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prof. dr. Olga Kurasova (Vilniaus universitetas, gamtos mokslai,
informatika – N 009).

Nariai:
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1 INTRODUCTION

Signals and their processing algorithms are an integral part of our

every day lives. Photos we view (JPEG compression standard),

and music we listen to (MP3 and some other standards) use

The Fast Fourier Transform (FFT) algorithm as well as other

Digital Signal Processing (DSP) methods [11]. DSP is used in

medicine too, for example in analysis of electrocardiograms (ECGs)

[4, 16, 21] and electroenecphalograms (EEGs) [3, 13, 14] (which

are investigated in this work).

EEG is a form of an instrumental medical examination with its ap-

plications, advantages and disadvantages. The main applications

of EEGs are diagnosing various forms of epilepsy, sleep disorders

and others. The main advantages of EEGs are the high timescale

resolution and the non invasive nature of the examination. On

the other hand, disadvantages are low spatial resolution and the

inability to examine deeper parts of the brain of the test subject.

EEG tests are ubiquitous in both Lithuania and the world. As

a result, a multitude of algorithms for EEG analysis have been

created: a number of EEG spike detection algorithms [2, 5, 10,

19, 20], ill vs healthy classification [1, 6], ictal vs inter-ictal EEG

classification [17, 18] and many others.

The EEGs of childhood patients (3-17 years old) are investigated

in this work. Patients are diagnosed with one of two groups of
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diagnosis: benign childhood epilepsy (Group I) and structural

focal epilepsy (Group II). Although differences between some

Group I and Group II EEGs are obvious even to non neurologists,

the cases that are difficult to distinguish are investigated in this

work. To the author’s knowledge, this thesis and publications it

is based on is the first attempt to classify Group I and Group II

EEGs by diagnosis.

1.1 Goals and tasks of the thesis

The main goal of this thesis is to create an automated algorithm

for the classification of Group I and Group II EEGs in complicated

(nonobvious or visually identical to neurologists) cases, without

knowledge of the patient’s case history. Algorithms created are

verified with computer modelling based experiments.

To achieve this goal, these tasks were dealt with:

• Choice and optimisation of EEG spike detection algorithm;

• Selection of geometric EEG spike features usable for classi-

fication;

• Selection and application of machine learning based methods

for EEG classification by diagnosis;

• Combination of chosen methods into algorithm for EEG

classification by diagnosis;
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• Implementation of proposed algorithms;

• Confirmation by performing necessary experiments of pro-

posed algorithms and other results presented in thesis.

1.2 Means of investigation

Python programming language was employed in the implementa-

tion of proposed algorithms and experiments (2.7.10 version in

the beginning of preparation of thesis, later moved to 3.5 and

3.6 versions, latest used version – 3.6.8). A number of Python

libraries were employed as well: NumPy (reducing time of some

calculations), SciPy (implementation of mathematical morphology

and other methods), MatPlotLib (graph plotting), Scikit-learn

(implementations of various machine learning methods and met-

rics), Tensorflow-GPU (CNN implementation on GPU), EegTools

and PyEdfLib (parsing EDF and EDF+ files), and mpi4py (im-

plementation of MPI in Python).

Most calculations were performed on the author’s personal com-

puter with the following parameters: Intel i7-6700K CPU (4.0 GHz,

4 cores, 8 threads), Asus Z170 Deluxe motherboard, 32 GB DDR4

RAM (4 x 8GB Corsair Vengence LPX 2400 MHz), Asus Strix

GeForce 980Ti OC GPU (2816 CUDA cores, 6 GB GDDR5 graph-

ical mempory), Noctua NH-D15 CPU cooler, and 5 x Noctua

NF-A14-PWM fans. The PC was dual boot with Windows 10
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and Linux Ubuntu 14.04 LTS (at the start), Ubuntu 18.04 LTS

(upgraded later) operating systems (all OS were 64-bit versions).

Part of the calculations were performed on VU MIF Cluster

(PST1): 1920 processor cores, 3.6 TB RAM, 620 TB total disk

size, about 25 TFLOP/s of computations.

1.3 Scientific novelty of results

1. A three step algorithm has been proposed for classification

of EEGs obtained from Group I and Group II patients.

This is the first algorithm published in scientific literature

to address this task.

2. Parameters of the EEG spike detection algorithm (based on

mathematical morphology) were optimised with a genetic

algorithm. That is the first optimisation of parameters of

the algorithm mentioned using a genetic algorithm.

3. Three strategies of EEG spike data extraction were tested

in the third step of the algorithm for EEG classification by

diagnosis;

4. Performance of several machine learning-based classifiers

was investigated in the final step of proposed algorithm

while maximising accuracy and other important metrics.

1https://mif.vu.lt/cluster/
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1.4 Significance of results in practice

An automatic algorithm able to classify EEGs obtained from

Group I and Group II patients by diagnosis has been proposed.

Implementation of this algorithm in practice would reduce the

number of misdiagnosed cases and would reduce the workload for

doctors-neurologists on manual analysis of EEGs.

The EEG spike detection algorithm is already implemented as

part of the NKSPS (National clinical decision support information

system, No. VP2-3.1-IVPK-10-V-01) project and is already used

by doctors. Implementation of the proposed algorithms would

reduce the neurologist’s load even further.

1.5 Statements defended

1. EEGs obtained from Group I and Group II patients can

be classified by diagnosis with the proposed algorithms

achieving 75%–82% accuracy.

2. Methodology employing geometric EEG works best with

MLP (multilayer perceptron) based classifier.

3. EEG spike signal array classification (when signals of EEG

spikes are concatenated) is best performed by an extremely

randomized tree algorithm.
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4. EEG classification employing signals from all channels in

the vicinity of the spike is best performed by CNN combined

with majority rule detection classifiers. Additionally, this

algorithm has best usability in practise, thus it is recom-

mended to use and investigate further.

1.6 Approbation of the thesis results

The main findings of this thesis are published in peer reviewed

periodicals:

1. EEG classification by diagnosis using geometric EEG spike

parameters and a MLP based classifier was published in

Biomedical Signal Processing and Control, and indexed in

Clarivate Analytics Web of Knowledge database. The au-

thor created and implemented the models and significantly

contributed to writing the text of the publication.

2. An article has been written and accepted to Nonlinear Ana-

lysis: Modelling and Control, indexed in Clarivate Analytics

Web of Knowledge database, detailing EEG classification

by diagnosis using CNN and majority rule detection. The

author contributed to creating and implementing the mod-

els and significantly contributed to writing the text of the

publication.
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Results were also presented in international and national confer-

ences and their proceedings:

1. DAMSS 2014 (Druskininkai, Lithuania): Data analysis

methods for software systems: 6th International Workshop.

2. LMD 56 (Kaunas, Lithuania): 56th conference of Lithuanian

mathematical society. June 16-17, 2015.

3. LMD 57 (Vilnius, Lithuania): 57th conference of Lithuanian

mathematical society. June 20-21, 2016.

4. NM&A’18 (Borovets, Bulgaria): Ninth International Con-

ference on Numerical Methods and Applications. August

20-24, 2018.

5. DAMSS 2018 (Druskininkai, Lithuania): 10th international

workshop on data analysis methods for software systems.

November 29 – December 1, 2018.

6. AMiTaNS’19 (Albena, Bulgaria): Eleventh Conference of

the Euro-American Consortium for Promoting the Applic-

ation of Mathematics in Technical and Natural Sciences.

June 20-25, 2019.

The author of the thesis was the main author and presenter in

all conference reports mentioned above. The author was awarded

the Young Scientist Award Certificate for successful presentation

at the AMiTaNS’19 conference.
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2 EEG

EEGs are employed in diagnosing various ailments of the central

nervous system: sleep disorders, addiction diseases, and brain

tumors [15], however, this work is focused on two groups of

patients diagnosed with epilepsy.

EEG recordings of children (3-17 year-old patients) are invest-

igated in this study. The EEGs are from the database of Chil-

dren’s Hospitals, Affiliate of Vilnius University Hospital Santaros

Klinikos recorded during the period of 2010—2018. The dataset

included only EEGs that a neurologist would identify as visually

similar or identical. Exact diagnosis for each EEG recording was

known from the clinical record of the patient.

The patients can be assigned into one of the following two groups:

1. Group I: benign childhood epilepsy with centrotemporal

spikes;

2. Group II: structural focal epilepsy patients with cerebral

palsy, dysplastic brain lesion, gliosis etc.

It should be noted that some patients have more than one EEG

recording (see Table 1), therefore a strict rule has been imposed:

each patient with all their EEG recordings can be assigned to

either the training or testing dataset. If EEGs are mixed, pseudo

accuracy rises significantly [9].
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Table 1: Distribution of EEGs and patients by diagnosis and
throughout training and testing data sets. Percentages in paren-
theses indicate: 1) sample size of EEGs* from whole EEG dataset
of the Group, 2) sample size of patients** from whole dataset of
patients in a Group.

Number of patients\Group Group I Group II Total

Number of EEGs (Total) 215 48 263

Number of patients (Total) 135 33 168

Number of EEGs (Training set) 43 (20.0%*) 35 (72.9%*) 78

Number of patients (Training set) 37 (27.4%**) 21 (63.6%**) 58

Another important characteristic of the dataset used in this study

is that it is imbalanced: there are more EEGs from Group I

than from Group II. The main reason for this discrepancy is that

Group II EEG recordings that are similar to Group I EEGs are

significantly more rare. All trivial cases were omitted in this

study.

All EEGs examined in this study are recorded in the 10–20 in-

ternational EEG system. The main advantage of this system is

that all electrodes are always placed over the same regions of the

brain for each patient.
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3 ALGORITHM FOR EEG CLASSIFICATION

BY DIAGNOSIS

3.1 EEG spike detection

The EEG spikes are detected by a morphological filter-based

algorithm (for details see [5, 7, 8, 10]). The premise of operation

of the morphological filter is that normal brain activity (e.g. brain

rhythms) is filtered out while abnormal brain activity (e.g. EEG

spikes) is left out [5]. Any values of filtered signals that are higher

than the detection limit are considered to be spike candidates [7].

The spike detection algorithm is implemented employing a com-

bination of morphological filters and operations. The operations

used to detect spikes can be expressed through morphological

grey erosion and dilation.

These notations are employed: the signal in an EEG channel

investigated is signified by f(t), the structuring element is denoted

by g(t), while reflection of the structuring element is gs(t) = g(−t).
D denotes the domain of signal f(t). Then erosion is:

(f 	 gs)(t) = min
τ∈D
{f(τ)− g(−(t− τ))}. (1)

Dilation can be defined as:

(f ⊕ gs)(t) = min
τ∈D
{f(τ) + g(−(t− τ))}. (2)
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Employing expressions (1) and (2), opening and closing operators

can be defined. Opening:

(f ◦ g)(t) = [(f 	 gs)⊕ g](t). (3)

The closing operator is defined as:

(f • g)(t) = [(f ⊕ gs)	 g](t). (4)

EEG spikes can exhibit both positive and negative amplitudes,

thus both open-closing and close-opening operations are needed

to compensate for that. Employing formulas (3) and (4), these

operators can be defined. Open-closing:

OC(f(t)) = f(t) ◦ g1(t) • g2(t). (5)

Close-opening is defined as:

CO(f(t)) = f(t) • g1(t) ◦ g2(t). (6)

Both OC and CO have an impact of the same absolute value,

but different signs on the average value of the signal. Thus, to

eliminate the change, averaging out the value of (5) and (6) is

employed in equations:

OCCO(f(t)) =
OC(f(t)) + CO(f(t))

2
. (7)

17



The expression (7) denotes the value of the morphological filter.

In order to apply it, it is still necessary to define the structuring

elements employed (see equations (5) and (6)):

gi(t) = ai ki t
2 + bi, i = 1, 2. (8)

Where ki is the coefficient used in optimisation (see Subsection

3.2) with a default value of 1, ai and bi are defined as:

a1 =
2Median(|f |)
Median(W )

, a2 =
2Median(|f |)
3Median(W )

,

b1 = b2 = Median(|f |),
(9)

Here W is an array of EEG signal arc lengths [5]. Since brain

activity of the patient changes with time, coefficients defined in

equation (9) need to be recalculated every tr = 5 s.

Every part of the EEG that goes over a certain detection limit L

is considered to be an EEG spike candidate:

L = 2 kLMedian(ffiltered), (10)

Here kL is the coefficient used for optimisation (see Subsection

3.2) with a default value of 1, and ffiltered is the filtered signal,

which can be defined as:

ffiltered(t) = |f(t)−OCCO(f(t))| , (11)
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See Figure 1 for visualisation of OC, CO and OCCO filter opera-

tion.

The length of the structuring element is also important, as a

structuring element that is too long would result in many false

positive spike detections (reduced specificity) and a structuring

element that is too short would result in too few spike detections

(reduced sensitivity). See Figure 2. It was found that optimal

length of a structuring element is:

te = 4 keMedian(W ) (12)

Here ke is the coefficient for optimisation of length of a structuring

element with a default value of 1.

3.2 Optimisation of the parameters of the EEG

spike detection algorithm

As noted in Subsection 3.1, the EEG spike detection algorithm

has some constants (e.g. in equations (9) and 10)) that were

introduced in previous studies [5, 10]. However, this study has a

different goal compared to these previous studies [5, 7, 10]: instead

of just detecting spikes, we tried to classify EEGs by diagnosis.

This means that different metrics (e.g. accuracy, specificity and

sensitivity) of the EEG detection algorithm might be important.

Thus the need to optimise the algorithm by these metrics was

19
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(b) Filtered EEG signal ffiltered(t) and detection limit.

Figure 1: Demonstration of raw EEG signal and morphological
filter operation. The purple dashed line denotes the position of
an EEG spike.
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Figure 2: The relation between quality of EEG detection and
length of a structuring element. A) shows the original unfiltered
signal; B) signal filtered with too short structuring element; C)
signal filtered with too long structuring element; D) signal filtered
with a structuring element of the right length.

21



introduced.

For mathematical convenience of optimisation, several coefficients

were introduced: k1 and k2 in equation (8), kL in equation (10)

and ke (the value, which is multiplied with tr). The default

starting value of all these coefficients was 1.

Since multiple experiments were done with various fitness func-

tions (accuracy, sensitivity, specificity) and their combinations,

any mathematical properties of the fitness function can be guaran-

teed. It can be presumed that the fitness function is discontinuous,

since ke and kL values cannot be negative. Furthermore, each

evaluation of the fitness function is time and resource consuming.

For these reasons the genetic algorithm (GA) was employed in

order to optimise the parameters mentioned.

A genetic representation of an individual can be written in the

following way:
[
k1, k2, kL, ke

]
. The initial values were generated

randomly using normal (Gaussian) distribution with mean µ = 1

and variance σ2 = 1. This value generation gave us a selection of

new genetic individuals scattered around the known good solution

of
[
1, 1, 1, 1

]
.

Crossover was implemented by splitting two individuals at a

randomly chosen index, swapping the second part and recombining

both individuals. Mutation was implemented by modifying a

random property of an individual using normal distribution with

the mean equal to current value and variance σ2 = 1. Elitism

22



Table 2: Results of the optimisation of parameters of the EEG
spike detection algorithm. GA here denotes the genetic algorithm.

Optimisation method Sensitivity Specificity k1 k2 kL ke
Manual optimisation 0.70 0.71 1.00 1.00 1.00 1.00

Sensitivity (GA) 0.92 0.38 0.56 0.61 0.26 0.53

Specificity (GA) 0.11 0.88 1.61 1.63 6.82 1.03

Min(sensitivity, specificity) (GA) 0.73 0.72 1.06 1.08 1.25 1.01

of the selection was applied by carrying over 10% of the best

individuals of the current selection to the next one.

Due to the high computational cost of the evaluation of the fitness

function of an individual, a population size of 100 individuals

was selected. Probability of mutation was 2%. The GA was

terminated after 10 populations did not improve the best found

solution. For each fitness function, the GA was run five times in

order to ensure that it arrived at the same solution within the

margin of error. The results are presented in Table 2.

It was determined that the Min(sensitvity, specificity) fitness func-

tion displayed optimal classification results for EEG classification

by diagnosis. We speculate that the reason this metric works

the best is due to both high sensitivity (many EEG spikes are

detected) and high specificity (high amount of candidate spikes

detected are EEG spikes). High sensitivity fitness function res-

ulted in 52% accuracy of the majority rule voting classifier, and

high specificity fitness function resulted in 79% accuracy.
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Figure 3: Geometric EEG spike features. Here ku is upslope, kd –
downslope.

3.3 EEG spike feature extraction

3.3.1 Geometric EEG spike features

After detecting EEG spikes, various features can be extracted.

Experimentation has been done with various geometric EEG spike

features [9], but upslope and downslope (see Fig. 3) are shown to

be the most discriminative ones.

This method has both its advantages and disadvantages. The

main advantage is a well-defined feature set that can be used

with classical machine learning-based classifiers. However, spike

features are not always correctly fitted, thus some additional

errors are introduced.
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Figure 4: EEG classification strategy where channel in which the
spike is detected, is used.

3.3.2 Concatenated EEG spike data

The second possible approach is employing raw EEG spike data.

However, since it was determined that more than one spike is

necessary to make a diagnosis as accurate as possible, a problem

arises: how to pass multiple spike data to the machine learning

algorithm-based classifier. The solution proposed is to concatenate

EEG spike data from the channel where the spike is detected (see

Fig. 4).

3.3.3 EEG spike data in all channels

The third possible strategy is to use EEG data from all channels in

the vicinity of the EEG spike detected. This approach works best

with classifiers that are tuned to classify image-like (or matrix-

shaped) input, like the CNN classifier.
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3.4 EEG classification by diagnosis

In this chapter, algorithms for EEG classification and their results

are discussed.

3.4.1 EEG classification by diagnosis with geometrical spike

parameter data

In this chapter, we try to establish the best classifier for EEG

classification by diagnosis using EEG spike geometrical features.

In order to achieve this task, some quantifiable parameters of

algorithm performance are needed. The most obvious metric for

this task is accuracy, which is the sum of true positives and true

negatives divided over all detections. This metric is very useful

in detecting poorly performing algorithms.

After measuring the accuracy, LDA algorithm was excluded from

further analysis due to its poor accuracy: 53%. Multiple supported

vector machine (SVM) classifier configurations were tested as

well. SVM classifiers with linear and quadratic kernels performed

consistently with worse accuracy than SVM with cubic kernels,

thus were removed from further analysis.

While accuracy is a great tool for finding some poorly performing

algorithms, it does not show all of them. For that reason some

true positive rate (TPR) and true negative rate (TNR) analysis

was done. Although SVM with both RBF and sigmoid kernels
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were performing with good accuracy of 75%, they were classifying

all the data as Group I. The accuracy was achieved purely due

to our data set being biased towards Group I. Due to this reason

these algorithms were excluded from further analysis.

Random forest, decision tree, extremely randomized trees, Ada-

Boost and MLP presented comparable results for both groups and

thus were analyzed further. Table 5 presents the commonly used

performance metrics [12] for algorithms tested. These tests were

performed to evaluate overall quality of the discussed classifiers.

Table 3: Performance metrics [12] for algorithms selected group of
algorithms with Nspikes = 100. Ideal classifier column represents
metric values for theoretical ideal classifier. SVM Np = 3 here
denotes SVM with a cubic kernel.

Score/
Algorithm

Random
forest

Decision
tree

Extremely
randomised
tree

AdaBoost MLP
SVM
Np = 3

Ideal
classi–
fier

Accuracy 0.78 0.76 0.80 0.81 0.75 0.69 1.00

TPR 0.79 0.76 0.83 0.90 0.79 0.79 1.00

TNR 0.74 0.77 0.71 0.52 0.74 0.48 1.00

F1 score 0.76 0.76 0.75 0.64 0.78 0.57 1.00

ROC AUC 0.53 0.49 0.56 0.69 0.64 0.49 1.00

Cohen kappa 0.06 -0.01 0.12 0.38 0.28 0.26 1.00

Matthews
correlation
coefficient

0.07 -0.01 0.15 0.42 0.38 0.28 1.00

Recall score 0.78 0.76 0.81 0.84 0.78 0.69 1.00

AdaBoost seems to be the best algorithm by most metrics presen-

ted in Table 5, except a couple key ones: TPR and F1 score.

This is due to the fact that AdaBoost classifies Group I (domin-

ant group) correctly 90% of the time and Group II only about

27



Table 4: EEG classification by diagnosis results using concatenated
EEG spike signal data. SD here denotes the standard deviation
acquired from k-fold validation.

Algorithm\Metric TPR SD TNR SD

Logistic
regression

0.656 0.001 0.6 0.006

Random
forest

0.951 0.05 0.768 0.016

Decision
tree

0.906 0.008 0.683 0.011

Extremely
randomised
tree

0.915 0.003 0.805 0.017

AdaBoost 0.765 0.031 0.781 0.053

LDA 0.949 0.001 0.467 0.002

MLP 0.601 0.029 0.58 0.04

SVM Np = 3 0.879 0.02 0.124 0.019

SVM RBF 0.783 0.058 0.264 0.041

SVM sigmoid 0.579 0.063 0.511 0.042
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52% of the time. SVM with cubic kernel suffers from the same

problem. Despite the good performance of AdaBoost across all

other metrics, this algorithm is not suited for the task at hand –

detecting rarer Group II cases in the pool of Group I and Group II

data. However AdaBoost could be explored further for potential

use in the ensemble (voting) type of classifier. This leads to the

discussion that some classifier quality metrics can be misleading

in this case.

Table 5 shows some more interesting results. Although random

forest, decision tree and extremely randomized trees show both

high TPR and TNR, their ROC AUC, Cohen kappa and Matthews

correlation coefficient are poor. This is probably due to the reason

that these metrics are designed to take into account the chance of

classifying a record correctly by guessing, therefore these metrics

suggest that these algorithms are getting the correct answer by

guessing it. Extremely randomized tree suffers less from this

problem, yet its Cohen kappa and Matthews correlation coefficient

scores are still poor. This means that these algorithms are less

suited for EEG classification than MLP and are excluded from

further analysis.

This leaves us with MLP, SVM (with cubic kernel) and AdaBoost

classifiers. Of these three, the MLP classifier is better considering

all metrics, thus it is recommended to be used for automatic

classification by diagnosis.
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Figure 5: Accuracy of automatic MLP-based classification
(between Group I and Group II) vs Nspikes (length of lists, con-
taining parameters of spikes, employed in training and testing)
for different training strategies.
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Table 5: Classifier metrics derived from leave one patient out
cross-validation on a single EEG spike classification.

Parameter CNN classifier Majority rule classifier

Accuracy 0.580 0.802

Weighted accuracy 0.572 0.795

F1 score 0.256 0.856

ROC AUC 0.579 0.916

Matthews correlation coefficient 0.144 0.550

The MLP classifier was also tried out with different numbers of

spikes. Results show (see Fig. 5) that the accuracy of MLP clas-

sifier saturates at about 75%, when 100 spikes are used. However,

the algorithm still could be used with a lower amount of spikes,

but with lower accuracy.

3.4.2 EEG classification by diagnosis with EEG signal data.

Another approach that was tried in this work is EEG classifica-

tion by EEG signal data described in Section 3.3.2. Using this

approach, the highest TPR and TNR values are displayed by

extremely randomised tree-based classifier in both k-fold and

normal training approaches with accuracy of 82%.
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3.4.3 EEG classification by diagnosis using CNN and majority

rule vote classifier

The results show that a single EEG spike cannot be decisively

classified (58% accuracy) as belonging to either Group I or Group

II. Thus, the majority rule voting classifier was proposed. Each

detected spike belonging to a patient was classified using CNN.

Each classification result of 0.5 or below registered as a vote for

assigning a patient to Group I, and each result above 0.5 was a

vote assigning a patient to Group II. Figure 6 demonstrates the

voting results compared to the real diagnosis of the patient. This

did lead to a significant improvement in the average classification

accuracy of 80%, which was a 7% increase over previous studies,

or 82% (9 % increase) if patients having less than 100 spikes are

excluded from analysis as in previous studies [9].

A high accuracy value does not necessarily represent high quality

of classification. Therefore, additional investigation is needed to

accurately evaluate the quality of the CNN majority rule classifier.

This is crucial since our dataset is unbalanced: patients belonging

to Group II are much rarer when compared to patients from

Group I, resulting in an unbalanced dataset. Figure 6 shows that

the majority rule classifier is highly likely to classify both Group I

and Group II EEGs correctly (81% and 79% respectively). More

metrics are presented in Tables 6 and 7.

The proposed algorithm had a further advantage over the MLP
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Table 6: Confusion matrix of leave one patient out of the CNN
classifier in a single spike EEG classification.

Group I Group II
Group I 20872 (TPR = 0.59) 14806 (FPR = 0.41)
Group II 6871 (FNR = 0.43) 9123 (TNR = 0.57)

based classifier proposed in previous studies: a fixed amount of

spikes in each EEG was no longer required in order to classify an

EEG by diagnosis, since each EEG spike was classified separately

by CNN and the final classification result was based on majority

rule of all EEG spikes classified. However, a higher number of

EEG spikes was still preferred, since rejecting EEGs with less

than 100 spikes produced an average accuracy of 82%.

This result was achieved due to the fact that many classification

errors of the CNN classifier are spike specific, but not EEG specific.

Figure 6 is the majority rule average vote result histogram. It

demonstrates that almost all EEGs had spikes classified incorrectly,

however, 80% of EEGs on average had the majority of spikes

detected correctly leading to correct classification by the majority

rule classifier (or 82% if EEGs with less than 100 spikes are not

considered like in previous approaches).

33



Table 7: Confusion matrix of leave one patient out of the majority
voting rule classifier in all spike EEG classification.

Group I Group II
Group I 128 (TPR = 0.81) 30 (FPR = 0.19)
Group II 13 (FNR = 0.22) 46 (TNR = 0.78)
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Figure 6: Histograms of majority rule classifier voting results.

4 CONCLUSIONS

• EEG data can be classified by diagnosis (between Group I

and Group II) with MLP based classifier and geometric EEG

spike features with 75% accuracy (with EEGs containing

100 spikes).

• EEGs can be classified by diagnosis (between Group I and

Group II) with extremely randomised tree and concatenated

34



EEG spike data with 82% accuracy (with EEGs containing

100 spikes).

• EEGs can be classified by diagnosis (between Group I and

Group II) with CNN combined with majority rule detection

with 80% accuracy (or 82% if EEGs with over 100 spikes

are used). This algorithmic version is recommended for

practical applications and further studies, since it works

with any EEG with any number of spikes without need of

retraining the CNN classifier and achieves results that are

not worse than other best classifiers.

• All proposed versions of the algorithm are sensitive to the

number of EEG spikes available to some extent. Thus EEGs

with more spikes are favored in order to make more accurate

predictions.
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7 SANTRAUKA LIETUVIU↪ KALBA

Signalu↪ analizė ir mašinu↪ mokymosi metodai yra itin plačiai

taikomi šiuolaikiniame gyvenime. Ne ǐsimtis ir medicina – joje

dažnai atliekami ir analizuojami (mašinu↪ mokymosi ir kitais me-

todais) tokie signalai kaip elektrokardiogramos (EKG) ir šiame

darbe nagrinėjamos elektroencefalogramos (EEG).

Darbe nagrinėjamos dvieju↪ diagnoziu↪ grupiu↪ EEG: gėrybin ↪e vaiku↪
epilepsija (Rolando epilepsija) (I grupė) ir struktūrinė židininė

epilepsija (II grupė). Nagrinėjamos tik tos EEG, kurios yra sunkiai

(arba visǐskai) neatskiriamos gydytojams neurologams neturint

paciento ligos istorijos ar kitu↪ svarbiu↪ duomenu↪.

Disertacijoje aprašytas I grupės ir II grupės EEG klasifikavimo

pagal diagnoz ↪e algoritmas, turintis tris esminius žingsnius: 1) EEG

piku↪ aptikimas, 2) EEG piko charakteristiku↪ ǐsskyrimas, 3) EEG

klasifikavimas pagal diagnoz ↪e (I arba II grupė) mašinu↪ mokymosi

metodais.

Disertacijoje nagrinėjamas (ir pirmame klasifikavimo pagal dia-

gnoz ↪e žingsnyje naudojamas) Nishida ir kt. (1999), Juozapavičiaus

ir kt. (2011) pasiūlytas EEG piku↪ paieškos algoritmas. Minėto

algoritmo parametrai optimizuojami genetiniu algoritmu pagal

kelias tikslo funkcijas: siekiant kuo didesnio piku↪ aptikimo tik-

slumo, jautrumo ir tikslumo bei jautrumo kombinacijos.

Antrame klasifikavimo pagal diagnoz ↪e žingsnyje nagrinėjamos trys
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pagrindiniai EEG piko charakteristiku↪ ǐsskyrimo būdai: 1) geo-

metriniai EEG piko parametrai, 2) EEG signalo atkarpu↪ masyvo

naudojimas kanale, kur aptiktas EEG pikas, 3) visu↪ EEG kalanu↪
naudojumas aptiktu↪ EEG piku↪ aplinkose.

Trečiame siūlomo algoritmo žingsnyje nagrinėjama eilė mašinu↪
mokymusi pagri↪stu↪ klasifikavimo metodu↪: daugiasluoksnis per-

ceptronas (MLP), sprendimu↪ medis, atsitiktinis mǐskas, labai

atsitiktiniai medžiai, logistinė regresija, tiesinė diskriminantinė

analizė (LDA), atraminiu↪ vektoriu↪ mašina (SVM) su i↪vairiais

branduoliais, konvoliuciniai neuroniniai tinklai (CNN), AdaBoost.

Disertacijos tyrimo objektas

Disertacijos tyrimo objektas – vaiku↪ (3–17 m. amžiaus), kuriems

nustatyta I arba II grupės diagnozė, EEG.

Disertacijos tikslai ir uždaviniai

Disertacijos tikslas – sukurti algoritmus, kurie automatǐskai kla-

sifikuotu↪ I ir II grupiu↪ EEG pagal diagnoz ↪e, gydytojams (neur-

ologams) tiriant sunkiai atpaži↪stamus atvejus ir klasifikavimui

naudojant tik EEG signalo duomenis, ir verifikuoti šiuos algorit-

mus kompiuterinio modeliavimo eksperimentais.
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Tikslui pasiekti ǐskelti šie uždaviniai:

• Pasirinkti ir optimizuoti EEG piku↪ paieškos algoritm ↪a.

• Nustatyti EEG piko geometrines (ir kitas) charakteristikas,

tinkamas klasifikuoti pagal diagnoz ↪e.

• Pasirinkti mašinu↪ mokymusi pagri↪stus klasifikavimo me-

todus ir pritaikyti juos EEG klasifikuoti pagal diagnoz ↪e,

atlikti pasirinkim ↪a pagrindžiančius eksperimentus.

• Sujungti pasirinktus algoritmus i↪ EEG klasifikavimo pagal

diagnoz ↪e algoritm ↪a, eksperimentǐskai palyginti i↪vairiu↪ al-

goritmo versiju↪ veikim ↪a.

• I↪gyvendinti (suprogramuoti) pasiūlytus algoritmus.

• Atlikti eksperimentus, reikalingus pasiūlytiems algoritmams

ir kitiems gautiems rezultatams patvirtinti.

Mokslinis rezultatu↪ naujumas

• Sukurtas triju↪ žingsniu↪ algoritmas, skirtas klasifikuoti

I ir II grupiu↪ pacientu↪ EEG pagal diagnoz ↪e. Tai pirmas

mokslinėje literatūroje aprašytas ši↪ uždavini↪ sprendžiantis

algoritmas.

• Genetiniu algoritmu optimizuoti EEG piku↪ paieškos algo-

ritmo, pagri↪sto matematinės morfologijos filtru, parametrai.
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Tai pirmas mokslinėje literatūroje aprašytas minėto algo-

ritmo parametru↪ optimizavimas genetiniu algoritmu.

• Ištirti keli mašinu↪ mokymosi algoritmu↪ EEG piku↪ duomenu↪
charakteringu↪ parametru↪ ǐsskyrimo būdai antrame EEG

klasifikavimo pagal diagnoz ↪e algoritmo žingsnyje.

• Ištirta keliu↪ klasifikatoriu↪, pagri↪stu↪ mašinu↪ mokymusi, veikla

trečiame EEG klasifikavimo pagal diagnoz ↪e algoritmo žing-

snyje, maksimaliai padidinanti klasifikavimo tikslum ↪a ir

kitas svarbias metrikas.

Praktinė rezultatu↪ reikšmė

Sukurtas automatinis algoritmas, leidžiantis klasifikuoti vaiku↪,

kuriems diagnozuota gerybinė epilepsija arba struktūriniai smegenu↪
pažeidimai, EEG. Algoritmo i↪gyvendinimas praktikoje leistu↪ su-

mažinti neteisingu↪ diagnoziu↪ skaičiu↪, gydytojai neurologai galėtu↪
greičiau i↪vertinti pacientu↪ EEG.

Disertacijos ginami teiginiai

• Naudojant disertacijoje pristatomus mašinu↪ mokymosi pa-

grindu veikiančius klasifikavimo algoritmus, I ir II grupiu↪
EEG gali būti klasifikuojamos 75–82 proc. tikslumu.
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• Naudojant EEG piku↪ geometrinius parametrus, geriausia

klasifikavimo kokybė pasiekiama taikant daugiasluoksni↪ per-

ceptron ↪a.

• Naudojant EEG piku↪ signalu↪ atkarpu↪ (kanale, kuriame

aptiktas EEG pikas) masyv ↪a, geriausia klasifikavimo kokybė

pasiekiama taikant labai atsitiktinio medžio klasifikatoriu↪.

• Konvoliucinio neuroninio tinklo ir daugumos balsavimo

pagrindu veikiantis klasifikavimo algoritmas pasižymi ge-

riausiomis klasifikavimo ir panaudojamumo savybėmis, todėl

rekomenduojamas tolesniems tyrimams ir taikytinas prak-

tǐskai.

Rezultatu↪ patvirtinimas

Disertacijos tema paskelbti du straipsniai periodiniuose recenzuo-

jamuose moksliniuose žurnaluose, indeksuojamuose Clarivate Ana-

lytics Web of Knowledge duomenu↪ bazėje. Rezultatai pristatyti

dvejose tarptautinėse ir keturiose nacionalinėse mokslinėse kon-

ferencijose, paskelbtos keturios publikacijos disertacijos tema

konferenciju↪ darbuose. Visuose nurodytuose straipsniuose ir

konferenciju↪ pranešimuose disertacijos autorius buvo pranešėjas

ir pagrindinis straipsnio autorius.
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Išvados

1. EEG gali būti klasifikuojamos taikant klasifikavimo pagal

diagnoz ↪e (I ir II grupiu↪) algoritm ↪a, naudojanti↪ geometrinius

piku↪ parametrus 75 proc. tikslumu (su EEG, turinčiomis

100 piku↪). Šiam tikslui pasiekti tinkamiausias MLP klasi-

fikatorius.

2. EEG gali būti klasifikuojamos pagal diagnoz ↪e (I ir II grupiu↪)

su labai atsitiktinio medžio metodu pagri↪stu EEG klasi-

fikatoriumi, klasifikuojančiu pagal EEG signalu↪ atkarpas,

naudojančiu kanalo, kuriame aptiktas pikas, duomenis

82 proc. tikslumu (su EEG, turinčiomis 100 piku↪).

3. EEG gali būti klasifikuojamos pagal diagnoz ↪e (I ir II grupiu↪)

su CNN ir daugumos balsavimo klasifikatoriumi, naudojančiu

visu↪ EEG kanalu↪ duomenis 80 proc. tikslumu arba 82 proc.

tikslumu, jeigu klasifikuojamos EEG, turinčios bent 100

piku↪. Šis algoritmas laikytinas geriausiu ǐs pasiūlytu↪ dėl

turimu↪ pranašumu↪: 1) gali klasifikuoti EEG, turinčias ne-

apibrėžt ↪a piku↪ kieki↪ (skirtingai nuo kitu↪ algoritmu↪, kurie

buvo testuojami su EEG, turinčiomis po 100 piku↪), nereikia

ǐs naujo mokyti klasifikatoriu↪, 2) nagrinėjant EEG, turinčias

100 ar daugiau piku↪, pasiekia ne blogesni↪ tikslum ↪a negu kiti

pasiūlyti algoritmai.

4. Visi rekomenduotini EEG klasifikavimo pagal diagnoz ↪e algo-

ritmo variantai yra jautrūs EEG piku↪ skaičiui, todėl, siekiant
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kuo tikslesnio EEG klasifikavimo pagal diagnoz ↪e rezultato,

esant galimybei, reikėtu↪ naudoti EEG, turinčias kuo daugiau

piku↪.
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8 SUMMARY

Automatic algorithm for electroencephalogram (EEG) classifica-

tion by diagnosis: benign childhood epilepsy with centrotemporal

spikes (rolandic epilepsy) (Group I) and structural focal epilepsy

(Group II) are presented in this thesis. Manual classification of

these groups is sometimes difficult, especially when no clinical

record is available, thus presenting the need for an algorithm for

automatic classification. A few possible classification by diagnosis

algorithm versions are proposed in this thesis: 1) geometric EEG

spike parameter and feed-forward multilayer perceptron (MLP)

based classifier achieving 75% classification accuracy; 2) extremely

randomized tree based algorithm using signal in channel where

EEG spikes are classifying 82% accuracy; and 3) convolutional

neural network (CNN) and majority rule classifier based algorithm

achieving 80% accuracy, or 82% if only EEGs with 100 or more

spikes are classified.
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