stirred tank reactor (BSTR)
based on an array of spherical porous microbioreactors loaded with these
enzymes, and investigate the influence of the physical and kinetic parameters
on the transient effectiveness of the bioreactor.
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Concluding remarks

Many different types of bioreactors have been created over the years. Biore-
actors are commonly compared with each other by the efficiency and ability
to produce product fast. The most important processes that occur in the biore-
actors are chemical reactions and diffusion. Chemical kinetics in bioreactor
models can be defined using the Michaelis-Menten kinetic equation and its
variations, and the diffusion is defined using the laws of Fick. To increase
accuracy the microbioreactor, the additional diffusion (Nernst) layer are to be
considered. Because of the nonlinearity of equations, analytical solutions are
known only case-by-case, so the problem is usually solved by numerical or
symbolic methods.

The main conclusions from this Chapter:

1. The effectiveness factor should be analysed in order to investigate the
influence of the physical and kinetic parameters of a bioreactor (CSTR)
system,

2. The transient effectiveness of a bioreactor system should be analysed
to investigate the influence of the physical and kinetic parameters of
bioreactor (BSTR) system,

3. The recently proposed microreactor based on carbon nanotubes [93, 94]
should be formulated and analysed in depth, since the current research is
not sufficient.

27



2. Mathematical Models of Bioreactors
Based on Microbioreactor Particles

In this Chapter three mathematical models of microbioreactors are con-
sidered. A generalization of existing mathematical models as well as a de-
veloped new mathematical model for microbioreactor based on carbon nan-
otubes are presented. The models are based on results of this Chapter published
in articles [A1–A3] and conference proceedings [A7-A9].

2.1. Continuous-flow stirred tank reactor

Firstly, we introduce the domain homogenization, then all three models are
presented.

2.1.1. Domain homogenization

The bioreactor system to be analized is rather complex. Simulating each
particle individually futher increases the complexity of the system and requires
a large number of computational resources. We consider the method of volume
cover by polyhedrs. In particular, the hexahedral, hexagonal discretization
techniques [61] are successfully used in modeling similar systems [10, 53].

A hexagonal distribution of unit cells containing microbioreactor particles
is analysed. To simplify the complexity of a bioreactor, the entire volume
was divided into hexahedral subvolumes, with a microbioreactor inside (see
Figure 2.1). When the volume is significantly large in comparison with the
microbioreactor particle, the hexahedral volume is approximately equal to the
volume of the sphere. Such an assumption made possible to use the Laplace
operator in shperical coordinates and to obtain analytical expressions.

2.1.2. Governing equations

The dynamics of the MR system includes changes over the time of the
substrate consumption as well as the product production. Since the reaction
product is produced at the same rate as the substrate is consumed, the dynamics
of the MR operation can be qualitatively expressed by the dynamics of the
substrate concentration alone [15, 44]. Assuming the symmetrical geometry
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Figure 2.1: Hexagon type volume domain homogenization

of the spherical MR and homogenized distribution of the immobilized enzyme
inside the MR, the mathematical model can be described in one-dimensional
domain using the radial distance (0 < r < r0, t > 0),

∂ sm

∂ t
= Dm∆sm− v(sm), (2.1)

where sm = sm(r, t) is the concentration of the substrate in the MR, ∆ is the
Laplace operator, r0 is the radius of the MR and Dm is the effective diffusion
coefficient [14, 102].

Assuming that the solution is permanently stirred and applying the Nernst
approach, a thin spherical shell (the Nernst diffusion layer) adjacent to the MR
surface remains stagnant in time (r0 < r < r1, t > 0),

∂ sd

∂ t
= Dd∆sd, (2.2)

where sd = sd(r, t) is the concentration of the substrate in the diffusion shell, Dd
is the corresponding diffusion coefficient, and h = r1− r0 is the thickness of
the spherical diffusion shell [14, 29, 112].

2.1.3. Initial and boundary conditions

It was assumed that, initially, i.e., when t = 0, the MR is uniformly loaded
with the enzyme and is free of the substrate,

sm(r,0) = 0, 0≤ r ≤ r0. (2.3)

The reaction starts when the MR is poured into a container with some
substrate distributed uniformly outside the MR,

sd(r,0) = s0, r0 ≤ r ≤ r1, (2.4)
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where s0 is the substrate concentration in the bulk. More detailed analysis on
impact of initial conditions are in [A8].

Due to the symmetry, the zero-flux boundary condition is defined for the
centre of the spherical microbioreactor (t > 0, the initial condition at t = 0 was
defined before),

Dm
∂ sm

∂ r

∣∣∣
r=0

= 0. (2.5)

Away from the diffusion shell (r > r1), the solution is uniform throughout
the outside of the shell and remains of constant concentration (t > 0) [39, 42, 98],

sd(r1, t) = s0. (2.6)

The formal partition coefficient φ is used in the matching conditions to
describe the specificity in the concentration distribution of the substrate between
two neighboring regions (t > 0),

Dm
∂ sm

∂ r

∣∣∣
r=r0

= Dd
∂ sd

∂ r

∣∣∣
r=r0

, (2.7)

sm(r0, t) = φsd(r0, t). (2.8)

The partition coefficient φ is less than unity as the averaged concentration
of the substrate in the MR becomes less than the concentration in the bulk
solution due to the porous materials [38, 110]. The more detailed impact of
partition coefficient is [A9].

We assume that the system approaches a steady state as t→ ∞,

sm,s(r) = lim
t→∞

sm(r, t), sd,s(r) = lim
t→∞

sd(r, t). (2.9)

2.1.4. Dimensionless model

In order to reduce the number of the model parameters, a dimensionless
model was derived by introducing the following dimensionless variables [76,
110]:

R =
r
r0
, R1 =

r1

r0
, H =

r1− r0

r0
, T =

Dmt
r2

0
, θ =

Dd

Dm
,

Sm =
sm

KM
, Sd =

sd

KM
, S0 =

s0

KM
, Sm,s =

sm,s

KM
, Sd,s =

sd,s

KM
.

(2.10)
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The governing equations (2.1) and (2.2) in the dimensionless form are then
expressed as follows (T > 0):

∂Sm

∂T
= ∆Sm−σ

2 Sm

1+Sm
, R ∈ (0, 1),

∂Sd

∂T
= θ∆Sd, R ∈ (1, R1).

(2.11)

The initial conditions (2.3) and (2.4) are transformed to the following
conditions:

Sm(R,0) = 0, R ∈ [0, 1],

Sd(R,0) = S0, R ∈ [1, R1].
(2.12)

The boundary conditions (2.5)–(2.8) are rewritten as follows (T > 0):

∂Sm

∂R

∣∣∣
R=0

= 0, Sd(R1,T ) = S0,

∂Sm

∂R

∣∣∣
R=1

= θ
∂Sd

∂R

∣∣∣
R=1

, Sm(1,T ) = φSd(1,T ).
(2.13)

2.2. Batch stirred tank reactor

2.2.1. Governing equations

Assuming the symmetrical geometry of the MR and homogenized distri-
bution of the enzyme inside the porous MR, a mathematical model can be
formalised in a one-dimensional domain using the radial coordinate alone [A3].
Since the reaction product is usually produced at the same rate as the substrate is
consumed, the dynamics of the system operation can be qualitatively expressed
by the dynamics of the substrate concentration only [15, 44]. Coupling the
enzymatic reaction in a microbioreactor with the one-dimensional-in-space
diffusion, described by the Fick’s second law, leads to the following reaction-
diffusion equation:

∂ sm

∂ t
= Dm∆sm−V (sm), 0 < r < r0, t > 0, (2.14)

where sm(r, t) is the concentration of the substrate in the MR, r and t stand for the
space and time, respectively, ∆ = (1/r2)∂/∂ r(r2∂/∂ r) is the Laplace operator,
r0 is the radius of the MR, and Dm is the effective diffusion coefficient [14].
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No reaction takes place outside the MR, i.e., when r > r0. Applying the
Nernst approach [14, 112], a thin diffusion shell adjacent to the MR surface
remains at a constant thickness h1 = r1− r0,

∂ sd

∂ t
= Dd∆sd, r0 < r < r1, t > 0, (2.15)

where sd(r, t) is the concentration of the substrate in the diffusion shell, and Dd
is the corresponding diffusion coefficient.

The diffusion shells of different particles do not influence each other [65].
The thickness h1 of the diffusion shell depends upon the nature and intensity of
the stirring of the buffer solution. The less intense stirring corresponds to the
thicker diffusion shell (greater h1) [14, 112]. Environmental diffusion resistance
also increases with the molecular size of the substrate [65].

Due to the intensive agitation of the solution, the substrate is assumed to
be uniformly distributed throughout the outside of the diffusion shell and its
concentration depends only on time [42, 98]. The rate at which the substrate
leaves the convective enclosure of volume 4π(r3

2− r3
1)/3 is always equal to that

at which it enters the diffusion shell over the surface of the area 4πr2
1,

dsb

dt
=−1

q
Dd

∂ sd

∂ r

∣∣∣
r=r1

, t > 0, (2.16)

where sb(t) is the substrate concentrations in the bulk (convective shell, r1 ≤
r ≤ r2), q is the ratio of the volume of the convective enclosure (r1 ≤ r ≤ r2) to
the area of the outer surface of the diffusion shell (r = r1),

q =
4π(r3

2− r3
1)/3

4πr2
1

=
r3

2− r3
1

3r2
1

. (2.17)

The value 1/q can be also considered as the adsorption capacity of the MR [18,
21]. Finally, h2 = r2− r1 is the thickness of the convective shell.

2.2.2. Initial and boundary conditions

The process starts (t = 0) when the substrate is injected into the bioreactor,

sm(r,0) = 0, 0≤ r ≤ r0, (2.18)

sd(r,0) = 0, r0 ≤ r ≤ r1, (2.19)

sb(0) = s0, (2.20)

where s0 is the initial concentration of the substrate in the bulk solution.
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Due to symmetry, the zero-flux boundary condition is defined on the centre
of the spherical microbioreactor (t > 0),

Dm
∂ sm

∂ r

∣∣∣
r=0

= 0. (2.21)

The flux of the substrate through the stagnant external diffusion shell is
assumed to be equal to the flux entering the MR surface. The formal partition
coefficient φ is used in the matching conditions to describe the specificity in
the concentration distribution of the substrate between two neighboring regions
(t > 0) [51, 113],

Dm
∂ sm

∂ r

∣∣∣
r=r0

= Dd
∂ sd

∂ r

∣∣∣
r=r0

, sm(r0, t) = φsd(r0, t). (2.22)

The dimensionless partition coefficient φ is less than unity as the averaged
concentration of the substrate in the MR becomes lower than the concentration
in the bulk solution due to the insoluble MR carrier. The coefficient φ can also
be interpreted as the porosity of the MR and defined as the ratio of the porous
volume to the total volume of the microbioreactor [38, 110].

On the boundary between the diffusion and convective shells (r = r1), the
continuity of the substrate concentration is required (t > 0),

sd(r1, t) = sb(t). (2.23)

The boundary condition (2.23) and the governing equation (2.16) are only
specific to the batch mode of the bioreactor operation (BSTR) [A3]. In the case
of open system (CSTR), away from the diffusion shell (r > r1) the concentration
of the substrate remains constant at its initial value [41, 44, 112]. This difference
appears at the steady state: in the case of BSTR, the substrate concentration in
the bulk continuously decreases over the time and asymptotically approaches
zero, while the continuous process can be operated for a long period under the
steady state condition producing the target product.

2.2.3. Dimensionless model

In order to identify the main governing parameters of the mathematical
model, a dimensionless model has been derived [A3]. The following dimen-
sionless distance R, time T and concentration variables have been introduced in
the system (2.14)–(2.23):

R =
r
r0
, R1 =

r1

r0
, θ =

q
r0
, T =

Dmt
r2

0
,

Sm =
sm

KM
, Sd =

sd

KM
, Sb =

sb

KM
, S0 =

s0

KM
, α =

Dd

Dm
.

(2.24)
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The governing equations (2.14)–(2.16) reduce to the following dimension-
less form (T > 0):

∂Sm

∂T
= ∆Sm−σ

2 Sm

1+Sm
, R ∈ (0, 1),

∂Sd

∂T
= α∆Sd, R ∈ (1, R1),

dSb

dT
=−α

θ

∂Sd

∂R

∣∣∣
R=R1

.

(2.25)

If σ � 1, then enzyme kinetics controls the MR action, and the MR action
is under diffusion control when σ � 1. In general even more layers can be
considered, the results are provided in [A7].

The initial conditions (2.18)–(2.20) are transformed into the following
conditions:

Sm(R,0) = 0, R ∈ [0, 1],

Sd(R,0) = 0, R ∈ [1, R1),

Sb(0) = S0.

(2.26)

The boundary conditions (2.21)–(2.23) are rewritten as follows (τ > 0):

∂Sm

∂R

∣∣∣
R=0

= 0,
∂Sm

∂R

∣∣∣
R=1

= α
∂Sd

∂R

∣∣∣
R=1

,

Sm(1,T ) = φSd(1,T ), Sd(R1,T ) = Sb(T ).
(2.27)

The Biot number is another widely used dimensionless parameter that
compares the external and internal mass transfer resistances [1],

β =
Ddr1

Dm(r1− r0)
=

αR1

R1−R0
. (2.28)

A low Biot number means strong external mass transfer resistance, hence
both the internal and external mass transfer resistances are important for de-
termination of the substrate conversion. As the Biot number increases, the
importance of the external mass transfer resistance decreases [1].

The diffusion module σ and the Biot number β as the most important
parameters for the bioreactor effectiveness are widely used in analysis and
design of different bioreactors [25, 65, 95].
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2.3. Microbioreactor with carbon nanotubes

In this section a novel mathematical model is formulated for a microbiore-
actor based on carbon nanotubes.

2.3.1. Model domain

We consider an array of identical spherical microbioreactors placed in an
aqueous solution containing lactose and oxygen. The microbioreactors are
assumed to be uniformly distributed in a container filled with the described
solution. Due to the idealised uniform distribution of the microbioreactors, the
container can be divided into space-filling convex polyhedrons of the same
volume containing only one MR. For simplicity, it is reasonable to consider a
sphere, the volume of which equals to that of the polyhedron and to regard one
of the spheres as a unit cell to be considered [A1,A3]. The spherical unit cell
includes the enzyme-loaded MR placed at the center.

If VS is the volume of an entire container containing N identical spherical
microbioreactors of radius R0 uniformly distributed in the container, then the
volume of the unit cell equals VS/N and the radius R of the unit cell is equal
to 3
√

3V/(4Nπ). In our experimental system, VS = 2.4cm3, R0 = 0.25 mm,
N = 981, and R≈ 0.84 mm.

The porous microbioreactors were prepared from the silica carrier and were
loaded with the bienzyme. Having the total density ρr of microrectors and the
silica carier density ρc, the porosity 1 can be calculated as follows [9, 115]:
φ = 1−ρr/ρc. In our case, ρr = 0.96g/cm3, ρc = 2.2g/cm3, and φ ≈ 0.56.

Principal structure of the cross section of the modeled unit cell is presented
in Fig. 2.2. Assuming the symmetrical geometry of the MR and homogeneous
distribution of the immobilized enzyme inside the MR, it’s mathematical model
can be formalised in one-dimensional domain using the radial distance.

2.3.2. Governing equations

In the bioelectrochemical process (1.1a)–(1.1b) presented in Section 1.1.3,
electrons are released, while in the following process (1.1c)–(1.1d) those elec-
trons are immediately accepted. Moreover, the reaction (1.1b) is only the source
of electrons being accepted in the reaction (1.1c). On the other hand, the ac-
ceptance of electrons in the reaction (1.1c) is the prerequisite for the process
(1.1a)–(1.1b).

1Porosity or void fraction is a measure of the empty spaces in a material, and is a fraction of
the volume of emptyness over the total volume.
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Figure 2.2: Schematic view of the cross section of a modeled unit cell

Assuming the quasi-steady-state approximation [14, 112], when the con-
centrations of both forms of both enzymes do not change over the time and all
the electrons released in the ET reaction (1.1b) are immediately accepted in the
reaction (1.1c), leads to reaction expression relationship:

V1 = 2V2, (2.29)

where V1 and V2 are the quasi-steady-state reaction rates of the corresponding
mono-enzyme catalyzed processes (1.1a)–(1.1b) and (1.1c)–(1.1d), respectively.
A number 2 in (2.29) is associated with the electrons stoichiometry of the
reactions.

The quasi-steady-state reaction rate V of a conjugated two-enzyme cata-
lyzed process (1.1a)–(1.1d) and the rates V1 and V2 of a partial one enzyme
catalyzed processes hold the following relationship [14, 112]:

1
V

=
1

V1
+

1
2V2

. (2.30)

Assuming that both enzyme catalyzed processes (1.1a)–(1.1b) and (1.1c)–
(1.1d) obey the Michaelis–Menten kinetics leads to the following:

V1 =V1(Lm) =
VLLm

KL +Lm
,

V2 =V2(Om) =
VOOm

KO +Om
, 0 < r < R0, t > 0,

(2.31)

where r and t stand for space and time, Lm(r, t) and Om(r, t) are the volumetric
concentrations of lactose and oxygen, in the MR, VL = 2k2E10 and VO = 4k3E20
are the maximal enzymatic rates for LAC and GDH, KL = 2k2/k1 and KO =
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4k3/k4 are the Michaelis constants, E10 and E20 are the total concentrations of
the enzymes, and R0 is the radius of the enzyme-loaded MR.

The quasi-steady-state volumetric reaction rate V can be expressed as a
function of the lactose and oxygen by putting (2.31) into (2.30),

V = V (Lm,Om) =
2V1V2

V1 +2V2
(2.32)

=
Vmax,1Vmax,2LmO2,m

Vmax,1KM,2Lm +(Vmax,1 +2Vmax,2)LmO2,m +Vmax,2KM,1O2,m
.

Taking into account (2.33) and the coupling reactions (1.1) with the one-
dimensional-in-space diffusion described by the Fick’s second law leads us to
the following reaction-diffusion equations (0 < r < R0, t > 0) [8,A1]:

∂Lm

∂ t
= DL,m∆Lm−V,

∂Pm

∂ t
= DP,m∆Pm +V,

∂Om

∂ t
= DO,m∆Om−

V
2
,

(2.33)

where Pm(r, t) is the concentration of the reaction product in the MR, ∆ =
(1/r2)∂/∂ r(r2∂/∂ r) is the Laplace operator in the spherical coordinate r, DL,m,
DP,m and DO,m are the effective diffusion coefficients [24, 104].

No enzymatic as well as ET reaction takes place outside the MR (R0 <
r < R). Assuming that the solution is permanently stirred and applying the
Nernst approach, a thin spherical shell (the Nernst diffusion layer) adjacent to
the MR surface remains stagnant in time [113]. So, only the mass transport by
the diffusion takes place in the shell surrounding the MR (R0 < r < R1, t > 0),

∂Cd

∂ t
= DC,d∆Cd, C = L,P,O, (2.34)

where Ld(r, t), Pd(r, t) and Od(r, t) are the concentrations of the lactose, reaction
product and oxygen, in the diffusion shell, DL,d, DP,d and DO,d are the corres-
ponding diffusion coefficients, and R1−R0 is the thickness of the spherical
shell corresponding to the Nernst diffusion layer.

Away from the diffusion shell the solution is in motion, and the concentra-
tions of all the soluble species are uniform throughout the outside of the shell
and depend only on the time [19, 99]. The rate at which solute leaves (enters)
the enclosure of volume 4π(R3−R3

1)/3 is always equal to that at which it enters
(leaves) the diffusion shell over the surface of the area 4πR2

1, i.e.,

dCb

dt
=−1

q
DC,d

∂Cd

∂ r

∣∣∣
r=R1

, C = L,P,O, (2.35)
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where Lb(t), Pb(t) and Ob(t) are the concentrations of the lactose, reaction
product and oxygen, respectively, in the bulk (R1 ≤ r ≤ R), q is the ratio of the
volume of the enclosure (R1 ≤ r ≤ R) of the diffusion shell to the area of the
outer surface of the shell (r = R1) [A1], defined as:

q =
4π(R3−R3

1)/3
4πR2

1
=

R3−R3
1

3R2
1

. (2.36)

The value 1/q can be also considered as the adsorption capacity of the MR [18,
21].

2.3.3. Initial conditions

It was assumed that, initially, the dissolved oxygen is uniformly distributed
in the MR, while it is free of lactose as well as of the reaction product (0≤ r ≤
R0),

Lm(r,0) = 0, Pm(r,0) = 0, Om(r,0) = φO0, (2.37)

where O0 is the initial concentration of oxygen, and φ is the formal partition
coefficient [64, 110]. The coefficient φ is less than unity as the averaged con-
centrations of all the compounds in the MR becomes less than the concentration
in the bulk due to the insoluble MR carrier.

The reaction (1.1) starts when lactose is pouring into a buffer solution
containing the MR. All the soluble compounds were assumed to be distributed
uniformly outside the MR,

Ld(r,0) = 0, Pd(r,0) = 0, Od(r,0) = O0, R0 ≤ r ≤ R1,

Lb(0) = L0, Pb(0) = 0, Ob(0) = O0.
(2.38)

2.3.4. Boundary conditions

Due to the symmetry, the zero-flux boundary conditions are defined on the
center of the MR (r = 0, t > 0),

DC,m
∂Cm

∂ r

∣∣∣
r=0

= 0, C = L,P,O. (2.39)

Under the circumstances where both external and internal diffusion gradi-
ents are found, the flux of the compounds through the diffusion shell must equal
the flux entering the surface of the MR. The formal partition coefficient φ is
used in the matching conditions to describe the specificity in concentration
distribution of the compounds between two neighboring regions (t > 0),

DC,m
∂Cm

∂ r

∣∣∣
r=R0

= DC,d
∂Cd

∂ r

∣∣∣
r=R0

,

Cm(R0, t) = φCd(R0, t), C = L,P,O.

(2.40)

38



The same partition coefficient φ was applied for all the soluble compounds as
the ratio of the insoluble carrier volume to the total volume of the MR [64, 110].

On the boundary between the diffusion and convective shells (r = R1), the
continuity of the concentrations is required (t > 0),

Cd(R1, t) =Cb(t), C = L,P,O. (2.41)

The boundary condition (2.41) and the governing equations (2.35) are only
specific to the batch mode of the bioreactor operation (BSTR) [A1]. In the case
of open system (CSTR), away from the diffusion shell (r >R1) the concentration
of the soluble compounds remains constant at its initial value [44, 77, 88, 112].

2.3.5. Dimensionless governing parameters

In order to define the main governing parameters of the mathematical model,
a dimensionless mathematical model has to be derived [110]. The following
main dimensionless parameters have been introduced for the system (2.33)–
(2.23) [A1–A3]:

Φ
2
C =

R2
0VC

DC,mKC
, βC =

DC,dR1

DC,m(R1−R0)
, C = L,O, (2.42)

where Φ2
L and Φ2

O are known as the Thiele modulus or the diffusion module
or the Damköhler number [41, 44], while βL and βO are the Biot numbers
corresponding to lactose and oxygen, respectively [1, 24, 104].

The Thiele modulus essentially define internal characteristics of the enzyme-
catalized systems [69]. The enzyme-catalized system is known to be under
diffusion control when the corresponding Thiele modulus is much greater than
unity. In the opposite case, when the Thiele modulus is significantly less than
unity, the enzyme kinetics controls the system action.

The Biot number compares the external and internal mass transfer resist-
ances [A3][1, 104]. As the Biot number increases, the importance of the external
mass transfer resistance decreases [1, 24]. Since DL,m ≤DL,d, DO,m ≤DO,d and
R1 ≥ R0, the Biot numbers defined in (2.42) can not be less than unity, βL ≥ 1,
βO ≥ 1 [A1].

The Thiele modulus and the Biot number as the most important parameters
for the bioreactor effectiveness are widely used in analysis and design of
different bioreactors [24, 77, 88, 104, 118].
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Conclusions

A typical microbioreactor model is based on separation of the domains.
Firstly, the microbioreactor domain, where reactions take place, is defined.
Then the Nernst diffusion layer occurs to incorporate particle interactions with
the solution. Thirdly, the different boundary conditions are assigned depending
does concentration is constant (open system), or changing (closed system)
within the bulk. Since microbioreactors considered a porous, it is common to
use discontinuities at the domain boundaries. A microbioreactor might also be
multi-layer system [A7].

The main conclusion from this Chapter:

1. The proposed model 2.1 is generalization of continuous stirred tank
reactors considering that CSTR are based on microbioreactors.

2. The proposed model 2.2 is generalization of batch stirred tank reactors
considering that BSTR are based on microbioreactors.

3. The proposed model 2.3 is novel model based on experiments proposed
by [93, 94].

In this Chapter the generalization of bioreactor models is presented. The
third mathematical model is a novel model of microbioreactor with carbon
nanotubes, which includes a combination of multiple separately independent
reactions by electrons wiring.
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3. Symbolic and Numerical
Computational Models

In this Chapter the analytical, symbolic and numerical solutions for the
mathematical models of Chapter 2 are presented. The analytical solutions and
analytical approximations are provided for the limiting cases of those models
and the numerical methods used for simulations. This Chapter also includes
the formulation for multi-objective bioreactor optimization. The main results
of this Chapter were presented in articles [A3,A4] and conference proceedings
[A6].

3.1. Analytical solutions

Let us consider the continuous stirred-tank reactor model based on microbi-
oreactors that was defined in Section 2.1. In this case, the system usually works
for a long time, and commonly reaches a steady state quickly. In such case
reaction term is equivalent to equation (RMM-D) with τ = 0. Under such limit-
ations, some analytical solutions can be found. These analytical solutions (and
analytical approximations) allow us not only to check the numerical simulation
results, but also to solve analytically the expressions of various characteristics
like microbioreactor efficiency. In this Section we will obtain such analytical
solutions under limiting cases.

3.1.1. First-order steady-state solution

At low concentration of the substrate (s0 � KM), the Michaelis-Menten
kinetics approaches the first-order kinetics, i.e., v(sm) ≈ Vmaxsm/KM. Then,
assuming a steady-state approximation, the governing equation (2.14) for sub-
strate reduces to the following one:

Dm
∂

∂ r

(
r2 ∂ sm,s

∂ r

)
=

Vmaxsm,s

KM
r2. (3.1)

The linear second order differential equation (3.1) can be easily solved [15],

sm,s(r) =
c1

r
sinh

(
r

√
Vmax

KMDm

)
+

c2

r
cosh

(
r

√
Vmax

KMDm

)
, 0 < r < r0, (3.2)

where c1 and c2 are the constants of integration.
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At the steady-state conditions, it is also no problem to integrate the classical
diffusion equation (2.15) in a spherical shell, i.e.,

sd,s(r) =
d1

r
+d2, r0 < r < r1, (3.3)

where d1 and d2 are the constants of integration.
By evaluating c1, c2, d1 and d2 from the boundary conditions, we get the

following solution of the problem:

sm,s(r) =
φs0r1

r
× θr0 sinh(σr/r0)

θr1 sinhσ +φ(r1− r0)(σ coshσ − sinhσ)
, 0≤ r ≤ r0,

(3.4)

sd,s(r) =
s0r1

r
× θr sinhσ +φ(r− r0)(σ coshσ − sinhσ)

θr1 sinhσ +φ(r1− r0)(σ coshσ − sinhσ)
, r0 ≤ r ≤ r1.

(3.5)
The analytical expressions (3.4)–(3.5), obtained for the substrate concentra-

tion at the steady-state, can be applied to evaluating the effectiveness factors,
i.e.,

ηi =
3

σ2 (σ cothσ −1), (3.6)

ηe =
β

β +φ(σ cothσ −1)
, (3.7)

ηp = φ , (3.8)

ηo =
3βφ(σ cothσ −1)

σ2(β +φ(σ cothσ −1))
, (3.9)

where

β =
θr1

r1− r0
=

Ddr1

Dm(r1− r0)
=

Dd(r0 +h)
Dmh

. (3.10)

The dimensionless factor β can be considered as the effective Biot number
or dimensionless mass transfer coefficient that quantifies the relative prepon-
derance of internal or external diffusion [6]. The expression (3.10) of the Biot
number β was deduced by substituting the expressions (3.4) and (3.5) into the
boundary condition (2.7) and rewriting it in the dimensionless form as the flux
condition [73],

∂Sm,s

∂R

∣∣∣
R=1

= β (1−Sd,s(1)) . (3.11)

The mass transfer coefficient is dependent on the system geometry, the
physical properties of medium and flow dynamics, and it is hard to evaluate the
mass transfer resistance between biocatalytic bioreactors and liquids [3, 41, 96].
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That is why the effectiveness factors are sometimes estimated without external
mass transfer resistance [83, 113]. The Biot number β defined in (3.10) depends
only on the geometry of the diffusion shell and diffusivity of the substrate.

A low Biot number means the strong external mass transfer resistance and
hence both internal and external mass transfer resistances are important for
the determination of substrate conversion. As the Biot number increases, the
importance of the external mass transfer resistance decreases [1]. When r0 ≤ r1,
the effective Biot number β ranges from θ = Dd/Dm (r1� r0, h� r0) to ∞

(r1→ r0, h→ 0), and when Dm ≤ Dd, the Biot number β ≥ 1 [113]. As the
thickness h of the external diffusion shell depends upon the nature and intensity
of the stirring of the buffer solution, the less intense stirring corresponds to
lower β and, correspondingly, greater h, more intense stirring corresponds to
greater β (lower h). The diffusion module and the Biot number are widely used
in analysis and design of different bioreactors [31, 68, 109].

The expression (3.6) of the internal effectiveness factor is invariant to the
external mass transfer and is equivalent to another already known expression
called the Thiele modulus [44, 63, 109].

Both internal and external effectiveness factors are monotonously decreas-
ing functions of the diffusion module σ . Moreover ηi → 0 and ηe → 0 as
σ → ∞, and ηi → 1 and ηe → 1 as σ → 0. In addition, the external effect-
iveness factor is an monotonously increasing function of the Biot number.
Moreover ηe→ 1 as β → ∞ and ηe→ 0 as β → 1. Since β decreases while
increasing the thickness h = r1− r0 of the external diffusion layer, the external
effectiveness factor ηe monotonously decreases with increasing the thickness h.

After calculating the Biot number β , the expression (3.4) of the substrate
concentration inside the MR reduces to the following:

sm,s(r) =
φs0

r
× β r0 sinh(σr/r0)

β sinhσ +φ(σ coshσ − sinhσ)
, 0≤ r ≤ r0 . (3.12)

Similarly, the dimensionless substrate concentration Sm,s depends on the di-
mensionless concentration S0, diffusion module σ , Biot number β , partition
coefficient φ and space coordinate R, while Sd,s additionally depends on the
dimensionless radius R1, i.e.,

Sm,s(R) =
φS0

R
× β sinh(σR)

β sinhσ +φ(σ coshσ − sinhσ)
, 0≤ R≤ 1. (3.13)

Sd,s(R) =
S0

R
× βRsinhσ +φR1(σ coshσ − sinhσ)(R−1)/(R1−1)

β sinhσ +φ(σ coshσ − sinhσ)
,

1≤ R≤ R1. (3.14)

When the external mass transfer by diffusion is ignored (h→ 0, β → ∞),
the concentration expressions (3.4) and (3.12) reduces to a known formulae
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[15, 44, 63, 109], as follows:

sm,s =
φs0r0 sinh(σr/r0)

r sinhσ
, 0≤ r ≤ r0, r1 = r0, (3.15)

where φs0 is the substrate concentration at the inner surface of the MR.

3.1.2. Zero-order steady-state solution

At high concentration of the substrate (s0� KM), the Michaelis-Menten
kinetics approaches the zero-order kinetics, i.e., v(sm) ≈ Vmax. The governing
equation (2.14) at a steady-state reduces to the following one:

Dm
∂

∂ r

(
r2 ∂ sm,s

∂ r

)
=Vmax r2. (3.16)

Solution of (3.16) with (3.3) and the boundary conditions (2.5)–(2.8) gives
the following expressions:

sm,s(r) = φs0−
Vmax

6Dm

(
r2

0− r2 +
2φr2

0
β

)
, 0≤ r ≤ r0, (3.17)

sd,s(r) = s0−
Vmaxr3

0
3Dd

(
1
r
− 1

r1

)
, r0 ≤ r ≤ r1. (3.18)

Since the reaction term in the governing equation (3.16) is independent of
the substrate concentration, its solution can produce a negative concentration of
the substrate. The maximal MR radius r0, for which expression (3.17) can be
used is,

rmax =

√
6Dmφs0

Vmax(1+2φ/β )
. (3.19)

Since, in the case of zero-order reactions, the reaction rate is independent of
the substrate concentration, the effectiveness factors approaches their maximal
values, ηi = ηe = ηp = 1, ηo = 1, if only r0 ≤ rmax.

The derived expression (3.17) generalises a known expression of the sub-
strate concentration inside the spherical bioreactor when the external mass
transfer is ignored and r2

0 ≤ 6Dmφs0/Vmax [44], i.e.,

sm,s(r) = φs0−
Vmax

6Dm

(
r2

0− r2) , 0≤ r ≤ r0, r1 = r0 . (3.20)
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3.2. Approximations using homotopy perturbation method

Let us consider the bioreactor at a steady state [A3,63,113]. Let us also
define the inner layer where the reaction and diffusion take place: 0 < r < rm,
and external layer where only diffusion takes place: rm < r < rn. It is common
to model the substrate concentration in the domain 0 < r < rn by the following
non-linear second order differential equation:

D(r)∆S(r) = a(r)
VmaxS(r)
KM +S(r)

, (3.21)

where ∆ = r−2 d
dr (r

2 d
dr ) is the Laplace operator, while the diffusion D(r) and

reaction term a(r) are defined as follows:

D(r) =

{
DS,m, 0 < r < rm,

DS,n, rm < r < rn,
(3.22)

a(r) =

{
1, 0 < r < rm,

0, rm < r < rn,
(3.23)

where DS,m and DS,n are the diffusion coefficients in the bioreactor and diffusion
layers, Vmax the maximal enzyme reaction rate, and KM is the Michael constant.

rm

rn

r

S(r)

r

Figure 3.1: The profile of concentrations in the bioreactor

Boundary conditions. We assume that on the boundary between r−m and r+m,
the fluxes between the adjacent areas are equal:

DS,m
dS(r)

dr

∣∣∣
r=r−m

= DS,n
dS(r)

dr

∣∣∣
r=r+m

. (3.24)
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Due to different materials, the layers usually have different properties, and
the concentration along the boundary rm is discontinuous. This is formalized
by using the partition coefficient φ [43] (see. Figure 3.1):

S(r−m) = φS(r+m). (3.25)

We assume that the bioreactor is relatively small in contrast to the total
volume of the solution, and the substrate rm that the concentration remains the
same on the boundary:

DS,m
dS(r)

dr

∣∣∣
r=0

= 0, S(rn) = S0. (3.26)

Dimensionless model. We transform (3.21)–(3.26) equations to a dimension-
less model, by transforming the space variable r and concentration S(r) as
follows:

r̃ =
rn− rm

rm
, S̃ =

S
KM

, ν̃ =
ν

rm
, S̃0 =

S0

KM
, (3.27)

where r̃ is the dimensionless radius from the bioreactor center, S̃(r̃) is the
dimensionless concentration, ν̃ is the dimensionless Nernst layer thickness, and
S̃0 is the concentration in Nernst layer. The governing equations (3.21)–(3.23)
then become:

D∗(r̃)∆S̃(r̃) = a∗(r̃)
σ2S̃(r̃)

1+ S̃(r̃)
, (3.28)

D∗(r̃) =

{
1, 0 < r < 1,
γ = DS,n/DS,m, 1 < r̃ < 1+ ν̃ ,

(3.29)

a∗(r̃) =

{
1, 0 < r̃ < 1,
0, 1 < r̃ < 1+ ν̃ ,

(3.30)

where σ is the Thiele module, also known as the Damkohler number [49, 84,
103]:

σ
2 =

Vmaxr2
m

KMDS,m
. (3.31)

The boundary conditions (3.24)–(3.26) become:

∂ S̃
∂ r̃

∣∣∣
r̃=1−

=
DS,n

DS,m

∂ S̃
∂ r̃

∣∣∣
r̃=1+

, (3.32)

S̃(1−) = φ S̃(1+),
∂ S̃
∂ r̃

∣∣∣
r̃=0

= 0, S̃(1+ ν̃) = S̃0. (3.33)
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3.2.1. Algorithm of homotopy perturbation method

As provided in Section 1.3 the k-th order aproximation Sk(r) is consider
of the solution S(r). Authors [47, 79] provide the solutions to more simplex
systems. Now let us construct the algorithm to perform the HPM see Algorithm
1.

Algorithm 1: Algorithm of Homotopy perturbation method for two
layers model

Result: The k-th order aproximation S̃ = S0 +S1 + ...+Sk

Initialization: we select initial equation by introducing ε . Set the
ε = 0, and receive the initial equation [L(u)−L(uin)] see equation
(1.25). Set i = 1
while i 6 k do

Calculating S̃i(r̃) = 1
i!

diS̃(r̃,ε)
dε i

∣∣∣
ε=0

, and selecting expresions near ε;
Change the boundary condition to zero, for improving the equation
error.

Solve the equation by placing the calculated expression S̃i−1(r̃)
Solve the equation and receive the i-th order solution S̃i(r̃)
Solve the i-th order equation in additional layers

end

3.2.2. Approximation of solution

The equations (3.28)–(3.33) have been also considered by Radžendran
[47, 79], where they suggest to use the (so called) small parameter ε , and
provide the first order approximations of non-linear PDE. However, in this
Section we will demonstrate that different formulation of the small parameter
within the equation gives different results.

Let us consider a solution S̃(r̃) as expression perturbation series [16]:

S̃(r̃,ε) = S̃0(r̃)+
∞

∑
n=1

S̃n(r̃)εn. (3.34)

When ε = 0 is used, we get the initial solution of a simpler equation, while
taking limit ε = 1, we get the approximation of PDE defined in (3.28)-(3.33).

In the domain 0 < r̃ < 1, we differently put the small parameter ε into
equation [16]. Let us consider a different initial equation as separate models:(

S̃′′(r̃)+
2
r̃

S̃′(r̃)
)
− ε

σ2S̃(r̃)

1+ S̃(r̃)
= 0, (M1)
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(
S̃′′(r̃)+

2
r̃

S̃′(r̃)
)(

1+ S̃(r̃)
)
− εσ

2S̃(r̃) = 0, (M2)

S̃′′(r̃)+
2
r̃

S̃′(r̃)−σ
2S̃(r̃)+ S̃ε(r̃)

(
S̃′′(r̃)+

2
r̃

S̃′(r̃)
)
= 0, (M3)

(
S̃′′(r̃)+

2
r̃

S̃′(r̃)
)
−σ

2 + ε
σ2

1+ S̃(r̃)
= 0, (M4)

(
S̃′′(r̃)+

2
r̃

S̃′(r̃)
)(

1+ ε S̃(r̃)
)
−σ

2S̃(r̃) = 0, (M5)

Even though the introduction of the small parameter into the equations (M2)
and (M5) can be found in literature [47, 79], the models (M1), (M3), (M4) have
not been considered yet.

Let us now take a look at S̃n(r̃) = 1
n!

dnS̃(r̃,ε)
dεn

∣∣∣
ε=0

, n = 0,1,2, . . .. By insert
the expression (3.34) to (M1)–(M5) and with the collected members near power
of ε , we solve the differential equations (3.28)–(3.33) [16].

In the case of (M1) we get:

ε
0 :

(
S̃′′0(r̃)+

2
r̃

S̃′0(r̃)
)
= 0,

S̃M1,0(r̃) =

{
φS0, 0 < r̃ < 1,
S0, 1 < r̃ < 1+ ν̃ ,

(3.35)

ε
1 :

(
S̃′′1(r̃)+

2
r̃

S̃′1(r̃)
)
− σ2S̃0(r̃)

1+ S̃0(r̃)
= 0,

S̃M1,1(r̃) =

{
1
6

σφS0
γ(1+ν̃)(φS0+1)((1+ ν̃)γ r̃2−2rNφ − rNγ +2φ),

1
3

σφS0
γ(1+ν̃)(φS0+1)(1−

(1+ν̃)
r̃ ),

(3.36)

ε
2 :

(
S̃′′2(r̃)+

2
r̃

S̃′2(r̃)
)
− σ2S̃1(r̃)

1+ S̃0(r̃)

+
σ2S̃0(r̃)S̃1(r̃)

(1+ S̃0(r̃))2
= 0,

S̃M1,2(r̃) =



1
8·45

1
γ2(1+ν̃)2(φ3S3

0+3φ2S2
0+3φS0+1)

(
φS0σ2(3γ2(1+ ν̃)2 r̃4,

−20γ(1+ ν̃)2φ r̃2 +40(1+ ν̃)2φ 2−10γ2(1+ ν̃)2 r̃2

+20γ(1+ ν̃)φ r̃2 +28γ(1+ ν̃)2φ

−80(1+ ν̃)φ 2 +7γ2(1+ ν̃)2−28γ(1+ ν̃)φ +40φ 2)
)

1
45

φS0σ2(5(1+ν̃)φ+(1+ν̃)γ−5φ)

γ2(1+ν̃)2(φ3S3
0+3φ2S2

0+3φS0+1)
( (1+ν̃)

r̃ −1),

(3.37)
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ε
3 :

(
S̃′′3(r̃)+

2
r̃

S̃′3(r̃)
)
− σ2S̃2(r̃)

1+ S̃0(r̃)

+
σ2S̃0(r̃)S̃2(r̃)

(1+ S̃0(r̃))2
+

σ2S̃2
1(r̃)

(1+ S̃0(r̃))2
− σ2S̃0(r̃)S̃2

1(r̃)

(1+ S̃0(r̃))3
= 0,

..

ε
n :

(
S̃′′n(r̃)+

2
r̃

S̃′n(r̃)
)
− σ2S̃n(r̃)

1+ S̃0(r̃)
+

σ2
∑i, j∈I1 S̃ j(r̃)S̃i(r̃)

(1+ S̃0(r̃))2
+

+σ
2

n−1

∑
i=3

(−1)n ∑i, j∈I2 S̃ j(r̃)S̃i(r̃)

(1+ S̃0(r̃))i

+
(−1)nσ2S̃0(r̃)S̃n−1

1 (r̃)

(1+ S̃0(r̃))n
= 0,

S̃M1,n(r̃) =

{
∑

n
i=0Cir̃2i, 0 < r̃ < 1,

Cn+1 +Cn+2
1
r̃ , 1 < r̃ < 1+ ν̃ ,

(3.38)

Analogously, for (M2) - (M5) we get:

S̃M2,0(r̃) =

{
φS0,

S0,
(3.39)

S̃M2,1(r̃) =


σ2φS0

(
(1+ ν̃)γ r̃2−2(1+ ν̃)φ − (1+ ν̃)γ +2φ

)
/(

6γ(1+ ν̃)(φS0 +1)
)

−σ2φS0((1+ ν̃)− r̃)/(3γ(1+ ν̃)(φS0 +1)r̃),

(3.40)

S̃M3,0(r̃) =

{
C1 sinh((1/2)

√
2r̃)

r̃

C2 +
C3
r̃ ,

(3.41)

(3.42)

S̃M4,0(r̃) =

{
((1+ν̃)γ r̃2σ2+6(1+ν̃)γS0+2σ2)

(6γ(1+ν̃))
,

C5 +
C6
r̃ ,

(3.43)

S̃M5,0(r̃) =

{
C4 sinh(σ2 r̃)

r̃ ,

C7 +
C8
r̃ ,

(3.44)

where Ci, i= 1, . . . ,8 are the constants that were found by applying the boundary
conditions. The constants are not provided here due the large expressions of
revelation.
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By looking to (M1) n-th part of the solution, in the domain 0 < r̃ < 1 we
are looking for the following solution:

S̃m
M6(r̃) =

m

∑
n=0

anr̃2n. (M6)

By inserting (M6) to (3.28), we get that an is of the following form:

an =
1
n!

a0εn
n

∑
i=0

biai
0

2n+1

∑
j=0

(
2n+1

j

)
a j

0

. (3.45)

By solving the differential equations (3.28)–(3.33), we found:

a0 = φ S̃0−
1
6

σ
2
φ S̃0

2(1+ ν̃)φ +(1+ ν̃)γ−2φ

(1+ ν̃)γ(φ S̃0 +1)
,

a1 =
1
6
· εa0

1+a0
, a2 =

1
120
· ε2a0

a3
0 +3a2

0 +3a0 +1
, ..

The HPM allows to introduce the small parameter to the non-liner PDE and
find the recursive approximations in an analytical form.

3.2.3. Nonlinear steady-state solution

Analogously, an application of the HPM to the stationary case of the nonlin-
ear reaction-diffusion problem (2.14)–(2.8) results in the following approximate
analytical expressions of the substrate concentration inside (sm,H) and outside
(sd,H) of the MR:

sm,s(r) ≈ sm,H(r) = s0φ − Pσ2φs0

2

(
1− r2

r2
0
+

2φ

β
(3.46)

+
3P2σ2

20

(
8

φ

β

(
1+5

φ

β

)
−3
(

1− r4

r4
0

)
+10

(
1+2

φ

β

)(
1− r2

r2
0

)))
,

sd,s(r)≈ sd,H(r) = s0−
Pσ2φs0r0

θ

(1
r
− 1

r1

)(
1+

3P2σ2

5

(
1+5

φ

β

))
,

(3.47)

where P = KM/(3(φs0 +KM)) = 1/(3(φS0 +1)) .
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The substrate concentrations (3.46) and (3.47) in the dimensionless form
are expressed in a more compact form,

Sm,s(R) ≈ Sm,H(R) = φ − Pσ2φ

2

(
1−R2 +

2φ

β
(3.48)

+
3P2σ2

20

(
8

φ

β

(
1+5

φ

β

)
−3
(

1−R4
)
+10

(
1+2

φ

β

)(
1−R2

)))
,

Sd,s(R) ≈ Sd,H(r) = 1− Pσ2φ

θ

( 1
R
− 1

R1

)(
1+

3P2σ2

5

(
1+5

φ

β

))
. (3.49)

Although, the form of expressions (3.46)–(3.49) is rather complicated, but,
nevertheless, their accuracy is not good enough. In next paragraphs we analyse
the quality of approximations.

Table 3.1 present values of concentrations the points R = 0 and R = 1,
for both HPM approximation and calculated by finite difference. The per-
centage error is e(R) = |Sm,s(R)−Sm,H(R)|/Sm,s(R)×100%, where Sm,s is the
concentration calculated by FD, Sm,H is the concentration calculated with HPM.

Table 3.1: Concentration values calculated by the finite difference method (FD) and
the homotopy perturbation method (HPM)

S0 β σ2 Sm,s(0) Sm,H(0) e(0) Sm,s(1) Sm,H(1) e(1)
10 10 0.1 4.99 4.98 0.13 5.00 5.00 0.02
0.1 10 0.1 0.05 0.05 0.72 0.05 0.05 0.10
10 0.1 0.1 4.94 4.85 1.85 4.95 4.86 1.74
0.1 0.1 0.1 0.05 0.04 8.75 0.05 0.04 8.22
1 1 1 0.45 0.40 10.41 0.48 0.45 6.21
10 10 10 4.13 3.53 14.56 4.95 4.86 1.70
0.1 10 10 0.02 0.06 223 0.05 0.05 0.65
10 0.1 10 0.95 -2.90 406 1.48 -2.20 248
0.1 0.1 10 0.00 12.94 366162 0.01 11.73 136349

The expressions of the substrate concentration obtained by HPM are of low
precision when the enzyme kinetics controls the MR action, i.e., when σ < 1,
regardless of the Biot number β and the substrate concentration S0. However,
these expressions are practically useless for bioreactor configurations when the
MR acts under diffusion control, especially at low values of β . Nevertheless,
since typically the designers seek for bioreactors working in the reaction-limited
regime (σ � 1) [45], the expressions of the substrate concentration obtained
by HPM have a practical value.

Using, the analytical expressions (3.46)–(3.49), all the effectiveness factors
can be also analytically expressed. However, due to limited use of the sub-
strate expressions and their unclosed form, the analytical expressions of the
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effectiveness factors are not presented. The numerical solution of PDE is more
accurate than the solution obtained by HPM, and because of this, the influence
of the model parameter to the effectiveness factors was mainly investigated by
numerical simulation of the MR action.

3.2.4. Results and discussion

When we found the approximation S̃∗(r̃) of the solution (1.21), we would
like to evaluate the quality of approximation, not only the errors at given space
points. Let us consider this quadratic error function E :

E = E (S̃∗)

=
∫ 1

0

(
D∗(r̃)∆S̃∗(r̃)−a∗(r̃)

σ2S̃∗(r̃)

1+ S̃∗(r̃)

)2
dr. (3.50)

Since we know that true solution must meet the conditions A(S)− f (b) = 0,
we can define the quadratic error of the solution, by integrating over the domain
of interest. To illustrate the case, we consider (3.28).

The loss function E depends not only on the system variable S̃∗(r̃), but
also on additional system parameters E (S̃0,φ , ν̃ ,γ,σ

2). If we fix the range of
system parameters, then we can calculate the total error of the approximation,
as follows:

ET = ET(S̃∗,φ , ν̃ ,γ,σ2) (3.51)

=
∫ S̃0,v

0

∫
φv

0

∫
ν̃v

0

∫
γv

0

∫
σ2

v

0
E dν̃dγdσ

2dφdS̃0.

Let us fix the parameters of a bioreactor system by values having practical
interpretations S̃0,v = 10,φv = 1, ν̃v = 1,γv = 10,σ2

v = 10. The error of approx-
imations obtained for the considered models (M1)–(M6) is presented in Table
3.2 and 3.3. The cases marked by ’-’ were not provided due to extremely
complicated integration of the loss expressions. The bolded cases show the best
approximations.

One can see in Table 3.2 that errors of different models vary by a few
orders of magnitude. If approximation gave the error 0 we would have the true
analytical solution. First, it is worth to mention that the models (M3) and (M4)
give the significantly worse errors up to magnitude of order 105. If we look at
the model (M5), it provides the best error at the first order approximation among
analysed. However, the complexity of this model is very high and the first order
approximation can not be easily evaluated. On the other hand, since the model
(M6) have the general form of approximation (3.45), k-th order approximations
can be computed. In general, the error results show that for different bioreactor

52



Table 3.2: The errors ET of approximations of the models (M1) – (M6).

Model 0-order 1-order 2-order
(M1) 3.7 ·104 3.8 ·103 8.12 ·102

(M2) 3.7 ·104 3.8 ·103 –
(M3) 3.2 ·105 – –
(M4) 3.3 ·103 8.8 ·105 –
(M5) 2.24 ·102 – –
(M6) 7.9 ·104 2.1 ·104 2.7 ·102

configuration different small parameter ε introduction should be used. The
HPM model produces worse results, when the linearization is made by a part of
the non-linear equation.

Table 3.3: The errors of the approximations the models (M1)–(M6) at fixed parameters:
S0 = 1,φ = 0.5,σ2 = γ = ν̂ = 1.

Model 0-order 1-order 2-order
(M1) 1.1 ·10−1 3.5 ·10−4 1.19 ·10−7

(M2) 1.1 ·10−1 3.5 ·10−4 1.19 ·10−7

(M3) 7.3 ·10−3 4.3 ·10−5 –
(M4) 1.7 ·10−1 7 ·10−1 –
(M5) 1.2 ·10−2 – –
(M6) 9.4 ·10−2 1.1 ·10−4 9.4 ·10−9

Table 3.4: The errors of the approximations models (M1) – (M6) at fixed parameters:
S0 = 100,φ = 0.5,σ2 = γ = ν̂ = 1

Model 0-order 1-order 2-order
(M1) 9.6 ·10−1 2.12 ·10−9 5 ·10−10

(M2) 9.6 ·10−1 2.12 ·10−9 1.6 ·10−14

(M3) 4.4 ·102 1.59 ·102 -
(M4) 9.7 ·10−5 9.7 ·10−1 -
(M5) 1.46 ·103 - -
(M6) 9.6 ·10−1 1 ·10−9 4 ·10−10

One can see in Tables 3.3–3.4 that, when we have the fixed system para-
meters S̃0,φ , ν̃ ,γ,σ

2, the error E varies a lot. In numerical analysis the approx-
imations are considered good if the order of magnitude for an error is 10−6 or
less [40]. By different introduction of the small parameter ε , the zero or first
order approximations could have the error order of a different magnitude. By
looking at the models (M3) and (M4), we see that the zero order approximation
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works fine, while the first order approximation provides worse results. Such
behavior implicates that the convergence regions of the small parameter ε is
small and the value ε = 1 is not in the convergence region. In model (M5)
we actually get that the considered equation reduces to zero order kinetics. In
such a case we clearly see that our approximation works very well when the
concentration S̃ is small, i.e., reactions behave as zero order kinetics. But under
larger concentrations the approximation does not work at all (error of magnitude
becomes 103). Also, it is evident that the models (M1), (M2) and (M6) give
proper approximation under the given fixed system parameters.

3.3. Numerical analysis

3.3.1. Explicit scheme

The diffusion is formalized as the Laplace operator, which in spherical
coordinates is defined as follows:

∆ =
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
=

∂ 2

∂ r2 +
2
r

∂

∂ r
.

As described in Section 1.29 for numerical modeling we used finite differ-
ence methods. Then then explicit scheme (3.21) becomes:

G(t+1)
p,m −G(t)

p,m

∆t
= DG,m

(
G(t)

p+1,m−2G(t)
p,m +G(t)

p-1,m

(∆r)2

+
2

r ·∆r

G(t)
p+1,m−G(t)

p-1,m

2∆r

)
− VmaxG(t)

p,m

KM +G(t)
p,m

,

G(t+1)
p,m = G(t)

p,m

+∆t ·
(

DG,m

(G(t)
p+1,m−2G(t)

p,m +G(t)
p-1,m

(∆r)2

+
2

r ·∆r

G(t)
p+1,m−G(t)

p,m

∆r

)
− VmaxG(t)

p,m

KM +G(t)
p,m

)
,

where G = P,S.
The boundary condition at r = 0 (center of bioreactor), is as follows:

∂ 2

∂ r2 +
2
r

∂

∂ r
= 2

∂ 2

∂ r2 .
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After considering the boundary condition (3.26), we calculate:

G(t+1)
0,m = G(t)

0,m−∆t ·DG,m

(
2

G(t)
1,m−G(t)

0,m

(∆r)2

)
−∆t

VmaxG(t)
0,m

KM +G(t)
0,m

,

G(t+1)
R1,d = G(t)

R1,d−∆t · 1
δ

DG,m

(G(t)
R1,d−G(t)

R1−1,d

∆r

)

Table 3.5: Explicit scheme for the boundary conditions

Explicit scheme
r=0:

G(t+1)
0,m = G(t)

0,m +∆t ·
(

DG,m

(
2

G(t)
1,m−G(t)

0,m
(∆r)2

)
− VmaxG(t)

0,m

KM+G(t)
0,m

)
0 < r < R0:

G(t+1)
p,m = G(t)

p,m +∆t ·
(

DG,m

(G(t)
p+1,m−2G(t)

p,m+G(t)
p-1,m

(∆r)2 + 2
r·∆r

G(t)
p+1,m−G(t)

p,m

∆r

)
− VmaxG(t)

p,m

KM+G(t)
p,m

)
r = R0:

G(t+1)
R0,d

= (DG,d∆mG(t)
R0+1,d +DG,mm∆dG(t)

R0−1,d)/(DG,d∆m +DG,m∆d)

R0 < r < R1:

G(t+1)
p,d = G(t)

p,d +∆t ·
(

DG,d

(G(t)
p+1,d−2G(t)

p,d+G(t)
p-1,d

(∆r)2 + 2
r·∆r

G(t)
p+1,d−G(t)

p,d
∆r

)
r = R1 :

G(t+1)
R1,d

= G(t)
0

3.3.2. Explicit scheme in stationary case

The equations (3.21)–(3.25) can be approximated as:

DG,m

(
G(t)

p+1,m−2G(t)
p,m +G(t)

p-1,m

(∆r)2 +
2

r ·∆r

G(t)
p+1,m−G(t)

p,m

∆r

)

− VmaxG(t)
p,m

KM +G(t)
p,m

= 0. (3.52)

3.4. Software architecture

When modeling computer systems, it is common first to examine a mathem-
atical model of a bioreactor system. Then the numerical model is constructed
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(differential scheme) and implemented. The software covers the finite differ-
ence method implementation to solve a system of partial differential equations.
For each simulation in time, the one realization of bioreactors was obtained.
The experiments are repeated for different parameter values. The literature
review indicated that there is no open-source software for bioreactors with
multiple layers modeling. Therefore, appropriate software was developed in the
dissertation. This section the architecture and basic algorithms of the developed
software are presented. The components are divided into several areas accord-
ing to their responsibilities. In the diagram in Figure 3.2, they are represented
by UML packages. We employ the language R for visualization of the results
of simulations as well as for running the parallelization of simulations. R, as an
open-source language, has several parallel computing packages created by the
open-source community. As shown in this diagram, the R package was the main
block which provided the user interface. The code wrapper between the R and
C++ was implemented as a separate component, which are the bridge between
the solver and the R package. The explict_solver and Rcpp components are
implemented as software libraries in C++. In order for a user to have the easy
manipulation and visualization of simulations outputs the features provided by
him, programs we implement in the user interface.

Figure 3.2: The structure of bioreactor model system. The UML diagram present
aggregated scheme.

The output of the simulation results in the system is performed at a certain
time events. Some results are to be reported periodically as for example, changes
in concentration by the biosensor over time, others at the end of it or at some
point in its execution. Such systems usage scenarios created a system data
output subsystem that relies on the main R package control mechanism for
announcing events. In addition, explicit_scheme component is implemented that
have specific non-stability checking procedures. Such composite components
allow invalid simulations due to stability issues to be reported time or frequency
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of withdrawal.

3.5. Parallel computations

The numerical computations take some time to find a solution. However,
even a small required time for a single computation can add up to huge total
time if a large number of computations are performed sequentially. One of the
most important strategies to achieve the required performance when solving the
numerical models is to take advantage of parallel computing. Nowadays, even
basic computers come with multiple cores (physical or virtual), and commonly
with several central processing units (CPUs).

We only use the widely used parallel package, although there are other
alternatives, such as the packages foreach and doParallel. The main
function in the parallel package for parallel computing is the mclapply
function, which performs the same task as lapply1 but in parallel. The
lapply method applies function f (.) for the given (argument) parameter list
p = (p1, p2, ..., pN) and produces the list y = ( f (p1), f (p2), ..., f (pN)). Since
tasks are independent, calculations are parallelizable.

R offers relatively poor performance of running R code in comparison of
(relatively) low level programming languages like C++. Fortunately, the Rcpp
package in R allows the user to create and call functions in C++. Author used
R versions 3.2-3.4.4.

Figure 3.3 demonstrates the characteristics of the simulation parallelization.
The speed up for 2–4 cores in comparison to 1 core (see Figure 3.3). It is
worth to mention that personal PC (3rd generation i5) with 4 cores was used
for simulations. As can be seen from the given tasks, if the number of cores is
larger than 4, the speed up becomes insignificant due to the employed hardware.

3.6. Formulation of optimal configuration search

For each fixed set of system configuration parameters (hyper-parameters),
for example, concentration s0, radius e0, ect., we get a different physical rep-
resentation of a real microbioreactor construction. If we would like to find
preferable configurations of a microbioreactor which have some desired proper-
ties, or we would like to find the unknown optimal parameters (configuration)
of the system, we should solve the optimization task. Since there are multiple
hyper-parameters, we would have the multi-objective optimization task [119].
In this Section we will show how we can formulate the optimization task to find
preferable configurations of a microbioreactors system.

1lapply is package R function which applies given function g to given data points independ-
ently.
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Figure 3.3: Speed up and parallel efficiency of the R parallel package.

A minimization of time-cost is often sought by the designers of biotech-
nological processes [59, 105]. The batch time required to achieve a certain
conversion of the reactants is usually assumed as the main characteristic of
the process duration [44]. The bioreactor should convert as much substrate as
possible within the shortest possible time. In some applications of bioreactors,
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enzymes are available only in microgram to milligram quantities and are very
expensive [44, 112]. In such applications, the minimization of the enzyme
usage is of crucial importance.

3.6.1. Formulation of three-objective optimization problem

In the case of a biocatalytic microbioreactor described in Section 2.2 and
shown in Figure 1.1, the amount of the enzyme loaded into the MR is equal
to the product of the initial enzyme concentration e0 and the microbioreactor
volume (Vr = 4πr3

0/3). Vmax = kcate0, where and kcat is the turnover number.
The amount of enzyme loaded into all the microbioreactors placed into the
container equals to e0VrN , where N is the number of microbioreactors.

For the optimization task, without losing generality, the volumetric density
NV of microreators placed in the container (NV = N/V ) can be used instead
of the total number N = 3V/(4πr3

2) of microbioreactors. Thus, the amount of
enzyme used in NV microbioreactors (used per volume unit of the container)
equals to e0VrNV = e0VrN/V = e04πr3

0/3×3/(4πr3
2) = e0r3

0/r3
2 . Accordingly,

the amount of the substrate in the bulk per volume unit of the container can be
expressed as follows: sb×4π(r3

2− r3
1)/3×3/(4πr3

2) = sb(r3
2− r3

1)/r3
2.

The optimal design of the batch reactor mathematically is stated as a multi-
objective optimization problem with three objective functions:

ϕ1(r0,e0,s0,r2) = t0.9 = {t : sb(t) = 0.1s0},

ϕ2(r0,s0,r2) = 0.9s0
r3

2− (r0 +h1)
3

r3
2

, (3.53)

ϕ3(r0,r0,r2) =
e0r3

0

r3
2
,

where ϕ1(·) stands for the batch time t0.9 required to convert 90% of the
initial amount of the substrate [A1], ϕ2(·) is the amount of the substrate per
volume unit converted to the product, and ϕ3(·) is the total amount of the
enzyme used per volume unit of the bioreactor. The first and third objectives
should be minimized while the second one should be maximized.

The appropriate intervals of the decision variables for the optimal design
problem are given in Table 3.6. Assuming the highly stirred reactor, the thick-
ness h1 of the diffusion shell can be assumed as a constant parameter [A1,A3].
The radius r2 of the unit cell can be expressed via the (independent) decision
variables r0,h2 , and the parameter h1 as follows: r2 = r0 +h1 +h2.

Additionally, only the bioreactor configurations with reasonable batch time
were considered. If the time required to convert 90% of the initial amount of
the substrate had been less than the time limit Tmax = 104 (i.e., t0.9 6 104 s), the
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Table 3.6: Decision variables x = (r0,h2,e0,s0)
T for the bioreactor design problem

Variable Description Range Units
r0 MR radius [10−4,10−3] m
h2 Convective shell thickness [10−4,10−3] m
e0 Enzyme concentration [10−8,10−4] M
s0 Substrate concentration [10−5,10−1] M

bioreactor configuration would have been considered as acceptable [44, 112].
Otherwise, the problem solution was excluded from a further analysis.

The considered optimization problem is three-objective (3.54) with four
decision variables (Table 3.6). The variables in the problem description were
defined in physical units. The equations of the mathematical model are well
conceivable when variables are presented in natural units; however, the feasible
values of variable in this case differ in several orders. Since the transition to the
logarithmic scale facilitates the proper partitioning of the feasible region by the
considered optimization algorithm, the variables should be re-scaled. The new
variables are: x = (x1, . . . ,x4)

T ,x1 = lgr0,x2 = lge0,x3 = lgs0,x4 = lgh2 , and
the potential feasible region is

A = {x :−4 6 x1,x4 6−3,−8 6 x2 6−4,−5 6 x3 6−1}. (3.54)

The optimization algorithm could use the internal scales where the variables
vary in the interval [0,1]. We used the term ‘potential’ in the definition of A
since some infeasible subsets of A remain not defined explicitly. The infeasibil-
ity is determined during the simulation of the bioreactor action, meaning that
the reactions in bioreactor are not completed during the time limit Tmax , i.e.,
t0.9 > Tmax. Since a returned undefined function value can crash the optimiza-
tion process, the algorithm computing the objective functions was stopped by
reaching the predefined bioreactor batch time t0.9 = Tmax and returned the values
of the objective functions corresponding to the maximum feasible simulation
time.

3.6.2. Formulation of the bi-objective optimization problem

A graphical presentation of the Pareto front of the bi-objective optimization
problems excellently aids the decision makers to compare quantitatively the
available alternatives before decision making. However, in the case of a three ob-
jective problem, similar 3D graphs are rather useful for a qualitative illustration
of the Pareto front than for the tradeoff between potential decisions. Fortu-
nately, the considered problem (3.54) can be reduced to several bi-objective
problems. The structure of the considered optimization problem is favorable
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to reformulation which not only reduces the number of objectives but also the
number of variables. The idea is the following: let us fix several favorable
values of the third objective function, and compute and draw the Pareto fronts
of the modified, bi-objective, optimization problems. An appropriate solution
can be found by interpolating between the drawn fronts. Let us reformulate the
original optimization problem by introducing a new independent variable r2 .
Variable h2 then becomes dependent and is expressed through the variables r2 ,
r0 and the constant parameter h1, h2 = r2− r0−h1. Instead of functions φ(·),
we will consider their (decimal) logarithms:

min
x∈A

F(x), F(x) = ( f1(x),− f2(x), f3(x))T ,

f1(x) = lgϕ1(x), (3.55)

f2(x) = lgϕ3(x) = lg0.9+ x3 + lg(103x4− (10x1 +h1)
3)−3x4,

f3(x) = lgϕ3(x) = x2 +3x1−3x4,

where x1 = lgr0 , x2 = lge0 , x3 = lgs0 and x4 = lgr2.
The feasible region is expressed by the bounds defined by the original inde-

pendent variables

A = {x : −4 6 x1 6−3,−8 6 x2 6−4,−5 6 x3 6−1,

lg(2.6)−4 6 x4 6 lg(2.06)−3}. (3.56)

Let us fix an appropriate value of f3(·), so that E = f3(x). The last equation
of (3.56) then can be rewritten in the following form:

x4 = x1 +(x2−R)/3, (3.57)

meaning that the number of independent variables can be reduced to three,
and the optimization problem (3.56) can be reduced to the following bi-objective
parametric minimization problem:

min
x∈A

F(x), F(x) = ( f1(x),− f2(x))T ,x = (x1,x2,x3)
T , (3.58)

where the feasible region X of three independent variables is defined as follows:

A = {x :−4 6 x1 6−3,−8 6 x2 6−4,−5 6 x3 6−1,

E/3−4+ lg(2.6)6 x1+ x2/3 6 E/3−3+ lg(2.06)}. (3.59)

The reformulated problem is more convenient for an analysis since the
number of variables and objectives is smaller than in the original problem.
The time consuming computation of the first objective f1(·) remains the main
difficulty of the problem. However, an acceptable solution can be achieved with
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a smaller number of the evaluations of the objective functions because of the
reduced dimensionality.

The optimization of microbioreactors following such formulation can be
found in publication [A4].

Conclusions

The analytical solutions at limiting cases have been delivered for bioreactor
based on microbioreactors. For the given analytical expressions, explicit char-
acteristics like effectiveness can be calculated analytically too, which can be
useful in investigating various properties of microbioreactor systems.

The analysis of approximations delivered by the homotopy perturbation
method has demonstrated various flaws of the method. First, we selected
multiple models by inserting the small parameter in different parts of equation.
We demonstrate that just applying the method could lead to invalid expressions,
for example, an approximation could provide negative concentrations. We also
demonstrated that diferent introduction of the small parameter give errors which
vary by few magnitude of order (see Table 3.1). We also show that for fixed
set of configuration, approximation could be sufficient. Overall, we show that,
in order to use the approximations provided by HPM, the solutions should be
measured, for example, by calculating the total error.

In order to find the most preferable configurations in bioreactors design, the
optimization task needs to be considered. To address this, the mathematical
formulation of the multi-objective optimization problem was formulated. The
formulated task involves optimization of bioreactor geometries (volumes of
the bioreactor) as well as the consumed enzyme quantity. Such a formulation
of the optimization task can be expanded to find preferable configurations of
microbioreactors.

The main conclusions from this Chapter:

1. The analytical solutions (3.13)–(3.14) at limiting cases have been de-
livered [A3].

2. The analytical approximations by Homotopy perturbation method at
limiting cases have been delivered.

3. The limitations of Homotopy perturbation method was identified and
recommendations were provided [A6].

4. The mathematical model of multi-objective optimization problem for
optimal configuration was delivered, the model was published [A4]

In this Chapter the limited cases of microbioreactors were analysed ana-
lytically. In next Chapter the numerical analysis of all considered models is
presented.
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4. Application of Computational Models
to Investigate Bioreactors Properties

As it was described in Chapter 1, mathematical modelling can be efficiently
used to improve the process of new bioreactor creation, as well as the im-
provement of the existing ones. In this Chapter the numerical investigation of
models defined in Chapter 2 is presented. The results of this Chapter are from
publications [A1–A4].

The proposed model of a microbioreactor with carbon nanotubes catalysts
shows the suitability with experimental data.

4.1. Continuous-flow stirred tank reactors properties

The non-linear initial boundary value problem (2.14)–(2.8) can be analyt-
ically solved only for specific values of the model parameters [6, 44, 102].
Therefore, the problem was solved numerically, using the finite difference
technique [29]. In the space direction r, both segments [0,r0] and [r0,r1] were
divided into the same number N of small intervals. A uniform discrete grid was
also introduced in the time direction t. An explicit finite difference scheme has
been built as a result of the difference approximation [29]. Although explicit
difference schemes have the strict stability limitations, these schemes have are
simple for programming [28, 29].

Each segment was divided into 120 equal intervals. To make the difference
scheme stable, the time step size τ was chosen from the sufficient stability
conditions τ ≤min

(
min{h2

m,h
2
d}/(2max{Dm,Dd}) ,KM/(2Vmax)

)
, where hm

and hd are the space step size of a microbioreactor and Nernst layer, respectively
[11].

In the numerical simulation, the steady-state time tss was chosen as the
earliest time when the normalised change of the substrate concentration remains
very small during a relatively long term, i.e.,

tss = min
t>0

t :
t
s0

∣∣∣∣∣d
(
(3/r3

0)
∫ r0

0 sm(r, t)r2dr+(3/(r3
1− r3

0))
∫ r1

r0
sd(r, t)r2dr

)
2dt

∣∣∣∣∣< ε

 ,

(4.1)

sm,s(r)≈ sm(r, tss), r ∈ [0,r0],

sd,s(r)≈ sd(r, tss), r ∈ [r0,r1].
(4.2)
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Moreover, the decay rate ε = 10−3 was used in the calculations.
The numerical solution of the problem (2.14)–(2.8) was validated by using

exact analytical solutions for special cases of the model parameters when the
nonlinear model approaches its linear counterpart [15, 44, 63, 109] at different
values of the model parameters, Vmax, h and s0. The percentage error was less
than 1%.

In all the numerical experiments the following typical values of the model
parameters were kept constant [3, 41, 44],

Dd = 600µm2/s, Dm = 200µm2/s, KM = 100µM,

r0 = 250 µm, φ = 0.6.
(4.3)

Figure 4.1 shows the dynamics of the substrate concentration calculated for
moderate concentration of the substrate (s0 = KM, S0 = 1), the diffusion shell
thickness h of 60 µm, and the following two values of the maximal enzymatic
rate Vmax: 1 and 10µM/s. The points calculated at s0 = 100µM, h = 60 µm
and two values of Vmax are 1 (in Fig. 4.1a) and 10 µM/s (in Fig. 4.1b). The
other parameters are as defined in (4.3). The displayed numbers near arrows
indicate time in seconds.
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Figure 4.1: Profiles of the substrate concentration at different time (t)

Applying model parameter values defined in (4.3), the maximal enzymatic
rates Vmax = 1 µM/s (Figure 4.1a) and Vmax = 10 µM/s (Figure 4.1b) corres-
pond to the following two approximate values of the diffusion module σ : 1.8
and 5.6. Since the substrate concentration (s0 and S0) and the Biot number
β = 15.5 were the same in both numerical experiments, Figure 4.1 illustrates
mainly the effect of the diffusion module σ on the concentration within the MR
as well as on the effectiveness of the MR.

For model parameter values S0 = 1, β = 15.5 and σ = 1.8 (Figure 4.1a)
used in the simulations, the calculated effectiveness factors are as follows: ηi
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= 0.92, ηe = 0.99, ηp = 0.75, ηo = 0.68, while at a greater value of σ = 5.6
(Figure 4.1b) they become: ηi = 0.55, ηe = 0.93, ηp = 0.74, ηo = 0.38, i.e.
a greater value of σ corresponds to a lower effectiveness of the MR. On the
other hand, the numerical experiments showed that increasing of the diffusion
module σ leads to decreasing of the holding time, e.g., Th = 0.85 (th = 266 s)
at σ = 1.8 and Th = 0.146 (th = 45 s) at σ = 5.6. These effects are investigated
in detail below.

In most numerical experiments carried out, the holding time th was signific-
antly greater than the steady state time tss. When the steady state is reached, the
substrate concentration sm(r, t) as well as the enzyme reaction rate v(sm(r, t))
stays unchanged with time, i.e., v(sm(r, t)) = v(sm,s(r)) for t > tss. Because of
this, the time th can be evaluated from the concentrations calculated as follows:

th ≈
{

t :
∫ tss

0

∫ r0

0
v(sm(r, t))r2 dr dt +

(t− tss)
∫ r0

0
v(sm,s(r))r2 dr =

(r3
1− r3

0)s0

3

}
= tss +

((r3
1− r3

0)s0

3

−
∫ tss

0

∫ r0

0
v(sm(r, t))r2 dr dt

)/∫ r0

0
v(sm,s(r))r2 dr . (4.4)

4.1.1. Impact on effectiveness

To investigate the impact of the diffusion limitations on the MR effect-
iveness, the factor ηo was numerically calculated for different values of the
diffusion module σ , the Biot number β , and the dimensionless substrate concen-
tration S0. Figure 4.2 shows the factor ηo versus σ and β at the dimensionless
substrate concentration S0 = 1.

As one can see in Figure 4.2, the overall effectiveness factor ηo increases
with decreasing of the diffusion module σ and approaches to a constant value,
which is approximately the same for all values of the Biot number β .

In the case of a low substrate concentration (S0� 1) and small values of σ ,
such that coth(σ)≈ (1/σ +σ/3), according to (3.9), the factor ηo approaches
to φ for all possible values of β , i.e. ηo ≈ φ for S0 � 1 and σ < 1. Figure
4.2 shows that ηo approaches the maximum that is slightly higher than φ ,
specifically, ηo→ 0.75 > φ = 0.6. This is due substrate concentration (S0 = 1)
used in the simulation. On the other hand, it was already shown that at very high
concentrations (S0� 1) of the substrate, the effectiveness factor ηo approaches
to unity. Figure 4.2 also shows that the impact of the Biot number β on the
factor ηo is significant only when σ > 1, i.e., when the MR action is under
diffusion control. The effect of β increases with increasing σ .

65



β

1

10

100

σ

0.1

1

10

100

η 0

0.1
0.25
0.4

0.6
0.75

Figure 4.2: The overall effectiveness factor ηo vs. the diffusion module σ and Biot
number β

To determine the influence of the substrate concentration on the effective-
ness of MR, the overall effectiveness factor ηo was calculated for a wide range
of values of the substrate concentration. Figure 4.3a shows the factor ηo versus
the dimensionless concentration S0 and diffusion module σ at a mean value of
the Biot number, β = 10, and Figure 4.3b shows ηo versus S0 and β at a mean
value of the diffusion module σ = 1.
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Figure 4.3: The overall effectiveness factor ηo vs. the dimensionless concentration S0
changing the diffusion module σ (a) and changing the Biot number β (b)

Figures 4.2 and 4.3 show that the MR effectiveness can be notably increased
by increasing the substrate concentration S0 as well as by decreasing the diffu-
sion module σ , i.e., by decreasing the intraparticle diffusion resistance. The
effectiveness can be also but slightly increased by increasing the Biot number β ,
i.e., by decreasing the external diffusion resistance. In the case of low substrate
concentration (S0 � 1), it can be noticed that ηo is a monotonic increasing
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function of β (see (3.9)).
In particular, Figures 4.2 and 4.3a demonstrate that the MR effectiveness ηo

is a monotonic decreasing function of the diffusion module σ and practically
stagnates at its maximum value when σ < 1, i.e., ηo is practically invariant
to σ when the enzyme kinetics controls the MR action. Having a MR which
action is controlled by the enzyme kinetics (σ < 1), its effectiveness can not be
further increased by decreasing of the internal diffusion resistance.

Increasing the internal effectiveness factor ηi by decreasing the diffusion
module σ (Thiele module or Damköhler number) has been already reported
for the first-order enzyme kinetics i.e., (S0� 1) [41, 109]. The dependence of
the external effectiveness factor ηe on the Biot number β defined through the
external mass transfer coefficient is also already known [3]. Figures 4.2 and 4.3
show the overall effectiveness factor versus a wide ranges of three parameters
σ , β , and S0. Figure 4.3 exclusively shows how the MR effectiveness changes
when the enzyme kinetics changes from the zero-order kinetics (S0� 1) to the
first-order (S0� 1) kinetics.

4.1.2. Impact on process duration

To determine the influence of the diffusion limitations and the initial sub-
strate concentration on the process duration, the MR action was simulated
and the dimensionless holding time Th was calculated by changing values of
the diffusion module σ , the Biot number β and the dimensionless substrate
concentration S0. Figure 4.4 shows calculated values of the time Th versus σ

and β at the dimensionless concentration S0 = 1. The dependence of Th on the
substrate concentration is presented in Figure 4.5.

As one can see in Figure 4.4, the time Th increases with decreasing both,
the diffusion module σ and the Biot number β . Figure 4.4 also shows that the
impact of the Biot number β on the time Th is notable only when σ > 1, i.e.
when the MR action is under diffusion control.

To determine the influence of the substrate concentration om the process
duration, the MR action was simulated and the dimensionless time Th was
calculated for a wide range of values of the substrate concentration. Figure
4.5a shows the time Th versus the dimensionless concentration S0 and diffusion
module σ at a mean value of the Biot number, β = 10, and Figure 4.3b shows
Th versus S0 and β for a mean value of the diffusion module σ = 1.

One can see in Figure 4.5 a nonlinear increase in the time Th while in-
creasing the substrate concentration S0. The time Th is particularly high at low
values of the diffusion module σ , i.e., when the enzyme kinetics controls the
MR action. So, increasing the MR effectiveness by decreasing the internal
diffusion limitation i.e., (decreasing σ ) as well as by increasing the substrate
concentration when a short processing time is of crucial importance. The impact
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of the external diffusion resistance (β ) on the time Th is rather slight.
The complex nature of bioprocesses and microbioreactors leads to consid-

eration of simultaneous optimization, of several objectives some of which are
conflicting, i.e., if one of them is improved, the others get worse [70]. The multi-
objective optimization together with the multi-dimensional visualization can
be used for finding a trade-off solutions and making decisions when designing
microbioreactors [A4].

Very recently, when analysing a stirred catalytic basket bioreactor for the
production of bioethanol, it was observed that the time of the glucose con-
sumption increases by increasing the glucose concentration in the bioreactor
medium [58]. It was also observed that the time for consumption of glucose
decreases with an increase in the stirrer speed. Particularly, when using the
stirrer speed of 200 rpm and free cells as catalysts, the glucose consumption
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time was nearly 20 h, while at 500 rpm the consumption time was about two
times less [58]. Since the thickness of the Nernst diffusion layer for a flat
surface decreases about

√
2.5 times when the stirrer speed increases 2.5 times

and the radius of free cells is relatively small, the Biot number β then decreases
about

√
2.5≈ 1.6 [14]. One can see in Figure 4.4 a similar decrease (about 2

times) in the holding time Th when decreasing the Biot number in 1.6 times for
small values of β . Figure 4.5 shows that the time Th increases while increasing
the substrate concentration, as it was observed in [58].

Figure 4.5 shows how the MR holding time changes when the enzyme
kinetics changes from zero-order (S0� 1) to first-order (S0� 1) kinetics.

4.2. Batch stirred tank reactors properties

The nonlinear initial boundary value problem (2.14)–(2.23) was solved nu-
merically, using the finite difference technique [29]. In the space direction r, the
radius [0,r0] of a microbioreactor as well as the segment [r0,r1] corresponding
to the diffusion shell were divided into the same number N of subintervals. A
uniform discrete grid was also introduced in the time direction t. An explicit
finite difference scheme has been used as in Section 4.1.

The numerical solution of the problem (2.14)–(2.23) was validated by using
the known numerical solutions obtained for similar BSTR systems, where the
enzyme kinetics approaches the first-order kinetics and the external diffusion
resistance is ignored (h1 = 0, β →∞) [18, 20]. The solution was also compared
with the exact analytical and approximate numerical solutions obtained for the
corresponding CSTR system [A3].

In all the numerical experiments, the following typical values of the model
parameters were kept constant [3, 41, 44]:

Dd = 600µm2/s, Dm = 200µm2/s, KM = 100µM,

r0 = 250 µm, φ = 0.6 .
(4.5)

Figure 4.6 shows the dynamics of the substrate concentration and the
transient effectiveness factors calculated for the diffusion shell thickness h1
of 60µm (r1 = 310µm), the convective shell thickness h2 of 120µm (r2 =
430 µm), the maximal enzymatic rate Vmax of 1µM/s, and the moderate initial
concentration s0 = KM = 100 µM. The dimensional parameters correspond to
the moderate values of the dimensionless parameters as follows: the diffusion
module σ ≈ 1.77, the Biot number β = 15.5, the ratio α = 3, the inverse
adsorption capacity θ ≈ 0.7, and the initial concentration S0 = 1. The MR
system was simulated at r1 = 310µm, r2 = 430µm, Vmax = 1µM, and s0 =
100µM. The other parameters are as defined in (4.5).

The evolution of the substrate concentration (Figure 4.6a) shows that the
microbioreactor action finally approaches the steady state at the zero substrate
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Figure 4.6: Evolution of the substrate concentration at different space points (a) and
different transient effectiveness factors (b)

concentration in both MR and bulk. As one can see in Figure 4.6b, the
steady state overall effectiveness factors fit well with the effectiveness factor
values calculated by the formulas (1.15) and (3.9): ηi,ss = 0.839, ηr,ss = 0.967,
ηp,ss = 0.6 and ηo,ss = 0.487.

Figure 4.6b shows a non-monotonic behaviour of all the transient effective-
ness factors, though the substrate concentration in bulk continuously decreases
(Figure 4.6a). All the effectiveness factors reach maximums after approxim-
ately the same time when the substrate concentration in the MR centre (r = 0)
reaches its maximum (t ≈ 100 s). After this time elapsed, the microbioreactor
system approaches a pseudo-equilibrium state, where both substrate concen-
trations, in bulk and averaged in the MR, do change, but their relationship
becomes constant [18]. In a similar well-stirred batch reactor with spherical
porous catalyst particles obeying the first-order enzyme kinetics (s0 � KM),
the overall transient effectiveness factor was approximated as a monotonous
increasing function of time [18, 19, 21]. The effect of non-monotony of the
overall transient effectiveness factor is discussed in detail below.

4.2.1. Non-monotonicity of the overall transient effectiveness factors

The dynamics of the overall transient effectiveness factor η∗o as a function
of the dimensionless time T as follows:

η
∗
o (T ) = η

∗
o

(
Dmt
r2

0

)
= ηo(t) . (4.6)

An example overall transient effectiveness factor dynamics can be see in Figure
4.7.

The effectiveness factor η∗o was calculated at very different values of the
initial dimensionless concentration S0 of the substrate (Figure 4.7a), the dif-
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fusion module σ (Figure 4.7b), the Biot number β (Figure 4.7c), the inverse
adsorption capacity θ (Figure 4.7d), and the partition coefficient φ (Figure
4.7e). The other simulation parameters were the same as in the computational
experiment shown in Figure 4.6. The solid red lines in Figure 4.7 show the
particular case of the effectiveness factor η∗o simulated exactly at the same
values of the model parameters as in Figure 4.6. The values of the steady state
overall effectiveness factor ηo,ss defined by (3.9) are depicted by solid black
lines. The normalized substrate concentration Sb/S0 in bulk is represented by
colouring the effectiveness surface.
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Figure 4.7: The overall transient effectiveness factor η∗o at different values of the
dimensionless substrate concentration S0 (a), the diffusion module σ (b), the Biot
number β (c), the ratio θ (d) and the partition coefficient φ (e)

As one can see in Figure 4.7a, the overall transient effectiveness factor
reaches the steady state noticeably faster at low substrate concentrations when
the Michaelis-Menten kinetics approaches first-order kinetics (S0� 1,s0�
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KM), than at high concentrations, when the MR acts under the zero-order
enzyme kinetics (S0� 1,s0� KM). Moreover, at moderate and high concen-
trations the overall effectiveness factor η∗o (T ) is a non-monotonic function of
dimensionless time T , and the maximum is reached approximately at the same
time, when the steady state effectiveness is reached at low concentrations. At
high concentrations, the transient effectiveness factor η∗o reaches its maximum
and steadies at the highest effectiveness (η∗o near to unity) for some time, later
it drastically decreases and approaches the steady state value.

As for the CSTR acting under first-order enzyme kinetics (S0 � 1), the
steady state overall effectiveness factor ηo,ss is invariant to the initial concen-
tration of the substrate (Figure 4.7a) as described in the formula (3.9). ηo,ss is
also invariant to the ratio θ (Figure 4.7d).

Figures 4.7a and 4.7b show that the MR effectiveness for a certain time can
be notably increased by increasing the initial substrate concentration S0 as well
as by decreasing the diffusion module σ , i.e., by decreasing the intraparticle
diffusion resistance. Such impacts of S0 and σ on the MR effectiveness has
been already reported for the corresponding microbioreactor acting in the CSTR
mode [A3].

As one can see in Figures 4.7c, the maximum transient as well as the steady
state overall effectiveness factor can be slightly increased by increasing the
Biot number β , i.e., by decreasing the external diffusion resistance. Both the
maximal and the steady state overall effectivenesses, decrease with decreasing
the partition coefficient φ (Figure 4.7e), i.e., by decreasing the porosity of
catalyst particles. This feature of the steady state effectiveness factor ηo,ss can
be also noticed from the formula (3.9).

All the solid black lines in Figure 4.7 coincide with the final values (T =
103) of the transient effectiveness factor η∗o , except the values simulated at the
smallest values of the diffusion module, i.e., σ < 0.1. Further calculations
(T > 103) showed that the ηo,ss is achieved also for σ < 0.1, particularly,
ηo,ss ≈ η∗o at T > 106 for σ = 0.01. Figure 4.7 shows that the overall transient
effectiveness factor η∗o approaches its steady state value ηo,ss and the formula
(3.9) derived for CSTR system can also be applied for a BSTR system for an
analysis of the steady state effectiveness.

4.2.2. Duration of the substrate reduction

The process duration is also among the most important characteristics of
biotechnological processes [60]. A minimization of time-cost is often sought
by the designers of biotechnological processes [106]. The batch time required
to achieve a certain conversion of the reactants is usually assumed as the main
characteristic of the process duration [44].

Colouring the effectiveness surfaces in Figure 4.7 shows how fast the
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substrate is reduced while the biochemical reaction is taking place in the MR.
The most noticeable influence on the duration of the substrate reduction comes
from the diffusion module σ and the adsorption capacity (ratio θ ).

As one can see in Figure 4.7d, the time required to convert 90% of the initial
amount of the substrate (Sb/S0 = 0.1) at θ = 10 is by a few orders of magnitude
greater than at θ = 0.1. A tenfold decrease in the module σ leads to more than
tenfold increase of the time required to convert a certain amount of the substrate
(Figure 4.7b). A similar effect of the adsorption capacity on the duration of the
substrate conversion has been observed in the heterogeneous bioreactors with
porous catalyst particles and no external mass transfer resistance [19, 21].

Taking into account the influence of module σ and ratio θ on the process
duration (Figures 4.7b and 4.7d), the increasing MR effectiveness by decreas-
ing internal diffusion limitation (decreasing σ ) as well as by decreasing the
adsorption capacity (increasing θ ) is restricted when a short substrate conver-
sion time is of crucial importance. On the other hand, the influence of the main
model parameters on the substrate reduction time is similar to that observed in
the corresponding microbioreactor system acting in the CSTR mode [A3].

4.2.3. Ratio of maximum to the steady-state effectiveness

As it was shown above, at certain values of the model parameters the
transient overall effectiveness factor ηo (as well as η∗o ) is a non-monotonic
function of time. To investigate how much the maximum of the transient overall
effectiveness factor can exceed the steady state overall effectiveness factor, their
ratio Gη (Gη ≥ 1) was calculated for different values of the model parameters,

Gη =
max
t>0
{ηo(t)}

ηo,ss
=

max
T>0
{η∗o (T )}
ηo,ss

. (4.7)

Figure 4.8 shows the gain ratio Gη versus the dimensionless initial substrate
concentration S0 and all other main parameters of the model (2.25)-(2.27): the
diffusion module σ , the Biot number β , the ratio (inverse adsorption) θ , and
the partition coefficient φ . The other simulation parameters were the same as
defined in (4.5) and used in the computational experiment shown in Figure 4.6.

The simulation results depicted in Figure 4.8 confirm that the transient
effectiveness factor ηo is a monotonic function of time when the Michaelis-
Menten kinetics approaches the first-order kinetics (S0� 1) [20, 21]. When
the enzyme reaction obeys the zero-order kinetics (S0� 1), the factor ηo is a
non-monotonic function in most cases of parameter variation. Even at moderate
initial substrate concentration i.e., (S0 ∼ 1), the effectiveness factor ηo may be
non-monotonic function of time.

In addition to the initial substrate concentration, the diffusion module σ is
another governing parameter noticeably influencing the monotony of the overall
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Figure 4.8: The dependence of the gain ratio Gη on the substrate concentration S0 and
other main model parameters: the diffusion module σ (a), the Biot number β (b), the
ratio θ (c), and the partition coefficient φ (d)

transient effectiveness factor ηo. At a high substrate concentration (S0 = 100),
when the bioreactor action is under diffusion control (σ = 10), the maximum
of the transient overall effectiveness factor exceeds the steady state overall
effectiveness factor more than nine times (Gη ≈ 9.3).

As one can see in Figure 4.8d, at high substrate concentrations (S0 > 1) the
gain ratio Gη increases while decreasing the partition coefficient φ . However,
then the absolute value of the effectiveness factor is very low, as shown in
Figure 4.7e, therefore the practical value of bioreactors of such a configuration
is poor. The ratio Gη also increases while decreasing the Biot number β , i.e., by
increasing the external diffusion limitation (Figure 4.8d). Figure 4.8c shows
that the adsorption capacity especially affects the non-monotony of transient
factor ηo at moderate concentrations of the substrate (S0 ∼ 1), i.e., when the
enzyme kinetics changes from the first order to zero order.
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4.3. Microbioreactors with carbon nanotubes
properties

The mathematical model (2.33)–(2.23) has been defined as an initial bound-
ary value problem. Due to nonlinearity of the reaction term (2.33), the problem
was solved numerically using the finite difference technique [24, 28, 29]. The
radius [0,R0] of the microbioreactor as well as the segment [R0,R1] corres-
ponding to the diffusion shell were divided into the same number N = 120 of
subintervals. A uniform discrete grid was also introduced in the time direction
t [A3],[A1]. The numerical simulator was programmed in C++ language [91].

The numerical solution of the problem was validated by using known
analytical [18, 19] and numerical [A1] solutions obtained for specific cases of
the model parameter values.

When the rate of one enzyme catalyzed process significantly predominates
over the rate of another, one the conjugated two enzyme process (1.1) ap-
proaches to one enzyme catalyzed process. If V1(Lm)�V2(Om), then the quasi-
steady-state reaction rate V (Lm,Om) of the conjugated process approaches to
the rate V1(Lm). At the parameter values satisfying V1(Lm)�V2(Om), the rate
V (Lm,Om) approaches to 2V2(Om). In those two very opposite cases the con-
centration dynamics of each substrate (lactose and oxygen) was quantitatively
compared with the dynamics of the substrate concentration in the corresponding
BSTR based on spherical mono catalyst particles [A1].

4.3.1. Simulation of experiments

The derived mathematical model was applied for simulation of physical
experiments, performed at five initial concentrations L0 of lactose: 2, 5, 10, 20
and 50 mM. The values of the model parameters were chosen as follows [93, 94]:

KL = 9.6mM, VL = 0.019mM/s,

KO = 0.5mM, VO = 1.170mM/s, O0 = 0.25mM,

DL,m = DP,m = 2.2×10−10 m2/s, DO,m = 0.67×10−9 m2/s,

DL,d = DP,d = 6.6×10−10 m2/s, DO,d = 2.0×10−9 m2/s,

R0 = 225µm, R1 = 305µm, R = 840µm, φ = 0.56.

(4.8)

The effective diffusion coefficients of all the species in the MR were derived
from the typical values of the corresponding diffusion coefficients in the bulk
by assuming, for each species, the same ratio of the diffusion coefficient in the
bulk i.e., as the corresponding coefficient in the MR, DL,d/DL,m = DO,d/DO,m
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= DP,d/DP,m ≈ 3 [22, 37]. The partition coefficient φ was experimentally
determined by calculating the void fraction of the MR [32]. The thickness
R1−R0 of the diffusion shell was adjusted to fit the experimental results. The
fitted thickness R1−R0 = 80µm matches rather well with the diffusion layer
thickness for a typical magnetic stirrer [14].

Oxygen as the substrate of laccase was experimentally detected using a se-
lective Clark-type electrode [37]. When simulating the dynamics of the enzyme
catalyzed process (1.1), the bulk concentration Ob of oxygen was assumed as
the concentration corresponding to the response measured experimentally in a
cell isolated from atmosphere [94].

Figure 4.9 shows the dynamics of experimental and simulated concentra-
tions of oxygen. The inset presents the dynamics of the oxygen concentration
in a linear scale only for the first 4000 s during which the physical experiments
were taking place.
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Figure 4.9: The dynamics of experimental and simulated concentrations of oxygen

Figure 4.9 shows that the mathematical model quite accurately reflects
the physical experiments at moderate and low concentrations of lactose. For
the lactose concentrations of 2, 5, 10 and 20 mM, the relative error between
the numerical solution and the experiment data, averaged over the time from
0 up 4000s, is less than 5%. However, at L0 = 50mM the relative modeling
error approximates to 15%. Taking into consideration the instability of artificial
catalyst and possible measurement errors, the achieved modeling errors can
be considered as admissible [32, 72], therefore the model (2.33)–(2.23) can be
used for investigating the kinetic properties and optimizing the configuration.

4.3.2. Dynamics of concentrations

Figure 4.10 shows the dynamics of the concentrations of lactose, oxygen,
and product, calculated at the moderate initial concentration of lactose L0 =
10 mM ≈ KL. The other parameters are as defined in (4.8). The product
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concentration is represented by colouring surfaces of the lactose (a) and oxygen
(b) concentrations.
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Figure 4.10: Evolution of the concentrations of lactose (a) and oxygen (b) at different
space points

As one can see in Figure 4.10, practically whole oxygen has been consumed
at t ≈ 3×104 s, while the lactose amount at that moment has been only slightly
reduced. Figures 4.9 and 4.10 show that all the oxygen can be also reduced
by exploiting significantly less amount of lactose than L0 = 10 mM. However,
decreasing the initial concentration L0 of lactose noticeably reduces the rate
of the oxygen reduction. One can see in Figure 4.9 that the time required for
conversion of half of the oxygen (the half-time) is achieved in ≈ 1 h at 50 mM,
≈ 1.5 h at 20 mM, ≈ 2.5 h at 10 mM, ≈ 4.5 h at 5 mM, and in ≈ 12.5 h at 2 mM.

Figure 4.10 also shows that the maximal product concentration is achieved
when approximately whole oxygen is consumed. The final concentration Pb of
the product in the bulk becomes approximately equal to the double initial con-
centration O0 of oxygen, Pb(t)≈ 2O0 = 0.5 mM when t→ ∞. The lactose con-
centration reduces only slightly, Lb ≈ L0−2O0, i.e., L0−Lb(t)≈ 2O0 ≈ Pb(t)
when t → ∞. These approximate values also derived from the mathematical
model (2.33)–(2.23).

The configuration (4.8) of the modeled bioreactor corresponds to the follow-
ing values of the main dimensionless parameters: ΦL = 0.67, ΦO = 13.3,
βL = βO = 11.43, i.e., the oxygen reduction acts under diffusion control
ΦO > 10.

4.3.3. Impact of lactose concentration on the effectiveness

The transient effectiveness factor ηt is presented in Figure 4.11 by changing
the initial lactose concentration L0 : (a) ΦL = 0.1, (b) ΦL = 0.67, (c) ΦL = 1,
(d) ΦL = 10. The other parameters are the same as in Figure 4.10. The
normalized oxygen concentration Ob/O0 in the bulk is represented by colouring
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Figure 4.11: The transient effectiveness factor ηt when changing the initial lactose
concentration L0

the effectiveness surface. The solid violet line stands for a numerical experiment
shown in Figure 4.10.

Figure 4.11b shows non-monotonic behaviour of the transient effectiveness
factor ηt at high and moderate initial concentrations of lactose (L0 > 0.5 mM =
2O0), while at low concentrations the effectiveness factor ηt is a monotonous
increasing function of time. At any concentration of lactose the transient
effectiveness factor ηt(t) finally (t→ ∞) approaches its steady state value.

As one can see in Figure 4.11b, the transient effectiveness reaches the
steady state noticeably faster at low lactose concentrations (L0 . 2O0) than
at higher concentrations. Moreover, at high concentrations the effectiveness
factor reaches its maximum approximately at the same time when the steady
state effectiveness is reached at low concentrations. At high concentrations, the
effectiveness factor reaches its maximum and steadies at the highest value (near
to unity) for some time, later it drastically decreases and approaches a steady
state value.

As it was mentioned above, when the first process (1.1a)–(1.1b) predom-
inates (V1(Lm)� V2(Om)) in the conjugated two enzymes catalyzed process
(1.1), the conjugated process operates under oxygen limited conditions, and
the rate V (Lm,Om) becomes almost invariant to the lactose concentration,
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V (Lm,Om) ≈ 2V2(Om). In the opposite case, when the other process (1.1d)–
(1.1c) predominates i.e., (V2(Om)� V1(Lm)), the rate V (Lm,Om) which is
almost invariant to the oxygen concentration, V (Lm,Om)≈V1(Lm) (see Figure
4.11a- 4.11d).

The conjugated process (1.1) starts i.e., (t = 0) under lactose limited condi-
tions because the initial rate V2(O0) at the model parameter values (4.8) is much
greater than the rate V1(L0), independently of the initial lactose concentration
L0, i.e., V2(O0)≈ 1.17 mM/s�VL >V1(L0) for ∀L0 > 0.

Figure 4.11b shows that at high and moderate initial concentrations of
lactose (L0 & 2O0), after a relatively short time (102 − 103 s) the oxygen
concentration as well as the effectiveness factor start to decrease drastically.
The oxygen concentration becomes so low that V2(Om) becomes much less
than V1(Lm), and then the process acts under oxygen limited conditions, i.e.,
V (Lm,Om)≈ 2V2(Om). At so low concentrations of oxygen as Om� KO, the
non-linear reaction term V2(Om) reduces to a the first-order reaction term i.e.,
V2(Om)≈ OmVO/KO.

As one can see in Figure 4.11b, the initial lactose concentration can be
so low (L0 . 2O0) that the oxygen can be only partially reduced and the
process (1.1) stays under lactose control as it was initially. At so very low
concentrations of lactose (Lm� KL), the rate V1(Lm) approaches to the first
order rate, V1(Lm) ≈ LmVL/KL. So, at the steady state conditions, the rate
V (Lm,Om) of the conjugated two enzymes catalyzed process (1.1) approaches
to the first order rate: to 2OmVO/KO, if L0 & 2O0, or to LmVL/KL, if L0 . 2O0.
In such linear cases, the steady state effectiveness factor can be calculated
analytically [A3][A1]. Applying that formula for two linear cases of the reaction
rate V (Lm,Om) leads to two expressions of the steady state effectiveness factor,
one for lactose (ηL) and another for oxygen (ηo),

ηC =
3βCφ(ΦC cothΦC−1)

Φ2
C(βC +φ(ΦC cothΦC−1))

, C = L,O. (4.9)

Values of the steady state factors calculated at the parameter values defined
in (4.8) are as follows: ηL ≈ 0.54 and ηo ≈ 0.073. As one can see in Figure
4.11a- 4.11d, the transient effectiveness factor ηt(t) finally (t→ ∞), depending
on L0, approaches to either ηL or to ηo, both calculated from (4.9).

4.3.4. Impact of the diffusion limitations on the effectiveness

The transient effectiveness factor ηt when changing the Thiele modulus ΦL
at two concentrations of lactose L0: 10 (a) and 0.1 (b) mM. Then the parameters
obtain values ΦO = 13.3 for L0: 10 (c) and 0.1 (d) mM (ΦO = 1) (see Figure
4.12). The other parameters and notation are the same as in Figure 4.11.
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Figure 4.12 shows the evolution of the transient effectiveness factor ηt

simulated at a wide range of values of the Thiele modulus ΦL and two initial
concentrations of lactose L0: 10 and 0.1 mM. The dependencies of the evolution
of ηt on another Thiele modulus ΦO and the Biot number β = βL = βO are
depicted in Figure 4.13 (also in Figures 4.12c–4.12d).
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Figure 4.12: The transient effectiveness factor ηt when changing the Thiele modulus
ΦL at two concentrations of lactose L0: 10 (a) and 0.1 (b) mM

The simulation results depicted in Figure 4.12a correspond to the simu-
lated physical experiment shown in Figure 4.10 with addition of ΦL variation.
Although the concentration L0 = 10 mM is comparable with the Michaelis
constant KL, the concentration is high enough (L0 > 2O0) that all oxygen is
consumed (see Figure 4.11)b, and the conjugated process acts distinctly un-
der oxygen limited conditions when the process approaches the steady state.
Since both Biot numbers (βO and βL), the partition coefficient φ and the Thiele
modulus ΦO were constant in simulations shown in Figure 4.12a, the steady
state effectiveness factor is invariant to the Thiele modulus ΦL and equal to
ηo ≈ 0.073 for all values of ΦL.

To show that the Thiele modulus ΦL can really affect the steady state
effectiveness factor, the bioreactor system was simulated at hundredfold less
lactose concentration L0 = 0.1 mM, when the conjugated process acts under
lactose limited conditions from the beginning up to the steady state. Figure
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4.12b shows that the steady state effectiveness factor monotonously increases
with decreasing the Thiele modulus ΦL and can be expressed as a function
ηL = ηL(ΦL) calculated from (4.9) and is depicted by a red dotted line.

At L0 = 0.1 mM, the transient factor ηt monotonously increases with time
for all values of ΦL ranging from 0.1 up to 10 (Figure 4.12b), while ηt is
a non-monotonic function of time at L0 = 10 mM as shown in Figure 4.12a.
Figure 4.12b also shows that only a small part of oxygen is reduced at so
low (L0 = 0.1 mM) lactose concentration. The non-monotony of ηt can be
achieved also at moderate values of L0 by adjusting different physical and
catalytic parameters of the MR [A1] (also refer to Figure 4.12d).

One can see in Figure 4.12a a spike of the transient effectiveness factor
ηt at t ≈ 10 s when the system acts under diffusion limitation (ΦL > 1). This
shows that process reduces to limited one under R1−R0 = 80µm. A very
similar spike was also observed when modeling the mono-enzyme immobilized
MR [A1].

Figures 4.12 and 4.13a–4.13e show that the MR effectiveness can be not-
ably increased, at least for a certain time, by decreasing the Thiele modules,
i.e., by decreasing the intraparticle diffusion resistance. Such impact of the
diffusion resistance on the MR effectiveness has been already reported for the
corresponding mono-enzyme MR [A3][A1].

Assuming the same Biot number for both substrates, β = βL = βO, the
dependence of the MR effectiveness on the external diffusion resistance is
depicted in Figure 4.13c. As one can see in Figure 4.13c, the maximum
transient as well as steady state effectiveness factors can be slightly increased
by increasing the Biot number β , i.e., by decreasing the external diffusion
resistance. Since the MR action was simulated for a relatively high lactose
concentration (L0 = 10 mM), the steady state effectiveness factor ηo is rather
low and changes only slightly as in Figure 4.12a.

4.3.5. Duration of oxygen reduction

Colouring surfaces of the transient effectiveness factor in Figures 4.11–4.13
show how fast oxygen is reduced in the biochemical reactions taking place in
the MR. The most noticeable influence of the oxygen reduction on the duration
comes from the lactose concentration L0 and both Thiele modulus, ΦL and ΦO.

As one can see in Figure 4.11 the time required to convert 90% of the
initial amount of oxygen (Ob/O0 = 0.1) at L0 = 103 mM is in a few orders of
magnitude less than at L0 = 1 mM. On the other hand, at relatively low lactose
concentration (L0 < 2O0) the 90% reduction of oxygen cannot be achieved at
all.

At high concentrations of lactose all oxygen can be reduced notably faster
than the steady state effectiveness is reached. Thus, all the oxygen can be
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Figure 4.13: The transient effectiveness factor ηt when changing the Thiele modulus
ΦO (a–b) and the Biot number β = βL = βO (c–e)

reduced at significantly higher effectiveness than that at the steady state. There-
fore, the often used classical steady state approach can lead to serious errors
affecting bioreactor design efforts [19].

Figures 4.12a and 4.13a show that at moderate and high concentrations of
lactose a tenfold decrease in the Thiele modulus can lead to more than a tenfold
increase of the time required to convert a certain amount of oxygen. The similar
behavior is observed when ΦL = 10 see Figure 4.13b.

Due to stirring of the solution, the influence of the Biot number (Figure
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4.13c) on the duration of the oxygen reduction is notably less important than
the influence of the Thiele modulus and lactose concentration. The total effect-
iveness increases with decrease of ΦO (see Figure 4.13d), where ΦO = 10, and
4.13e, where ΦO = 1.

Additional simulations have showed that the influence of the Biot number,
the adsorption capacity (1/q), and of the formal partition coefficient φ on the
transient effectiveness factor as well as to the process duration is very similar
to that observed in computational modeling the mono-enzyme immobilized
MR [A1] (Figure 4.13d- 4.13e).

Taking into account the influence of the Thiele modulus on the process
duration, increasing MR effectiveness by decreasing internal diffusion limitation
(decreasing ΦL and ΦO) is restricted when a short substrate conversion time is
of crucial importance.

Conclusions

The two-compartment mathematical model (2.33)–(2.23) can be used to in-
vestigate regularities of a batch stirred tank reactor based on an array of identical
spherical porous microbioreactors loaded with bienzyme when both enzyme
catalyzed processes obey the Michaelis-Menten kinetics. The mathematical
model rather accurately reflects the physical experiments with microbioreactors
loaded with non specific glucose dehydrogenase and oxygen reducing laccase
(Figure 4.9).

The transient overall effectiveness factor ηt of a microbioreactor is a non-
monotonic function of time if the initial lactose concentration is notably greater
than the initial oxygen concentration (L0 & 2O0) (Figures 4.11, 4.12a and 4.13).
At high lactose concentration, most of the oxygen is reduced at significantly
higher effectiveness than that at the steady state. At law initial concentrations
of lactose (L0 . 2O0), the effectiveness factor ηt is a monotone increasing
function of time (Figures 4.11 and 4.12b). The non-monotony of ηt can be
achieved also at moderate values of L0 by adjusting the physical and catalytic
parameters. Depending on the concentration L0, the transient effectiveness
factor ηt approaches its steady state value equal to either ηL (if L0 . 2O0) or to
ηo (if L0 & 2O0), both calculated from (4.9).

The bioreactor effectiveness can be notably increased, at least for a certain
time, by decreasing both Thiele moduli, ΦL and ΦO, i.e., by decreasing the in-
traparticle diffusion resistance. However, increasing bioreactor effectiveness by
the decreasing internal diffusion limitation (decreasing ΦL and ΦO) is restricted
when a short substrate conversion time is of crucial importance (Figures 4.12
and 4.13a).
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The main conclusions from this Chapter:

1. The mathematical model presented in Section 2.1 was investigated nu-
mericaly [A3].

2. The mathematical model presented in Section 2.2 was investigated nu-
mericaly [A1].

3. It was demonstrated that transient effectiveness of a closed system (batch
type bioreactors) reduces to characteristics of open steady-state system
(continuous type models) under large time.

4. The novel mathematical model presented in Section 2.2 was investigated
numericaly [A2].

5. The comparison of numerical experiments with experimental data demon-
strated that the proposed novel three layer mathematical model are suit-
able to formalize experiments proposed by [93, 94].

6. The kinetics of bioreactor, based on microbioreactors, can be succesfully
modeled in one dimmentional space, using unit cell (a microbioreactor)
and the surrounding (diffusion) shell.
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Conclusions
1. The developed mathematical model of a microreactor with carbon nan-

otubes, which include combining chemical reactions via elections wiring
conversion, can be successfully used to investigate the kinetic properties
of the bioreactor behavior.

2. The transient effectiveness of a closed bioreactor system reduces to the
transient effectiveness of an open bioreactor system under large time.
The delivered analytical characteristics are valid for a much wider class
of models.

3. The considered method of homotopy perturbation could be suitable to
provide good approximations at fixed system hyper-parameters. Suffi-
cient approximations with error < 10−10 could be achieved. However,
different microbioreactor configurations require different formulations of
HPM (different initial introduction of the small parameter into equation).

4. The chemical kinetics of bioreactor, based on large number uninteracting
microbioreactors, can be successfully modeled as unit cell (a microbiore-
actor) and the surrounding shell in one dimensional space.
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