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Abstract
Eye trackers are sometimes used to study the miniature eye movements such as drift that occur while observers fixate a static
location on a screen. Specifically, analysis of such eye-tracking data can be performed by examining the temporal spectrum
composition of the recorded gaze position signal, allowing to assess its color. However, not only rotations of the eyeball
but also filters in the eye tracker may affect the signal’s spectral color. Here, we therefore ask whether colored, as opposed
to white, signal dynamics in eye-tracking recordings reflect fixational eye movements, or whether they are instead largely
due to filters. We recorded gaze position data with five eye trackers from four pairs of human eyes performing fixation
sequences, and also from artificial eyes. We examined the spectral color of the gaze position signals produced by the eye
trackers, both with their filters switched on, and for unfiltered data. We found that while filtered data recorded from both
human and artificial eyes were colored for all eye trackers, for most eye trackers the signal was white when examining both
unfiltered human and unfiltered artificial eye data. These results suggest that color in the eye-movement recordings was due
to filters for all eye trackers except the most precise eye tracker where it may partly reflect fixational eye movements. As
such, researchers studying fixational eye movements should be careful to examine the properties of the filters in their eye
tracker to ensure they are studying eyeball rotation and not filter properties.
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Introduction

When humans fixate a static object to stabilize its retinal
image (see Hessels et al., 2018), their eyes still make small
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movements (Ratliff & Riggs, 1950; Ditchburn & Ginsborg,
1953; Collewijn & Kowler, 2008)—termed fixational eye
movements. These consist of microsaccades, fixational
drift, and tremor (Martinez-Conde et al., 2004; Rolfs, 2009;
Rucci & Poletti, 2015). In recent years, the study of
these fixational eye movements has elucidated their myriad
functional and perceptual consequences (e.g., Ditchburn
et al., 1959; Kuang et al., 2012; Rucci et al., 2018;
Engbert 2006; Martinez-Conde et al., 2013).

Figure 1 shows two example segments of eye-tracking
data during fixations. In this figure, the recorded gaze position
signal during the fixations appears unstable despite the parti-
cipant attempting to keep their gaze stable at a certain loca-
tion on the screen. In eye-movement data, these fluctuations
are thought to arise from at least two sources, 1) the mea-
surement device, and 2) rotations of the eyeball itself—the
fixational eye movements. In this paper, we will refer to these
two signal components as measurement noise and fixational
eye movements, respectively. While the fixational eye move
ments are of interest to some researchers, the measurement
noise originating from the eye tracker is a potential problem,
as it may obscure eye movements of interest.
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Fig. 1 Gaze position data example. Example segments showing gaze
position signals recorded at 1000 Hz during two fixations from two
different participants with an SR EyeLink 1000 Plus, with its filters
either turned on or turned off. The sudden changes in gaze position
at 1250 ms and 1500 ms in both signals are likely microsaccades,
whereas drift is visible throughout most of the rest of the signals

Researchers interested in fixational eye movements such
as microsaccades and drift should ensure that the magnitude
of measurement noise in their eye-tracker’s output is
sufficiently low so as to not obscure these eye movements
(Ko et al., 2016). For this reason, such research is usually
conducted with the video-based eye trackers that provide
the lowest noise levels in their class such as the various SR-
Research EyeLinks (e.g., Engbert & Mergenthaler, 2006;
Scholes et al., 2015; Nyström et al., 2017) and recently the
Tobii Spectrum (Nyström et al., in press). Note also that
it has recently been questioned whether video-based eye
trackers are suitable for microsaccade research (Holmqvist
& Blignaut, 2020). Other researchers interested in fixational
eye movements use different measurement techniques that
provide even better data quality (lower measurement noise
levels), such as Dual-Purkinje eye trackers (Kuang et al.,
2012; Horowitz et al., 2007), scleral search coils (McCamy
et al., 2015; Ko et al., 2016) and various scanning laser
opthalmoscopes (Stevenson et al., 2010; Sheehy et al., 2012;
Bowers et al., 2019).

Even with these best-available video-based eye trackers,
it is not straightforward to determine what the source of
the fluctuations in the eye movement signal is because
the eye movements of interest to fixational eye-movement
researchers can have magnitudes close to, or even below,
the noise floor of the eye tracker. One may therefore
resort to knowledge about the dynamics of physiological
movements and measurement noise to characterize the
content and possible origin of a gaze position signal (e.g.,
Findlay 1971; Eizenman et al., 1985; Coey et al., 2012;
Bowers et al., 2019). While formal analyses of the dynamics
of the gaze position signal usually examine its spectral
composition (ibid), we think there is value in training the

scientist’s visual pattern recognizer to discriminate between
the different types of signals. Here we will therefore first
examine a set of example gaze position signals collected
from human and artificial eyes, before introducing the
analysis techniques that will be used in this paper.

Oculomotor drift

Different signal dynamics are readily seen when examining
gaze position data recorded from humans (Fig. 2a) or
from artificial eyes (Fig. 2b). While some eye trackers
produce data that show large sample-to-sample steps and
look essentially randomly distributed around a central point
(Tobii TX300), data from other eye trackers (SR EyeLink
1000 Plus and SMI RED250) show smoother trends that
appear more similar to a random walk (see also Blignaut
& Beelders, 2012, who provide the visual diagnosis that
these smooth gaze position signals look like “ant trails”).
Since oculomotor drift looks like the smoother signals in
Fig. 2 (e.g., Ko et al., 2016; and Engbert et al., 2011),
when seeing such signals in the eye tracker with the lowest
noise magnitude among the three shown in the plot (the
SR EyeLink 1000 Plus), it is tempting to conclude that this
eye tracker has a low enough noise magnitude to render
oculomotor drift visible in the gaze position signal. That
these smooth signals are not visible in an eye tracker with
higher noise magnitude, the Tobii TX 300, may be thought
to strengthen this conclusion.

However, as Blignaut and Beelders (2012; see also Bedell
& Stevenson, 2013) already warned, caution is warranted
in drawing such conclusions, as smooth gaze position
signals could also be produced by noise suppression systems
such as filters in the eye tracker’s software or hardware.
This call for cautious interpretation receives further weight
from finding such smooth signals also in another tracker
than the EyeLink, viz. the SMI RED250. As the SMI
RED250’s noise magnitude is at least as large as that of the
Tobii TX300, it should be wondered whether the smooth
gaze position signals produced by this eye tracker reflect
fixational eye movements.

Moreover, as seen in Fig. 2b, these smooth signals also
exist in data recorded with static artificial eyes on both
the low-noise EyeLink and the higher-noise SMI RED250.
During these recordings, we took care to ensure that any
physical movement of these artificial eyes relative to the
eye tracker (e.g., due to vibrations of the table on which
the eye tracker was placed) was likely well below the noise
floor of the eye trackers and thus undetectable in the eye
trackers’ output. As such, smooth gaze position signals in
these recordings could not be due to any physical movement
of the tracked artificial eyes. That smooth gaze position
signals which appear similar to those recorded from human
eyes (if at smaller magnitude) are nonetheless seen in these
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Fig. 2 Gaze position data examples. For three trackers, example 200-
ms segments from five fixations recorded from humans (left) and
example 200-ms segments of data recorded with an artificial eye
(right). Compared to the 300-Hz Tobii data in the middle row, the
1000-Hz EyeLink and 250-Hz SMI data in the top and bottom rows
look smoother. Note that the scale at which data is visualized differs

for each eye tracker and panel to make differences between the signals
easier to see. The scale of the signals is therefore indicated for each
eye tracker’s data. Note also that the scale of the data recorded from
human eyes is about three times larger than that for the data recorded
from artificial eyes

recordings therefore adds further support to the idea that
finding smooth gaze position signals in an eye tracker’s
output does not necessarily entail that oculomotor drift is
being measured. Instead, the smoothness may be due to
filters in the eye tracker. These inconsistencies between
eye trackers in whether recorded gaze position signals are
smooth or not highlight that it is important to uncover
whether the smooth signals reflect true rotations of the eye
or whether these signals are artifactually generated by filters
in the eye tracker.

Spectral analyses

As discussed, gaze position signals can range from smooth
to spiky in appearance. These smooth and spiky gaze
position signal types in fact lie along a continuum that can
be described by a single parameter, the spectral color of the
signal. The spectral color of a signal is a description of the
power in the signal at different temporal frequencies. There
is a long history of applying frequency analyses to eye-
tracking data in general (e.g., Stark et al., 1961; Campbell
et al., 1959; Bahill et al., 1981) and for fixational eye
movements in specific (e.g., Findlay, 1971; Eizenman et al.,
1985; Stevenson et al., 2010; Coey et al., 2012; Sheehy et
al., 2012; Ko et al., 2016; Bowers et al., 2019). Here, we will
provide a brief discussion of how the spectral color of gaze
position signals is interpreted; for a more detailed discussion
of spectral analyses of eye-tracking data, see Niehorster
et al. (2020c).

As an example, the temporal spectral decomposition of
the gaze position signals of Fig. 1 is shown in Fig. 3.

Specifically, Fig. 3 shows amplitude spectra, allowing to
directly read off the amplitude of gaze movement at a given
frequency. As can be seen, for the fixation recorded with
the EyeLink’s filter switched off (yellow line), the spectrum
appears to consist of two distinct segments, i.e., a segment
at the lower frequencies that slopes downward and after
approximately 100 Hz, a flattened out segment. Both the
slopes in the amplitude spectrum and the location of the
flattening-out are consistent with the above-cited literature.

In the literature, the downward-sloping segment is often
interpreted as due to fixational eye movements. A signal
with a straight-line downward slope as spectrum is said to
exhibit 1/f dynamics, because the shape of the spectrum is

Fig. 3 Amplitude spectrum example. Amplitude spectra for the
fixational eye movement traces shown in Fig. 1, computed using the
multitaper method (Thomson, 1982; Babadi & Brown, 2014). These
data were recorded with an SR EyeLink 1000 Plus at 1000 Hz, with its
filters either turned on or turned off



Behav Res

characterized by the equation 1/f α . Here, f is frequency
and α is a scaling exponent reflecting the slope of the line,
which characterizes the scaling of the signal’s power with
frequency. In this case, the power spectral slope of this
segment is close to 6 dB/octave (i.e., 1/f 2), and reflects
a signal that looks smooth. Such scaling is what would
be expected for the random walk-like nature of ocular
drift (Cornsweet, 1956; Findlay, 1971; Burak et al., 2010;
Engbert et al., 2011; Nyström et al., in press).

Such signals with non-zero spectral slope are referred
to as “colored”. In contrast to this colored segment of
the power spectrum stands the flat segment observed at
higher frequencies (Fig. 3). Such flat power spectra where
signal power is constant over frequency are called white
signals, and appear random and more spiky. For eye-
tracking signals, such signal dynamics are often attributed
to measurement noise. Since fixational eye movements have
a bandwidth of up to about 100 Hz (e.g., Findlay, 1971;
Ko et al., 2016; Bowers et al., 2019), it is expected
that the spectrum at higher frequencies only reflects such
measurement noise. Note that if the measurement noise
of an eye tracker is too large, it will drown out the 1/f

component of the gaze position signal that is due to fixatio-
nal eye movements, indicating that the eye tracker is not
sensitive enough to measure the eye movements of interest.

An understanding of the noise characteristics of the mea-
surement device is critical when studying gaze dynamics
by means of examinations of signal color because it must
be ascertained that the source of the 1/f dynamics in the
gaze position signals is due to the participant’s eye move-
ments and neither the measurement noise produced by the
eye tracker nor a filter in the eye tracker. As can be seen by
contrasting the two spectra in Fig. 3, the filters of the Eye-
Link strongly change the shape of the measurement noise
part of the signal’s spectrum (i.e., beyond 100 Hz). Indeed,
while measurement noise in an eye tracker is likely white if
each output sample is processed independently, 1/f power
law behavior in the signal can be introduced not only due
to the dynamics of a rotating human eye but also by apply-
ing temporal filters to the recorded gaze signals. This was,
for instance, shown by Coey et al. (2012), who recorded an
artificial eye (thus exhibiting no fixational eye movements)
with an eye tracker and examined the color of the resulting
gaze position signal. They reported that the signal in their
ASL eye tracker was indeed white, as would be expected for
measurement noise, when the eye tracker’s averaging filter
was switched off, while switching on this noise suppression
system yielded colored gaze position signals.

Wang et al. (2016) have extended Coey et al.’s (2012)
results to 12 further eye trackers, and report white signals
reflecting measurement noise when recording from artificial
eyes for each of the systems they examined. These results

of Wang et al. (2016), however, appear inconsistent with a
report by Blignaut and Beelders (2012), who have examined
two eye trackers that were also reported on by Wang et al.
(2016). Blignaut and Beelders (2012) found that one of the
two eye trackers exhibited the kind of smooth traces that
characterize colored signals, even when recording from an
artificial eye. Although Blignaut and Beelders (2012) did
not perform frequency analyses, their findings suggest that
eye trackers may produce gaze position signals that exhibit
1/f dynamics even in the absence of any physical eye
movement, which is at odds with the findings of Wang et al.
(2016), but consistent with those of Coey et al. (2012).

Aims of this paper

Here we examine whether color (visually identified as
smooth gaze position signals) in the output of an eye tracker
reflects fixational eye movements or whether these signals
are instead due to filters in the eye tracker. For this purpose,
the spectral composition of gaze position signals obtained
from human and artificial eye recordings made with five
video-based eye trackers is analyzed.

We posit the following two models for the origin of
colored signal dynamics in eye tracker data. First, Wang
et al. (2016) reported that data recorded with artificial eyes
are always white, while data recorded from humans are
always colored. Based on this observation, they speculated
that the color in human eye-tracking data originates from
fixational eye movements. We will refer to this statement as
the oculomotor hypothesis.

The second hypothesis, the filter hypothesis, states
that the color in eye-tracker data is due to temporal
filters in the eye tracker hardware or software. The filter
hypothesis offers an explanation for why data recorded from
artificial eyes can also appear smooth (cf. Blignaut and
Beelders, 2012 and Fig. 2 above) and exhibit color (cf. Coey
et al., 2012).

Under these hypotheses, we may predict the following
outcomes for our measurements. To generate these predic-
tions, we assume that unfiltered measurement noise is white
(see, e.g., Coey et al., 2012; Wang et al., 2016), which is
also borne out by the results reported below. Table 1 summa-
rizes the predicted results under the two hypotheses. First,
under the oculomotor hypothesis, as reported above, we
would predict that all signals recorded from human eyes are
colored, while all signals recorded from artificial eyes are
white. In contrast, under the filter hypothesis, data recorded
with artificial eyes are white at the early processing stages
(e.g., determining the location of the pupil and corneal
reflection features, as well as gaze estimation), but become
colored in later stages of gaze signal processing through the
application of filters. In the case of the filter hypothesis, a
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Table 1 Expected results under the oculomotor and filter hypotheses
in terms of signal color as denoted by the signal’s power spectrum
slope α (white or

Human data Artificial eye data

Oculomotor hypothesis

Filtered white (α = 0)

Unfiltered white (α = 0)

Filter hypothesis

Filtered

Unfiltered white† (α = 0) white (α = 0)

*If the measurement noise magnitude of the eye tracker is large,
white signals may be found in human unfiltered data. †If the
measurement noise magnitude of the eye tracker is low enough, some

signals may be found in human unfiltered data.

similarly colored signal is thus expected for data recorded
from human and artificial eyes.

Note, however, that the outcomes of our measurements
may not conform strictly to one of these hypotheses.
Specifically, if the magnitude of measurement noise of
an eye tracker is much larger than that of fixational eye
movements, we may expect to find that human unfiltered
eye-tracker data is white also under the oculomotor
hypothesis. Conversely, under the filter hypothesis, if
the measurement noise magnitude of an eye tracker is
sufficiently small so as to render some fixational eye
movements detectable in its signal, the unfiltered signal can
also be expected to exhibit color when recording from a
human. Signal color in this case may however reflect not
only fixational eye movements but could also arise due to,
for instance, incomplete compensation for head movement,
or deviations in the gaze position signal caused by changes
in pupil size (Wyatt, 2010; Drewes et al., 2012; Drewes
et al., 2014; Choe et al., 2016; Hooge et al., 2019).

Some of this material has previously been presented in
Holmqvist and Andersson (2017 pp. 179–182). Furthermore,
the data analyzed in this paper are also used for parallel analy-
ses in Niehorster et al. (2020c), which provides an overview
of various measures for characterizing eye-tracking signals,
and investigates how these measures relate to the slope of
the signal’s power spectrum α used in this paper.

Method

Participants and artificial eye

Human data were acquired from three volunteers and author
DN, yielding data from a total of eight eyes. One participant
wore glasses, three did not. The participants provided
informed consent.

We also recorded data from a set of artificial eyes
provided by SMI GmbH. The same set was previously used
by Wang et al. (2016).

Apparatus

Gaze position signals were recorded on five eye trackers:
the SR Research EyeLink 1000 Plus in desktop mount
and head stabilized mode at 1000 Hz, the SMI RED250
at 250 Hz, the SMI RED-m at 120 Hz, the Tobii TX300
at 300 Hz, and the Tobii X2-60 at 60 Hz. Recordings
were performed with the default settings of the eye
trackers, i.e., any filters were left on if they would
be on by default. Recordings with the EyeLink were
controlled by the EyeLink Toolbox (Cornelissen, Peters
& Palmer, 2002), the SMIs with an early version of
SMITE (Niehorster & Nyström, 2020b) and the Tobiis
with an early version of Titta (Niehorster, Andersson &
Nyström, 2020a). For the EyeLink 1000 Plus, we have made
additional recordings with its heuristic filter switched off.
For the SMI RED-m, the default setting to average the gaze
position data for the two eyes was switched off to yield
separate signals for each eye. Viewing distance was appro-
ximately 65 cm. Participants were unconstrained, except for
the Eyelink, where chin and forehead rests were used.

Stimuli and procedure

After a default calibration (i.e., the default number
of calibration points for the system in their default
configuration) as was appropriate for the specific eye tracker
and setup, we had participants look at a further series
of points on the monitor. These points (a 1.6-cm-wide
black circle overlaid with a white cross and a 0.3-cm-wide
centered black circle, following Thaler et al., 2013) were
distributed in a 4 x 8 rectangular grid. Further points were
placed on a 3 x 7 rectangular grid such that they were at the
centers of the cells defined by the 4 x 8 grid. This leads to a
total of 53 points (see Fig. 4). To avoid differences between
eye trackers due to the different screen sizes used, for all
eye trackers this grid spanned (horizontally and vertically)
45.5 x 26.8 cm. After fixating the center of the screen, the
fixation points were presented for 1500 ms each in a random
sequence containing each location four times, yielding a
total of 213 presented points in a session.

For recordings with artificial eyes, an experimenter
first calibrated the eye tracker. The pair of artificial eyes,
mounted on a heavy tripod at 6-cm separation from
each other, was then positioned at the location where the
experimenter’s eyes were during calibration. After a brief
resting period, data recording was then started and ran for
19 s while the experimenter left the room. This procedure
followed established practice in the field (e.g., Coey et al.,
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Fig. 4 Fixation target locations. The 53 fixation targets were laid out
on a 4 x 8 rectangular grid, with another 3 x 7 rectangular grid placed
on top such that its points coincided with the centers of the cells formed
by the 4 x 8 grid.

2012; Wang et al., 2016; Holmqvist and Blignaut, 2020) and
was required because not all the eye trackers would deliver
data without a prior calibration, and we did not have a way
to perform a calibration using the artificial eyes themselves.

Analysis

Window selection

To test our hypothesis, we had to compute the slope of
the power spectrum of the gaze position signal during each
fixation. To be able to compute this for each fixation point,
we first had to select a time window of data points to
analyze. To do so, we developed a window selection method
that aims to place the window we take data from as close to
the presented fixation point as possible. Ideally, the method
should not rely on any measure of fixational stability so as
not to bias the signal’s spectrum. It should also not rely on a
fixation classification algorithm, as we could not guarantee
that any of the known algorithms is sufficiently reliable
in producing comparable windows across the large range
of sampling frequencies and noise magnitudes of the eye
trackers employed in this examination. The procedure to
select a data window for each presented fixation point was
as follows. A 200-ms window (Hooge et al., 2017) slid over
a section of data ranging from 200 ms after fixation point
onset until fixation point offset. To exclude windows that
likely contained a (micro-)saccade, we then performed the
following procedure. For each possible window position,
the dispersion of the samples in the window,
√

(max(x) − min(x))2 + (max(y) − min(y))2 (1)

was calculated. For each fixation, we then excluded half of
the candidate window positions, i.e., those that yielded the
50% largest dispersion values, from further consideration.
For the remaining window positions, the average gaze

position during the window was calculated. The window
for which the average gaze position was closest in space
to the fixation point was selected as the window for which
the spectrum was analyzed. For the data recorded from
the artificial eyes, measures were calculated for a 200-ms
window that was moved across the entire recording in 50-ms
steps.

As we are not interested in the eye movements of the
participant but in the gaze position signals, we treated
each eye independently. The below analyses thus report
results for eight eyes. “Eye” in the below text refers to
one of these unique eyes. The above window selection
method was executed separately for the data from each
eye. No differences between data from the participants’
dominant and non-dominant eyes were found (all p values
of dependent samples t tests > 0.91).

Amplitude spectra

Amplitude spectra for the gaze position signals of each
eye were separately computed for the horizontal and
vertical channels using the function periodogram from the
MATLAB (Natick, MA, USA) Signal Processing Toolbox,
with the default rectangular window. The output of this
function is a power spectrum. To create amplitude spectra,
the square root of the power spectra was computed.

The slope of the power spectrum (scaling exponent α)
was determined by fitting a line in log-log space to the
power spectrum using the MATLAB function polyfit. Note
that although slightly uneven inter-sample intervals were
reported in the data for some of the eye trackers, possibly
due to variations in camera framerate or jitter in software
timestamps (standard deviations of the human data’s inter-
sample interval [ISI] as reported by the eye trackers were
0, 0.74, 9.98, 1.15, and 1.89% of the nominal ISI of,
respectively, the SR EyeLink 1000 Plus, SMI RED250, SMI
RED-m, Tobii TX300, and Tobii X2-60), we found the same
results when using the Lomb–Scargle periodogram method
that Wang et al. (2016) recommended be used for unevenly
sampled data. Estimates of α calculated from these two
periodogram methods correlated very highly, R2 > 0.99.

Unfiltered data

Where possible, the analyses in this paper were done both
for gaze position signals recorded with the eye tracker’s
default filters applied, and for data that were recorded with
any configurable filters switched off. For the EyeLink,
besides the set of recordings with its heuristic filter set to its
default level (2, “extra”), we also made recordings with the
heuristic filter switched off for a subset of participants.

The SMI eye trackers tested do not offer the option to
switch off the filters applied to the gaze position signal
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that is provided in screen coordinates. Both SMI eye
trackers, however, also provide a gaze vector in SMI’s
headbox coordinate system in their data files, and we
suspect that no temporal filters are applied to these data
during gaze estimation (our analyses below corroborate
this assumption). To enable analyses of unfiltered SMI
data, we therefore decomposed the gaze vectors for each
eye into Fick angles (Fick, 1854; Haslwanter, 1995), and
then applied the methods described above to calculate the
periodogram and power spectrum slope from the resulting
eye orientation data.

Tobii claims in their product documentation that the
TX300 and X2-60 do not apply any temporal filter to the
recorded gaze position signals and that these machines thus
always deliver unfiltered data. Our analyses below indeed
appear to confirm this claim. As such, for recordings made
with the Tobii eye trackers, we only present analyses of
unfiltered data.

Results

In this result section, we examine plots of the amplitude
spectra of the recorded data. Along with these figures,
we have also listed the corresponding slopes of the power
spectra (scaling exponent α) for the five eye trackers in
Table 2. Scaling exponents for both human data and data
recorded from artificial eyes are listed both with the eye
tracker’s filters switched on where possible, and with the
filters switched off. Furthermore, Table 2 lists both scaling
exponents derived by fitting lines to the entire frequency
range of the power spectrum, and scaling exponents for fits
to only the first 100 Hz of the power spectrum. The latter
fits indicate gaze position signal dynamics in the frequency
range of fixational eye movements (see above).

Data at default settings

Figure 5 shows amplitude spectra derived from gaze position
data from the five eye trackers, with human data presented
in the left column and data recorded from artificial eyes
in the right column. First we examine the two Tobiis, the
TX300, and the X2-60. Note that both eye trackers only
provided unfiltered data, and as such amplitude spectra for
unfiltered data are plotted in Fig. 5. As can be immediately
seen, data for both eye trackers showed amplitude spectra
that are close to flat, corresponding to scaling exponents
that were close to zero (Table 2). This indicates that their
signals are close to white, for both artificial eyes and human
data. Importantly, the spectral slope is the same for both
human and artificial eyes for both eye trackers, even though
the magnitude of variability in the signal—the height of the
amplitude spectrum in the plots—is larger for human data
than for artificial eye data. This finding does not have a
bearing on the oculomotor vs. filter hypothesis discussion
because we cannot exclude the possibility that these two eye
trackers produced a white measurement noise component
that was sufficiently large when recording from human eyes
to drown out possible small fixational eye movements that
may otherwise have been recorded.

At their default setting of providing filtered data, the SMI
eye trackers exhibited a different type of signal than the two
Tobiis. The amplitude spectra for data from the RED-m, and
especially the RED250, showed a clear downward slope.
This corresponded to scaling exponents for filtered data that
were around 1 and 2, for the RED-m and RED250, respec-
tively, for both human data and data recorded from artificial
eyes. This indicates that both eye trackers provide gaze
position signals with significant color and replicates the
report of Blignaut and Beelders (2012) that an SMI RED250
produces smooth data when recording from an artificial eye

Table 2 Power spectrum scaling exponents (α) for filtered and unfiltered human and artificial eye data determined by fitting a line to (left columns)
the entire power spectrum, and (right columns) the first 100 Hz of the power spectrum

Eye tracker Fit to entire power spectrum Fit to first 100 Hz

Filtered Unfiltered Filtered Unfiltered

Human Artificial eye Human Artificial eye Human Artificial eye Human Artificial eye

EyeLink 2.281 2.328 0.544 0.081 1.307 0.466 1.179 0.219

RED250 2.280 2.456 0.903 –0.001 2.353 2.482 1.004 0.006

RED-m 0.886 1.364 0.330 0.210 0.886 1.364 0.330 0.210

TX300 – – 0.280 0.182 – – 0.351 0.224

X2-60 – – 0.382 0.308 – – 0.382 0.308

The power spectrum scaling exponents presented in this table were derived by averaging the exponents for horizontal and vertical gaze position
data. Note that for the Tobii eye trackers, only unfiltered data were available. Note also that as the SMI RED-m and Tobii X2-60 had sampling
frequencies below 200 Hz, fits to their entire spectrum were used for all entries in the table.
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Fig. 5 Amplitude spectrum plots for data recorded at each eye tracker’s default settings from human eyes (left column) and artificial eyes (right
column). Different color lines denote different participants. Solid lines show amplitude spectra derived from horizontal gaze position data, and
dotted lines for vertical gaze position data
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(see also Fig. 2), but is inconsistent with the report of Wang
et al. (2016) that both these SMIs produced white signals
in this case. These data offer a strong contradiction to the
oculomotor hypothesis because the data are not consistent
with the expectation derived from this hypothesis that
recording from artificial eyes should yield white signals.

Finally, the EyeLink 1000 Plus, like the two SMIs,
exhibits a downward slope in the amplitude spectrum,
although at a much lower magnitude than the SMIs. As was
the case for the other four eye trackers, for the EyeLink, the
human data were noisier than the artificial eye data, but not
qualitatively different. When its filters were switched on, the
EyeLink’s data yielded colored signals both when recording
from human eyes and when recording from artificial eyes.
As was the case for the data of the SMI eye trackers, this
finding is in contradiction to the oculomotor hypothesis, and
is inconsistent with the white signals reported by Wang et al.
(2016) for an EyeLink when recording from artificial eyes.

However, while the scaling exponent for the EyeLink
data was very similar for human and artificial eye data
when it was determined from the entire power spectrum
(see Table 2, left columns), the scaling exponent was
much larger for the human data than for the artificial eye
data if it is computed for data only up to 100 Hz (see
Table 2, right columns)—the frequency range of fixational
eye movements. This indicates that the EyeLink’s filter
has a larger effect in the frequency range beyond 100 Hz
than for the first 100 Hz, and interestingly also suggests
that likely at least part of the observed color in the human
data is due to fixational eye movements or artifacts such
as the slow-varying deviations in recorded gaze position
caused by fluctuations in pupil size (Wyatt, 2010; Hooge
et al., 2019), and not only due to the EyeLink’s filter. This
finding may therefore suggest that the noise magnitude in
the EyeLink recordings was low enough to enable recording
some fixational eye movements. Note that the scaling
exponents were very similar for the two frequency ranges
for all the other eye trackers.

In summary, the above analysis shows that for each eye
tracker, the color of the signal varied little between data
recorded from human and artificial eyes. This pattern of
findings across the five eye trackers is inconsistent with
the hypothesis that fixational eye movements are the origin
of colored signals in eye-tracker recordings. If this were
the case, we would have instead expected to see different
signal colors in human and artificial eye data for most eye
trackers and, importantly, that data recorded from artificial
eyes would consistently have exhibited white signals.

Unfiltered data

The observations reported above are consistent with the
filter hypothesis, which states that the color of the signal

and hence the smoothness of its visual appearance derive
from filters applied by the eye tracker. If such filters are
the predominant cause of the colored dynamics observed in
video-based eye-tracker data, it would be expected that the
signal color is similar for both artificial eyes and human
data for each eye tracker, which is what we observed.
Importantly, it would furthermore be expected that the
signal would appear white when such filters are switched
off or when data from an unfiltered stage of the eye tracker’s
gaze estimation pipeline are examined. In order to provide
this further test of the filter hypothesis, next we report on
unfiltered data acquired with the EyeLink and SMI systems.

For the EyeLink 1000 Plus, new recordings were made
with an artificial eye and for two of the participants using
an identical setup and procedure as the previous recordings,
but with its heuristic filter switched off.

Figure 6 presents amplitude spectra of these data, which
can be compared to the top row of Fig. 5 where recordings
made with the filter switched on are presented. As Fig. 6b
clearly shows, unfiltered EyeLink data recorded with an
artificial eye yielded a white signal, in stark contrast to
the colored signal observed when recording with the filter
switched on. Furthermore, in Fig. 6a, it is seen that the
unfiltered human data were also much whiter (flatter slope)
than when recording with the filter switched on. This
shows that the color of the signal recorded from human
eyes with the EyeLink was for an important part due to
its heuristic filter, as expected under the filter hypothesis.
Closer examination of Fig. 6a and comparison with Fig. 5
however allows us to add some nuance to this conclusion.
In this comparison, it is seen that the scaling exponents for
filtered and unfiltered human data when determined over
the first 100 Hz (cf. Table 2) of the signal were nearly
identical. This suggests that the EyeLink’s heuristic filter
essentially acts as a low-pass filter, and has only minimal
effect in the frequency range that contains information about
fixational eye movements, but sharply colors the frequency
range beyond it.

The slight color that remains in Fig. 6a in the human gaze
position signals recorded with the EyeLink after turning
off the heuristic filter is not indicative of further, hidden
filters, because such filters would also have colored the
signal recorded with artificial eyes. We cannot rule out that
the colored signal dynamics may reflect deviations in the
gaze position data due to uncompensated head movements,
but consider this unlikely since the recordings with the
EyeLink were made on experienced participants whose
heads were stabilized on chin and forehead rests, which
would minimize head movements. Instead, the remaining
signal color indicates that the EyeLink’s measurement noise
magnitude is low enough that it may in fact pick up some
fixational eye movements. If so, these constitute mainly drift
as our analysis-window selection procedure should have
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Fig. 6 Amplitude spectra for unfiltered EyeLink 1000 Plus data.
Recordings made with SR EyeLink 1000 Plus with its heuristic filter
turned off and recording from human eyes (left column) and artificial
eyes (right column). Artificial eye data now exhibit a flat amplitude
spectrum (white signal). The slope for data recorded from humans has

become much shallower than when recording with the filter switched
on, as shown in Fig. 5, but still exhibits some color. Different color
lines denote different participants. Solid lines show amplitude spectra
derived from horizontal gaze position data, and dotted lines for vertical
gaze position data

excluded most segments that contained microsaccades. The
significant color in unfiltered human EyeLink data seen
in Fig. 6a when examining the first 100 Hz supports this
interpretation. Alternatively, however, the remaining color
may reflect the slow-varying deviations that artefactually
occur in the recorded gaze position of video-based eye
trackers due to fluctuations in pupil size (e.g., Wyatt 2010;
Hooge et al., 2019).

For the SMI eye trackers, it was not possible to turn off all
filters, but the data files include gaze vector information that
is an intermediate representation of gaze used to determine
gaze position on the screen (see “Unfiltered data” in the
“Method” section above). We posited that these gaze vectors
may have undergone less filtering than the gaze position
data. Figure 7 plots amplitude spectra based on the data
derived from these gaze vectors from the same SMI RED-
m and RED250 recordings as presented in Fig. 5. Indeed,
for all data except the human SMI RED250 data, the
data are now practically white signals, consistent with the
expectation that the gaze vectors in these SMI systems
are unfiltered, and importantly that the color and smooth
appearance of data from these systems is due to filtering of
the gaze position signal provided by these eye trackers. The
human SMI RED250 gaze vector data still exhibit signals
that are clearly more white than the corresponding filtered
human and artificial eye gaze position data. That human
gaze data on the SMI RED250 retains some color when
bypassing its filters suggests that imperfect head-movement
compensation may have caused deviations in the data
(participants were not stabilized on a chin rest in this setup,
which may cause such deviations, cf., Niehorster et al.,
2018), may be due to the pupil-size artifact in gaze data,
or similar as for the EyeLink above indicates that the SMI
RED250 can measure human oculomotor drift. We consider

the latter explanation to be very unlikely given that the
RED250’s noise magnitude is almost an order of magnitude
larger than that of the EyeLink, which would likely render
any fixational eye movements undetectable.

In summary, these further analyses confirm that the
smooth colored signal characteristics seen in artificial eye
data recorded with the EyeLink and SMI systems (cf. Fig. 5)
are due to filters in these eye trackers. For human data,
the results furthermore strongly suggest that filters, and not
fixational eye movements, are the main cause of the color
observed in the gaze position signals provided by these eye
trackers.

Discussion

In this paper, we have reported analyses of the spectral color
observed in gaze position signals recorded with video-based
eye trackers during human fixation episodes and in data
from artificial eyes. Using these data, we examined whether
color in the gaze position signal is likely due to fixational
eye movements of the human participants, or is instead
mostly caused by filters in the eye tracker. Below we discuss
the findings of this investigation, and their implications for
research into fixational eye movements.

Eye-tracking data signal properties and their origin

The findings of this paper support the hypothesis that filters,
and not fixational eye movements, are the main cause of the
color that is frequently observed in the gaze position data of
many video-based eye trackers. The oculomotor hypothesis
holds that colored (smooth-looking) signals would be
observed only in data recorded from human eyes, while data
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Fig. 7 Amplitude spectra for gaze vector data from the SMI eye trackers. As not all filters could be turned off in the SMI RED systems, we instead
analyzed the gaze vector data provided by these eye trackers for both human eyes (left column) and artificial eyes (right column). Except for the
human data recorded on the SMI RED250, all gaze vector data exhibit white signal dynamics. The human gaze vector data on the SMI RED250
nonetheless exhibits amplitude spectra that are much less colored than the filtered gaze position data shown in Fig. 5. Different color lines denote
different participants. Solid lines show amplitude spectra derived from horizontal gaze position data, and dotted lines for vertical gaze position
data

recorded from artificial eyes would be exclusively white
(random). Ascribing to this theory, previous work (Wang
et al., 2016) has interpreted the pink color they observed in
the gaze position data they recorded from human subjects
to be of an oculomotor origin, i.e., microsaccades and drift.
In contrast, our recordings show that for each eye tracker
except the EyeLink, data recorded from human eyes exhibit
the same signal color as data from artificial eyes. Even for
the EyeLink, whether its heuristic filter was enabled or not
caused a much larger change in the color of the recorded
gaze position signals than the difference in color between
recordings made from human and artificial eyes (contrast
the top panels of Fig. 5 with Fig. 6).

As such, across the eye trackers examined in this study,
the main contributor to whether the gaze position signal
exhibited color was found to be whether filters were applied.
This result is consistent with a finding reported by Coey
et al. (2012) that data recorded with an artificial eye were
white when their eye tracker’s averaging filter was switched
off, and colored when it was switched on. Our results are,
however, inconsistent with those of Wang et al. (2016), who
reported that recording from artificial eyes yielded white
signals for all of the eye trackers they examined. As we

have discussed and shown in this paper, the filters found in
the eye trackers we examined (the SMIs and the EyeLink)
necessarily introduce color in the recorded signal. Since it
is, to the best of our knowledge, impossible to switch off
the filters applied to the gaze position output of the SMI
RED250 and RED-m, we find it remarkable that Wang et al.
(2016) report that these SMI eye trackers produce white
signals when recording from an artificial eye1. Our finding
of colored signals in the SMI RED250 is furthermore
consistent with Blignaut and Beelders (2012), who have
previously reported that the SMI RED250 produces smooth-
looking (colored) gaze position signals when recording
from an artificial eye.

Implications for fixational eye-movement research

Our results may have important implications for fixational
eye movement research. First, when viewing visualizations
of recorded eye-tracking data like those presented in the top
and bottom panels of Fig. 2a, it is tempting to interpret the

1For the EyeLink the filter can be switched off, but it is unclear from
the method reported by Wang et al. (2016) whether they have done so.
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smoothly changing signal as being indicative of oculomotor
drift, since it looks like and is statistically similar to a
random walk. Our results, however, should lead to caution
in doing so, since we found that the same kinds of
smoothly changing signals can be created by filtering a
white signal (see also, Niehorster et al., 2020c). Just like
a cautious eye-movement researcher takes care to not infer
why participants, for instance, look in a certain order to
specific points on a stimulus display unless their research
design enables them to do so (e.g., Ballard et al., 1995), care
should also be taken to not read too much into the smoothly
changing eye movement signal.

Second, for the SMI RED250 and RED-m and the Tobii
TX300 and X2-60 eye trackers used in this paper, the
authors deem it very unlikely that their data contain a
recoverable trace of fixational eye movements. Even though
some of these systems provide colored gaze position signals
suggestive of ocular drift, when examining unfiltered data
from these eye trackers, a white signal with a power
spectral density slope close to 0 was found. This suggests
that the noise level in these systems is too high to be
able to resolve fixational eye movements. Although to the
best of our knowledge these four systems have not been
used for fixational eye movement research, our results
do provide a cautionary tale by highlighting that it is
imperative when doing such studies to ensure that the
smooth-looking colored gaze position signals output by the
eye tracker are not created by a filter that is applied to
the eye-tracker data. We further discuss the EyeLink in the
Section “The EyeLink” below.

Third, important open questions regarding the use of
filters in the recording of eye movements remain, especially
as influential work using video-based eye trackers to study
fixational eye movements (e.g., Roberts et al. 2013; Engbert
and Kliegl, 2004; Engbert et al., 2011; Liang et al., 2005)
was performed with the EyeLink’s heuristic filter enabled
(Engbert, pers. comm.; Roberts, pers. comm.).2 To be able
to fully evaluate the work in this field, it is important
to establish to what extent filters such as the EyeLink’s
heuristic filter lift the signal of interest from the background
noise, and to what extent the applied filters instead alter
or even create the signal dynamics of interest. Such an
effort would especially be of interest since others have noted
that the displacements and eye velocities characterizing
fixational eye movements are of similar magnitude as the

2It should be noted that in these works from both the Engbert and the
Roberts labs, heuristic filter level 1 was used, which is a lower level
than the default level 2 that was used in the recordings for the current
study and may thus be expected to influence the recorded signal less.
Furthermore, most studies from the Engbert lab used an EyeLink 2,
which may produce signals with different noise levels and dynamics
than the EyeLink 1000 Plus used for the current study.

noise in video-based eye trackers such as the EyeLink
(Collewijn & Kowler, 2008), which led them to question
their suitability for research into fixational eye movements.
We furthermore call on authors to explicitly state in their
papers which filters were enabled during the gaze-data
recordings, and not only report the filters that were used
during data analysis.

Filters in eye trackers

Since filters have an important impact on the output of
an eye tracker, is it possible to recognize their presence
from an eye-tracker’s data? Luckily, this is a non-issue
for the systems of the three eye-tracker manufacturers
we examined, as they state in their data exports or
communication with customers whether the gaze position
signals provided by their system are filtered or not, even if
they do not make available the exact implementation of their
filters.

It should be noted that the signal type (i.e., whether
a signal is white or colored) can be assessed with both
the scaling exponent α as done in this paper, or even
more straightforwardly using new measures introduced in
the companion paper, (Niehorster et al., 2020c).3 However,
these values by themselves do not provide sufficient
information to determine whether the recorded data from
the eye tracker is filtered. This is because multiple factors
can lead to colored signals, e.g., it can (1) be due to
the application of filters; (2) be due to pupil-size or
participant-movement artefacts; and (3) arise because the
eye tracker’s noise magnitude is low enough that fixational
eye-movements are represented in the gaze position data. In
this study, one of the latter two possibilities was likely the
cause of some of the coloring in the gaze position signal
recorded with the EyeLink system.

When using systems that are too noisy to record
fixational eye movements or when recording from perfectly
stabilized eyes, can examinations of the signal’s dynamics
detect the presence of all types of filters? No, such analysis
only reflects the presence of temporal (anti-)correlations in
the assessed signal and as such is not sensitive to filters that
do not affect the temporal correlation structure of a signal.
This means that, for instance, the downsampling operation
done by the EyeLink 1000 and 1000 Plus when outputting
gaze position signals at 500 Hz or 250 Hz (i.e., recording
at 1000 Hz internally, splitting the signal up in chunks
of two or four samples and then averaging each chunk

3An analysis of the data in this paper that uses these new measures
can be generated using the data and analysis scripts that we have
made public at https://github.com/dcnieho/FixationalNoise data. This
alternative analysis supports the same conclusion as the analysis
presented in this paper.

https://github.com/dcnieho/FixationalNoise_data
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independently)4 cannot be detected, because this operation
does not introduce temporal dependencies between adjacent
samples into the output signal. Furthermore, any other
operation on the signal that does not take the signal’s history
into account cannot be detected by this analysis technique.

The EyeLink

For the EyeLink, our results have consistently suggested
that its noise magnitude is low enough that it may be
possible to record fixational eye movements (drift) with this
device. Most telling is that the power spectral density of
unfiltered EyeLink data has a significant slope up to 100
Hz (Fig. 6a, Table 2), which suggests that the recorded
signal may be of biological origin (e.g., Findlay, 1971).
However, caution in making this interpretation is required,
because it is possible that the 1/f α characteristics of the
signal output by the eye tracker originate from other sources
than physical eyeball rotation. A possible alternative cause
is the artefactual changes of the recorded gaze direction
due to continuous changes in pupil size (Wyatt, 2010;
Drewes et al., 2012; Drewes et al., 2014; Choe et al.,
2016; Hooge et al., 2019). This artifact causes deviations
in the gaze position signal that can be up to several
degrees in size, which is an order of magnitude larger
than ocular drift is thought to be (e.g., Ko et al., 2016),
and may thus be resolvable above the system noise ceiling
much more easily. The amplitude spectra of the EyeLink’s
pupil size data (available by running the analyses placed
online at https://github.com/dcnieho/FixationalNoise data)
were qualitatively similar to those reported in Figs. 5 and 6,
lending some support to this idea. It is, however, possible
to use calibration procedures to reduce the effect of pupil
size changes on the gaze position signal (Merchant et al.,
1974; Drewes et al., 2012). Future research could employ
such techniques to resolve whether artefacts due to changing
pupil size are an important driver of the intrafixational drift
movements recorded with the EyeLink.
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