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The peak model for finite rank
supersingular perturbations

Rytis Juršėnas*

Abstract. We review the peak model for finite rank supersingular per-

turbations of a lower semibounded self-adjoint operator by comparing

the main aspects with the A-model. The exposition utilies the tech-

niques based on the notion of boundary triples.

1 Introduction

Given a densely defined symmetric operator in a Hilbert space, there always exists a self-
adjoint extension to a Hilbert space containing the initial one as a subspace. Adapting the
present principle to the symmetric operator which is essentially self-adjoint, non-trivial
extensions are constructed by extension-restriction procedure with respect to the triplet
extensions in scales of Hilbert spaces of an initially given self-adjoint operator. Having
found the Hilbert subspace in which the symmetric operator has non-trivial but finite
defect numbers, one extends that subspace by a suitable finite dimensional linear space,
and then considers triplet extensions restricted to the resultant space, which is equipped
with an appropriate metric.
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118 Juršėnas: The peak model

Depending on the inner structure of an additional linear space, and hence on the metric
of a resultant space, one deals with the triplet extensions restricted to either Pontryagin
or Hilbert space. Following [12], the Pontryagin space models are referred to as the
B-models, while those which admit both indefinite and non-negative metrics are called
A-models. The A- and B-models constitute the cascade models, since an additional finite-
dimensional linear space in these models contains singular elements of different order of
singularity, which therefore belong to different spaces from the scale. For the symmetric
operator with defect numbers (1,1) (in a subspace of an initial Hilbert space), the cascade
models are developed in [12, 13, 16, 7]; see also the references therein.

Due to the indefiniteness of the metric in the cascade models, the so-called peak model
was suggested in [18] as an alternative. The present model is purely Hilbert space model,
but it has its own limitations, simply because the model does not apply to all operators
(see the next paragraph for details).

In the present paper, we review the peak model for the restricted symmetric operator
with defect numbers (d,d), d ∈N, which is developed in [14]. In parallel, we remark the
key differences between the present model and the A-model. The results are presented
using the techniques from the theory of boundary triples [8, 11, 10, 9].

2 The peak model versus A-model

In this section we construct non-trivial realisations of a symmetric operator that is essen-
tially self-adjoint in the reference Hilbert space. The main results are the Krein-Naimark
resolvent formula (11.1) and the computed Weyl function (11.3).

2.1 Triplet adjoint

As is well-known, non-trivial realisations of a symmetric operator Lmin that is essentially
self-adjoint in the reference Hilbert space H0 are considered in an extended Hilbert space
by means of the compressions of their resolvents. Thus, given a self-adjoint operator L

in H0, let (Hn)n∈Z be the scale of Hilbert spaces [3, 1] associated with L. To simplify
the present exposition, the operator L is lower semibounded. The scalar product in Hn is
defined by 〈 · , · 〉n ..= 〈 · ,bn(L) · 〉0, where b0(L) ..= I and bm(L) ..= (L− z1) · · ·(L− zm) and
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b−m(L) ..= bm(L)−1 for m ∈ N. The real numbers z1, . . . ,zm from the resolvent set resL

are fixed and referred to as the model parameters.

Let Lmin ⊆ L be the symmetric restriction to Hm with defect numbers (d,d), and the
deficiency subspace spanned by the elements {Gσ (z) ∈ HmrHm+1}, z ∈ resL, with σ

ranging over an index set S of cardinality d ∈N. One considers the triplet adjoint Lmax of
Lmin for the Hilbert triple Hm ⊆H0 ⊆H−m. The operator Lmax in H−m extends L |H−m+2 to
the domain H−m+2uNz(Lmax) (direct sum), where the eigenspace Nz(Lmax) is the linear
span of the singular elements {gσ (z) ..= bm(L)Gσ (z) ∈ H−mrH−m+1}. These elements
are also represented as the generalised vectors gσ (z) = (L− z)−1ϕσ by means of linearly
independent singular functionals {ϕσ ∈ H−m−2rH−m−1}. The action of ϕσ on Hm+2 is
realised via the duality pairing 〈ϕσ , · 〉 in a usual way [2, Eq. (1.17)]. Because m ≥ 1,
rank-d perturbations of L are called supersingular [17]; this is an allusion to the heuristic
form L+∑σ ,σ ′∈S Cσσ ′ 〈ϕσ ′ , · 〉ϕσ with some matrix (Cσσ ′) in Cd . In what follows we
also use the vector notation 〈ϕ, · 〉 ..= (〈ϕσ , · 〉) : Hm+2→ Cd .

2.2 Intermediate space

To construct non-trivial realisations of Lmin, the space H−m in which Lmax is defined turns
out to be too large. Thus one defines the so-called intermediate space H , in the sense
that Hm ⊆H ⊆H−m, and considers the range restriction Amax to H of Lmax. As a linear
space, H is the direct sum of Hm and a md-dimensional linear space K⊆ H−m such that
K∩Hm−1 = {0}. Since K is in bijective correspondence with Cmd , each element k ∈ K

is uniquely determined by the vector d(k) ∈ Cmd . Depending on the inner structure of K,
the set H is made into either Hilbert or Pontryagin space by completing it with respect
to the metric

〈 f + k, f ′+ k′〉H ..= 〈 f , f ′〉m + 〈d(k),G d(k′)〉Cmd

for f , f ′ ∈ Hm and k,k′ ∈ K, and some Hermitian matrix G in Cmd , referred to as the
Gram matrix. For a suitable G , the operator Amax is the adjoint in H of a densely de-
fined, closed, symmetric, and simple operator Amin; hence one applies to Amin a standard
extension theory by means of Amin ⊆ AΘ ⊆ Amax, where a (closed) proper extension AΘ

is uniquely determined by a (closed) linear relation Θ in Cd . Let (Cd ,Γ0,Γ1) be an or-
dinary boundary triple (OBT) [11, Definition 7.11] for Amax = A∗min, let γ and M be the
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corresponding γ-field and the Weyl function; then the Krein-Naimark resolvent formula
for an extension AΘ defined on f ∈ domAmax such that (Γ0 f ,Γ1 f ) ∈Θ reads

(AΘ− z)−1 = (A0− z)−1 + γ(z)
(
Θ−M(z)

)−1
γ(z)∗ (11.1)

for z ∈ resAΘ ∩ resA0, where A0
..= A{0}×Cd is one of the two distinguished self-adjoint

extensions of Amin. From here one deduces the formula for the compression of the resol-
vent to Hm.

2.3 Gram matrix

In the cascade models, an Hermitian matrix G is initially chosen arbitrarily and the set
K is the linear span of the singular elements hα

..= b j(L)−1ϕσ ∈ H−m−2+2 jrH−m−1+2 j,
with α =(σ , j) ranging over S ×J, J ..= {1, . . . ,m}. However, the definition Amin

..=A∗max

requires in addition that G be invertible. Moreover, to make Amin symmetric, the com-
putation of the boundary form of Amax shows that G must satisfy a certain commutation
relation. For example, when d = 1 and z1 = . . . = zm, it must hold GM =M∗G with a
Hankel (anti-triangular) matrix M, i. e. the matrix with the entries M j j′

..= δ j j′z1+δ j+1, j′

( j ∈ Jr{m}, j′ ∈ J) and Mm j′
..= δ j′mz1; for m = 1 one puts M ..= z1. It follows in partic-

ular that, for m≥ 2, one cannot put G = G∗ ..=
(
〈hα ,hα ′〉−m

)
, because 〈hσ1,hσ1〉−m > 0

(this statement applies to d ∈ N; see also [15]).

In contrast, in the peak model, the origin of G is clear. Namely, the Gram matrix
G of the peak model is made of the entries Gαα ′

..= 〈gα ,gα ′〉−m, where gα
..= gσ (z j);

hence it is Hermitian and positive definite provided that z j 6= z j′ for j 6= j′. The set K
is defined as the linear span of the singular elements of the same order of singularity,
namely {gα ∈ H−mrH−m+1}. It follows that each k ∈ K is in bijective correspondence
with d(k) =

(
dα(k)

)
∈ Cmd via

k = ∑
α

dα(k)gα , dα(k) = ∑
α ′

[
G−1]

αα ′ 〈gα ′ ,k〉−m .

In particular, using that

bm(L)−1 = ∑
j

b′j(z j)
−1(L− z j)

−1, b′j( ·) ..= ∏
j′∈Jr{ j}

( · − z j′)
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and putting dσ j(k) = cσ b′j(z j)
−1 for some c= (cσ )∈Cd , one deduces that the set Kmin

..=

K∩Hm−2rHm−1 is the linear span of {bm(L)−1ϕσ}, and is referred to as the minimal
subset of K. An element k ∈ Kmin is thus of the form k = kmin(c), where

kmin(c) ..= ∑
σ

cσ bm(L)−1
ϕσ = ∑

α

[
G−1Gbc

]
α

gα .

The matrix Gb from Cd to Cmd is formed by the entries

[
Gb
]

ασ ′
..= ∑

j′
Gα,σ ′ j′ b

′
j′(z j′)

−1

and has the trivial kernel.

2.4 Symmetric operator in intermediate space

The maximal operator Amax in the peak model is then the operator in the Hilbert space H

which extends A0 to the domain domA0uNz(Amax) for z ∈ resA0 = resLr {z j | j ∈ J},
where the eigenspace of Amax coincides with that of Lmax (but for z∈ resA0). The minimal
operator Amin is made symmetric iff G is diagonal in j ∈ J, in which case Amax is closed
and equals Amax = A∗min (this is in contrast to the A-model, where Amax is automatically
closed by construction, provided that the Gram matrix of the model is invertible):

domAmin = { f # + k ∈ Hm+2uK | 〈ϕ, f #〉= G ∗b d(k)},

domAmax = domA0uNz(Amax) = Hm+2uNz(L∗min)uK

and

Amax
(

f # +Gz(c)+ k
)
= A0( f # + k)+ zGz(c)+ kmin(c), (11.2)

Gz(c) ..= ∑
σ

cσ Gσ (z), c = (cσ ) ∈ Cd , z ∈ resA0

where the self-adjoint operator A0 on domA0 = Hm+2uK is defined by

A0( f # + k) = L f # +∑
α

[
Zdd(k)

]
α

gα .

For brevity, Zd denotes the matrix direct sum of d diagonal matrices diag{z j; j ∈ J}.
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On one hand, the diagonality of G significantly simplifies the computations, but on the
other hand, the condition is not satisfied for some operators L with perturbations of class
H−m−2rH−m−1 with m≥ 2; see e. g. [15] for m = 2.

2.5 Weyl function

In the peak (resp. cascade) model, the Weyl function M is represented by the sum of a
Nevanlinna function associated with Lmin in Hm and the Krein Q-function associated with
the Gram matrix G (resp. the generalszed Nevanlinna function – due to the indefiniteness
of G – associated with the multiplication operator in a reproducing kernel Pontryagin
space [5, 4, 6]). More specifically, the γ-field and the Weyl function associated with the
OBT

Γ0( f # +Gz(c)+ k) ..= c, Γ1( f # +Gz(c)+ k) ..= 〈ϕ, f #〉+R(z)c−G ∗b d(k)

for Amax are given by

γ(z) = bm(z)−1bm(L)Gz( ·), M(z) = R(z)+QG (z) (11.3)

for z ∈ resA0. Here R is the Weyl function associated with the OBT for L∗min, which is
obtained from Γ ..= (Γ0,Γ1) by restriction to domL∗min = Hm+2uNz(L∗min). Note that the
γ-field associated with this OBT for L∗min is Gz(·). The Q-function associated with G is
the matrix in Cd whose entries are defined by

[
QG (z)

]
σσ ′

..= ∑
j

[
G ∗b
]

σ ,σ ′ j

(z j− z)b′j(z j)
= ∑

j

Gσ j,σ ′ j

(z j− z)b′j(z j)2 .

The second equality accounts for the condition that G is diagonal in j ∈ J; for d = 1, see
also [18, Theorem 6.1].

2.6 Renormalised Weyl function

Ignoring formally that G is diagonal in j for m≥ 2, one can perform a kind of renormal-
isation of QG (z). For this purpose, put z j = z1−δ j−1, δ j−1 6= 0, j ∈ Jr{1}, in the first
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formula of QG (z), take the limits δ j→ δ j−1, as well as δ1→ 0, and deduce by induction
that the matrix QG (z) is “renormalised” to the matrix Q∗(z) whose entries are given by

[
Q∗(z)

]
σσ ′

..=−∑
j

[
G∗
]

σm,σ ′ j

(z− z1)m− j+1 .

An interesting observation is that the corresponding Weyl function M, denoted now by
M∗, is, up to a constant, the Weyl function MA of Amax in the A-model with model param-
eters z j = z1, provided that the entries at the m-th row of the Gram matrix of the A-model
satisfy Gσm,σ ′ j =

[
G∗
]

σm,σ ′ j. In this case, with a suitable choice of the OBT for Amax in
the A-model, one has

M∗(z) = R∗(z1)+MA(z)

for z ∈ resLr {z1}. In the above formula R∗ is obtained from R by simply replacing all
{z j} in bm(L) by z1; that is, the entries

[
R∗(z)−R∗(z1)

]
σσ ′ = (z− z1)〈ϕσ ,bm(L)−1(L− z)−1(L− z1)

−1
ϕσ ′〉

for z∈ resL, constitute the matrix valued Q-function which is associated with Lmin in Hm,
where now bm(L) ..= (L− z1)

m.

3 Transformation preserving the Weyl function

According to [19], if Q-functions of two densely defined, closed, symmetric, and simple
operators in (possibly) distinct Hilbert spaces coincide, then the operators are unitarily
equivalent. In this paragraph we extend the latter statement to a not necessarily unitary
transformation, which becomes unitary, however, in the special case.

Let PH be a bounded operator from a Hilbert space H−m to a Hilbert space H ; let P∗H
be its adjoint, considered as a bounded operator from H to H−m. Let Ω ..= PH bm(L)

1/2

be a bounded operator from H0 to H ; then the operator Ω∗ = bm(L)−
1/2P∗H , considered

as a bounded operator from H to H0, is the adjoint of Ω. Define also a bounded, non-
negative, self-adjoint operator in H by ι ..= ΩΩ∗ = PH P∗H .

Let AΘ be a (closed) proper extension of the symmetric operator Amin in H as de-
scribed above, and define the operator AAAΘ

..=Ω∗AΘΩ in H0 on its natural domain. A direct
computation shows that the adjoint in H0 is the operator AAAΘ∗ . Let also AAAmin

..= Ω∗AminΩ,
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and similarly for AAAmax. Then AAAΘ is a proper extension of a densely defined, closed, sym-
metric, and simple operator AAAmin. The domain of AAAΘ can be described in terms of Θ as the
set of u∈ domAAAmax such that (ΓΓΓ0u,ΓΓΓ1u)∈Θ, where ΓΓΓ ..= (ΓΓΓ0,ΓΓΓ1) : domAAAmax→Cd×Cd

is defined according to ΓΓΓ = ΓΩ. Because ΩdomAAAmax ⊆ domAmax the operator ΓΓΓ is not
surjective, in general, so the present parametrisation of domAAAΘ applies to not all Θ, and
the triple ΠΠΠ ..= (Cd ,ΓΓΓ0,ΓΓΓ1) is only an isometric boundary triple [8, Definition 1.8] for
AAAmax. To make ΠΠΠ an OBT, we assume that PH leaves domAmax invariant, because in this
case ΩdomAAAmax = domAmax. Then the following result holds.

Theorem 11.1 Let MMM be the Weyl function of AAAmin corresponding to the OBT ΠΠΠ for
AAAmax. Then MMM(z) = M(z), z ∈ resA0, iff

(∀c ∈ Cd)(∀z ∈ Σι)
[
(A0− z)−1− (ιA0− z)−1

ι
]
kmin(c)

− (ιA0− z)−1(ι− I)zGz(c) ∈ domAmin.

Here Σι
..= resA0∩ res(ιA0). For ι = I, one recovers that PH (and hence Ω) is unitary,

which is the case considered in [19, Theorem 2.2].

Proof. First, observe that Nz(ιAmax) = Hz(Cd), z ∈ Σι , where

Hz(c) ..=
[
I− z(ιA0− z)−1(ι− I)

]
Gz(c)− (ιA0− z)−1

ιkmin(c).

Indeed, since f ∈Nz(ιAmax) belongs to domAmax, it follows from (11.2) that

0 =
(
ιA0− z

)
( f # + k)+(ι− I)zGz(c)+ ιkmin(c).

By using (L− z)Gz(c) = kmin(c) the assertion follows.

Second, the graph of the γ-field γγγ associated with an OBT ΠΠΠ consists of the pairs
(c,uz) ∈ Cd ×Nz(AAAmax) such that Ωuz = Hz(c). Indeed, by definition, γγγ contains (c,uz)

such that ΓΓΓ0uz = c. Since ΩNz(AAAmax) ⊆ Nz(ιAmax), the assertion follows by using the
first claim. To verify that γγγ is the graph, let us compute its multivalued part; it is the set
of uz ∈Nz(AAAmax)∩kerΩ = ker(ΓΓΓ0 |Nz(AAAmax)) = {0}.

Third, the Weyl function MMM associated with ΠΠΠ is given by MMM(z) = Γ1Hz( ·) (on Cd) for
z ∈ Σι , which is seen from the second claim. Using in addition that

QG (z)c =−Γ1
[
(A0− z)−1kmin(c)

]
one gets that

MMM(z) = M(z)+∆(z)
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with

∆(z)c ..= Γ1
{[
(A0 − z)−1 − (ιA0 − z)−1

ι
]
kmin(c) − (ιA0 − z)−1(ι − I)zGz(c)

}
.

Thus MMM(z) = M(z) iff ∆(z) vanishes; in this case the equality for the analytic Weyl func-
tions extends to the domain of analyticity of M(z), namely, resA0.

Finally, (∀c) ∆(z)c = 0 iff the term in { }, which belongs to domA0 by construction,
also belongs to kerΓ1, i. e. iff it belongs to domA0∩kerΓ1 = domAmin.

To this end we remark that a similar theorem can be formulated in the A-model as well,
but now the situation is more delicate, because M in the A-model might belong to the class
of generalised Nevanlinna families with a finite number κ of negative squares, while MMM

associated with the OBT for the Hilbert space (i. e. H0) adjoint of a symmetric operator
belongs to the class of Nevanlinna families, i. e. κ = 0. Thus a different meaning has to
be given to the adjoint of PH (and hence Ω). The details will be presented elsewhere.
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