Joint universality of periodic zeta-functions with multiplicative coefficients

Antanas Laurinčikas ${ }^{\text {a, }}$, Monika Tekoré ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Mathematics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania antanas.laurincikas@mif.vu.lt
${ }^{\mathrm{b}}$ Institute of Regional Development, Šiauliai University, P. Višinskio str. 25, LT-76351 Šiauliai, Lithuania
MatM18_Monika_Tekore@stud.su.lt

Received: October 23, 2019 / Revised: April 16, 2020 / Published online: September 1, 2020

Abstract

The periodic zeta-function is defined by the ordinary Dirichlet series with periodic coefficients. In the paper, joint universality theorems on the approximation of a collection of analytic functions by nonlinear shifts of periodic zeta-functions with multiplicative coefficients are obtained. These theorems do not use any independence hypotheses on the coefficients of zeta-functions.

Keywords: joint universality, periodic zeta-function, space of analytic functions, weak convergence.

1 Introduction

After a famous Voronin's work [27], it is known that the majority of classical zeta- and L-functions have the universality property, i.e., they approximate wide classes of analytic functions. Voronin obtained the universality property for the Riemann zeta-function

$$
\zeta(s)=\sum_{m=1}^{\infty} \frac{1}{m^{s}}, \quad s=\sigma+\mathrm{i} t, \sigma>1
$$

which has meromorphic continuation to the whole complex plane with unique simple pole at the point $s=1$ with residue 1 . Let $D=\{s \in \mathbb{C}: 1 / 2<\sigma<1\}$. Voronin considered approximation of analytic functions defined on D by shifts $\zeta(s+\mathrm{i} \tau), \tau \in \mathbb{R}$. For the last version of the Voronin universality theorem, it is convenient to use the following notation. Denote by \mathcal{K} the class of compact subsets of the strip D with connected complements,

[^0]and by $H_{0}(K)$ with $K \in \mathcal{K}$ the class of continuous nonvanishing functions on K that are analytic in the interior of K. Moreover, let meas A stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then the Voronin theorem asserts that if $K \in \mathcal{K}$ and $f(s) \in$ $H_{0}(K)$, then, for every $\varepsilon>0$,
$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \operatorname{meas}\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+\mathrm{i} \tau)-f(s)|<\varepsilon\right\}>0
$$

A proof of the above statement by different methods is given in [1,6], see also [13,25].
A similar assertion is obtained for Dirichlet L-functions [1,6,11,27]

$$
L(s, \chi)=\sum_{m=1}^{\infty} \frac{\chi(m)}{m^{s}}, \quad \sigma>1
$$

where χ is a Dirichlet character.
More general there are zeta-functions attached to certain cusp forms F

$$
\zeta(s, F)=\sum_{m=1}^{\infty} \frac{c(m)}{m^{s}}, \quad \sigma>\frac{\kappa+1}{2}
$$

where $c(m)$ are Fourier coefficients of the form F, and κ denotes the weight of F. Also, the functions $\zeta(s, F)$ has analytic continuation to an entire function. The universality for $\zeta(s, F)$ with normalized Hecke eigen cusp forms was obtained in [19].

The above mentioned zeta-functions have a one common feature, they have the Euler product over prime numbers. For example,

$$
\zeta(s, F)=\prod_{p}\left(1-\frac{\alpha(p)}{p^{s}}\right)^{-1}\left(1-\frac{\beta(p)}{p^{s}}\right)^{-1}
$$

where $\alpha(p)$ and $\beta(p)$ are conjugate complex numbers such that $c(p)=\alpha(p)+\beta(p)$, and p denotes a prime number.

A nonclassical generalization of the functions $\zeta(s)$ and $L(s, \chi)$ is the so-called periodic zeta-function with multiplicative coefficients. Let $\mathfrak{a}=\left\{a_{m}: m \in \mathbb{N}\right\}$ be a periodic sequence of complex numbers with minimal period $q \in \mathbb{N}$. Obviously, there exists a constant $c=c(\mathfrak{a})>0$ such that $\left|a_{m}\right| \leqslant c$ for all $m \in \mathbb{N}$. The periodic zeta-function $\zeta(s ; \mathfrak{a})$ is defined by the Dirichlet series

$$
\zeta(s ; \mathfrak{a})=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}},
$$

which is absolutely convergent for $\sigma>1$.
In virtue of the periodicity of \mathfrak{a}, the equality

$$
\begin{equation*}
\zeta(s ; \mathfrak{a})=\frac{1}{q^{s}} \sum_{l=1}^{q} a_{l} \zeta\left(s, \frac{l}{q}\right) \tag{1}
\end{equation*}
$$

holds, where $\zeta(s, \alpha)$ is the classical Hurwitz zeta-function with parameter $0<\alpha \leqslant 1$ that has, as $\zeta(s)$, meromorphic continuation to the whole complex plane with unique simple pole at the point $s=1$ with residue 1 . Thus, the function $\zeta(s ; \mathfrak{a})$ can be analytically continued to the whole complex plane, except for a simple pole at the point $s=1$ with residue

$$
r_{\mathfrak{a}} \stackrel{\text { def }}{=} \frac{1}{q} \sum_{l=1}^{q} a_{l} .
$$

If $r_{\mathfrak{a}}=0$, then $\zeta(s ; \mathfrak{a})$ is an entire function.
Bagchi obtained [1] the universality of the function

$$
\zeta_{1}(s ; \mathfrak{a})=\sum_{\substack{m=1 \\(m, q)=1}}^{\infty} \frac{a_{m}}{m^{s}}, \quad \sigma>1 .
$$

Steuding [24,25] considered the function $\zeta(s ; \mathfrak{a})$ with nonmultiplicative sequence \mathfrak{a} and proved its universality. The paper [20] is devoted to the universality of $\zeta(s ; \mathfrak{a})$ with multiplicative $\mathfrak{a}\left(a_{m n}=a_{m} a_{n}\right.$ for coprimes m and n, and $a_{1}=1$). If the sequence \mathfrak{a} is multiplicative, then the function $\zeta(s ; \mathfrak{a})$ has the Euler product, i.e., for $\sigma>1$,

$$
\zeta(s ; \mathfrak{a})=\prod_{p}\left(1+\sum_{k=1}^{\infty} \frac{a_{p^{k}}}{p^{k s}}\right) .
$$

Kaczorowski [10] introduced new restricted type of universality for $\zeta(s ; \mathfrak{a})$ involving the notion of height of the set K.

Zeta- and L-functions also have a joint universality property. In this case, a collection of analytic functions is approximated simultaneously by a collection of shifts of zeta- or L-functions. The first joint universality results were obtained for Dirichlet L-functions in $[1,2,6,26]$, see also [11, 15, 25]. It is clear that, in the case of joint universality, the approximating shifts must be in some sense independent. In the case of Dirichlet L-functions, the nonequivalence of Dirichlet characters is used (two Dirichlet characters are called equivalent if they are generated by the same primitive characters). The joint universality Voronin theorem [26] says that if $\chi_{1}, \ldots, \chi_{r}$ are pairwise nonequivalent Dirichlet characters, for $j=1, \ldots, r, K_{j} \in \mathcal{K}$ and $f_{j}(s) \in H_{0}\left(K_{j}\right)$, then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \operatorname{meas}\left\{\tau \in[0, T]: \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|L\left(s+\mathrm{i} \tau ; \chi_{j}\right)-f_{j}(s)\right|<\varepsilon\right\}>0
$$

Pańkowski in [23] proposed a new way of joint universality for Dirichlet L-functions by using different shifts for L-functions with arbitrary characters $\chi_{1}, \ldots, \chi_{r}$. Let α_{1}, $\ldots, \alpha_{r} \in \mathbb{R}, a_{1}, \ldots, a_{r} \in \mathbb{R}^{+}$, and b_{1}, \ldots, b_{r} be such that

$$
b_{j} \in \begin{cases}\mathbb{R} & \text { if } a_{j} \notin \mathbb{N} \\ (-\infty, 0] \cup(1+\infty) & \text { if } a_{j} \in \mathbb{N}\end{cases}
$$

and $a_{j} \neq a_{k}$ or $b_{j} \neq b_{k}$ if $k \neq j$. Moreover, let $K \in \mathcal{K}, f_{1}, \ldots, f_{r} \in H_{0}(K)$. Then the Pańkowski theorem asserts that, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[2, T]: \sup _{1 \leqslant j \leqslant r} \sup _{s \in K}\left|L\left(s+\mathrm{i} \alpha_{j} \tau^{a_{j}} \log ^{b_{j}} \tau ; \chi_{j}\right)-f_{j}(s)\right|<\varepsilon\right\}>0
$$

Other joint universality results can be found in the excellent survey paper [21].
The present paper is devoted to the joint universality for periodic zeta-functions. Suppose that, for $j=1, \ldots, r, \mathfrak{a}_{j}=\left\{a_{j m}: m \in \mathbb{N}\right\}$ is a periodic sequence of complex numbers with minimal period $q_{j} \in \mathbb{N}$. Denote by q the least common multiple of the periods q_{1}, \ldots, q_{r}, by $l_{1}, \ldots, l_{r_{1}}\left(r_{1}=\varphi(q)\right.$ is the Euler totient function) the reduced system modulo q, and define the matrix

$$
A=\left(\begin{array}{cccc}
a_{1 l_{1}} & a_{2 l_{1}} & \ldots & a_{r l_{1}} \\
a_{1 l_{2}} & a_{2 l_{2}} & \ldots & a_{r l_{2}} \\
\ldots & \ldots & \ldots & \ldots \\
a_{1 l_{r_{1}}} & a_{2 l_{r_{1}}} & \ldots & a_{r l_{r_{1}}}
\end{array}\right)
$$

Then, in [18], the following joint universality theorem has been proved.
Theorem 1. Suppose that the sequences $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are multiplicative and $\operatorname{rank} A=r$. For $j=1, \ldots, r$, let $K_{j} \in \mathcal{K}$ and $f_{j}(s) \in H_{0}\left(K_{j}\right)$. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \operatorname{meas}\left\{\tau \in[0, T]: \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|\zeta\left(s+\mathrm{i} \tau ; \mathfrak{a}_{j}\right)-f_{j}(s)\right|<\varepsilon\right\}>0
$$

To be precise, in [18], a technical condition

$$
\sum_{k=1}^{\infty} \frac{\left|a_{j p^{k}}\right|}{p^{k / 2}} \leqslant c_{j}<1, \quad j=1, \ldots, r
$$

was required, however, it can be easily removed.
Joint universality of more general collections of zeta-functions was studied in [12, 14, $16,17]$ and $[7-9]$. We note that joint mixed universality theorems imply those for zetafunction with Euler product.

The aim of this paper is to replace the condition rank $A=r$ in Theorem 1 by using more general, nonlinear shifts $\zeta\left(s+\mathrm{i} \gamma_{j}(\tau) ; \mathfrak{a}_{j}\right)$, with some functions $\gamma_{j}(\tau)$. In [18], the linear shifts $\zeta\left(s+\mathrm{i} \tau ; \mathfrak{a}_{j}\right)$ were used. We propose two types of $\gamma_{j}(\tau)$.

Denote by $U_{1}\left(T_{0}\right), T_{0}>0$, the class of real increasing to ∞ continuously differentiable functions $\gamma(\tau)$ with monotonic derivative $\gamma^{\prime}(\tau)$ on $\left[T_{0}, \infty\right)$ such that $\gamma(2 \tau) \times$ $\max _{\tau \leqslant u \leqslant 2 \tau} 1 / \gamma^{\prime}(u) \ll \tau$ as $\tau \rightarrow \infty$.

Theorem 2. Suppose that the sequences $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are multiplicative, a_{1}, \ldots, a_{r} are real algebraic numbers linearly independent over the field of rational numbers \mathbb{Q}, and $\gamma(\tau) \in U_{1}\left(T_{0}\right)$. For $j=1, \ldots, r$, let $K_{j} \in \mathcal{K}$ and $f_{j}(s) \in H_{0}\left(K_{j}\right)$. Then, for every $\varepsilon>0$,
$\liminf _{T \rightarrow \infty} \frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|\zeta\left(s+\mathrm{i} a_{j} \gamma(\tau) ; \mathfrak{a}_{j}\right)-f_{j}(s)\right|<\varepsilon\right\}>0$.

Moreover, the limit

$$
\lim _{T \rightarrow \infty} \frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|\zeta\left(s+\mathrm{i} a_{j} \gamma(\tau) ; \mathfrak{a}_{j}\right)-f_{j}(s)\right|<\varepsilon\right\}>0
$$

exists for all but at most countably many $\varepsilon>0$.
Denote by $U_{r}\left(T_{0}\right)$ the class of real increasing to infinity continuously differentiable functions $\gamma_{1}(\tau), \ldots, \gamma_{r}(\tau)$ on $\left[T_{0}, \infty\right)$ with derivatives $\gamma_{j}^{\prime}(\tau)=\hat{\gamma}_{j}(\tau)(1+o(1))$, where $\hat{\gamma}_{1}(\tau), \ldots, \hat{\gamma}_{r}(\tau)$ are monotonic and are compared in the sense that, for every subset $J \subset$ $\{1, \ldots, r\}, \# J \geqslant 2$, there exists $j_{0}=j_{0}(J)$ such that $\hat{\gamma}_{j}(\tau)=o\left(\hat{\gamma}_{j_{0}}(\tau)\right)$ for $j \in J$, $j \neq j_{0}$, and $\gamma_{j}(2 \tau) \max _{\tau \leqslant u \leqslant 2 \tau} 1 / \hat{\gamma}_{j}(u) \ll \tau, j=1, \ldots, r$, as $\tau \rightarrow \infty$.

Theorem 3. Suppose that the sequences $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are multiplicative, and $\left(\gamma_{1}(\tau), \ldots\right.$, $\left.\gamma_{r}(\tau)\right) \in U_{r}\left(T_{0}\right)$. For $j=1, \ldots, r$, let $K_{j} \in \mathcal{K}$ and $f_{j}(s) \in H_{0}\left(K_{j}\right)$. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|\zeta\left(s+\mathrm{i} \gamma_{j}(\tau) ; \mathfrak{a}_{j}\right)-f_{j}(s)\right|<\varepsilon\right\}>0 .
$$

Moreover, the limit

$$
\lim _{T \rightarrow \infty} \frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|\zeta\left(s+\mathrm{i} \gamma_{j}(\tau) ; \mathfrak{a}_{j}\right)-f_{j}(s)\right|<\varepsilon\right\}>0
$$

exists for all but at most countably many $\varepsilon>0$.
For example, we may take $\underline{a}=\left(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots, \sqrt{p_{r}}\right)$, where p_{r} is the r th prime number, and $\gamma(\tau)=\tau \log \tau, \tau \geqslant 2$, in Theorem 2, and $\gamma_{1}(\tau)=\tau \log \tau, \gamma_{2}=\tau^{2} \log \tau$, $\ldots, \gamma_{r}(\tau)=\tau^{r} \log \tau$ in Theorem 3.

Similar results can be obtained for more general zeta-functions with Euler product, for example, for the Matsumoto zeta-functions.

For the proof of Theorems 2 and 3, we will apply the probabilistic approach based on limit theorems for probability measures in the space of analytic functions. Denote by $\mathcal{B}(\mathbb{X})$ the Borel σ-field of the space \mathbb{X}, by $H(D)$ the space of analytic functions on $D=$ $\{s \in \mathbb{C}: 1 / 2<\sigma<1\}$ endowed with the topology of uniform convergence on compacta, let, for brevity, $\underline{\mathfrak{a}}=\left(\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}\right), \underline{a}=\left(a_{1}, \ldots, a_{r}\right), \underline{\gamma}(\tau)=\left(\gamma_{1}(\tau), \ldots, \gamma_{r}(\tau)\right)$, and

$$
\underline{\zeta}(s ; \underline{\mathfrak{a}})=\left(\zeta\left(s ; \mathfrak{a}_{1}\right), \ldots, \zeta\left(s ; \mathfrak{a}_{r}\right)\right) .
$$

More precisely, we will consider the weak convergence for

$$
P_{T}^{1}(A) \stackrel{\text { def }}{=} \frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}(s+\underline{\mathrm{i}} \underline{a} \gamma(\tau) ; \mathfrak{a}) \in A\right\}, \quad A \in \mathcal{B}\left(H^{r}(D)\right)
$$

and
as $T \rightarrow \infty$.

2 Limit theorems on the torus

Let $\gamma=\{s \in \mathbb{C}:|s|=1\}$ be the unit circle, \mathbb{P} denote the set of all prime numbers, and

$$
\Omega=\prod_{p \in \mathbb{P}} \gamma_{p}
$$

where $\gamma_{p}=\gamma$ for all $p \in \mathbb{P}$. With the product topology and pointwise multiplication, the torus Ω is a compact topological group, therefore on $(\Omega, \mathcal{B}(\Omega))$, the probability Haar measure exists. For the proof of Theorem 1 in [18], a limit theorem for probability measures on $(\Omega, \mathcal{B}(\Omega))$ was applied. In our case, the above theorem is not sufficient. Define,

$$
\underline{\Omega}^{r}=\Omega_{1} \times \cdots \times \Omega_{r},
$$

where $\Omega_{j}=\Omega$ for $j=1, \ldots, r$. Then, again, $\underline{\Omega}^{r}$ is a compact topological group, therefore, on $\left(\underline{\Omega}^{r}, \mathcal{B}\left(\underline{\Omega}^{r}\right)\right)$, the probability Haar measure m_{H}^{r} can be defined. This gives the probability space $\left(\underline{\Omega}^{r}, \mathcal{B}\left(\underline{\Omega}^{r}\right), m_{H}^{r}\right)$. For $A \in \mathcal{B}\left(\underline{\Omega}^{r}\right)$, define

$$
\begin{gathered}
Q_{T}^{1}(A)=\frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]:\left(p^{-\mathrm{i} a_{1} \gamma(\tau)}: p \in \mathbb{P}\right), \ldots,\right. \\
\left.\left(p^{-\mathrm{i} a_{r} \gamma(\tau)}: p \in \mathbb{P}\right) \in A\right\}
\end{gathered}
$$

Lemma 1. Suppose that \underline{a} and $\gamma(\tau)$ satisfy the hypotheses of Theorem 2. Then Q_{T}^{1} converges weakly to the Haar measure m_{H}^{r} as $T \rightarrow \infty$.

Proof. The dual group of $\underline{\Omega}^{r}$ is isomorphic to

$$
\bigoplus_{j=1}^{r} \bigoplus_{p \in \mathbb{P}} \mathbb{Z}_{j p}
$$

where $\mathbb{Z}_{j p}=\mathbb{Z}$ for all $j=1, \ldots, r$ and $p \in \mathbb{P}$. Therefore, the Fourier transform $g_{T}^{1}(\underline{k})$ of $Q_{T}^{1}, \underline{k}=\left(\underline{k}_{1}, \ldots, \underline{k}_{r}\right), \underline{k}_{j}=\left\{k_{j p} \in \mathbb{Z}: p \in \mathbb{P}\right\}$, is of the form

$$
g_{T}^{1}(\underline{k})=\int_{\Omega^{r}} \prod_{j=1}^{r} \prod_{p \in \mathbb{P}}^{*} \omega_{j}^{k_{j p}}(p) \mathrm{d} Q_{T}^{1}
$$

where $\omega_{j}(p)$ is the p th component of an element $\omega_{j} \in \Omega_{j}, p \in \mathbb{P}$, and the star " $*$ " shows that only a finite number of integers $k_{j p}$ are distinct from zero. Hence, by the definition of Q_{T}^{1},

$$
\begin{align*}
g_{T}^{1}(\underline{k}) & =\frac{1}{T-T_{0}} \int_{T_{0}}^{T} \prod_{j=1}^{r} \prod_{p \in \mathbb{P}}^{*} p^{-\mathrm{i} a_{j} \gamma(\tau) k_{j p}} \mathrm{~d} \tau \\
& =\frac{1}{T-T_{0}} \int_{T_{0}}^{T} \exp \left\{-\mathrm{i} \gamma(\tau) \sum_{j=1}^{r} a_{j} \sum_{p \in \mathbb{P}}^{*} k_{j p} \log p\right\} \mathrm{d} \tau . \tag{2}
\end{align*}
$$

Clearly,

$$
\begin{equation*}
g_{T}^{1}((\underline{0}, \ldots, \underline{0}))=1 . \tag{3}
\end{equation*}
$$

Now, suppose that $\underline{k} \neq(\underline{0}, \ldots, \underline{0})$. We have

$$
A_{\underline{k}} \stackrel{\text { def }}{=} \sum_{j=1}^{r} a_{j} \sum_{p \in \mathbb{P}}^{*} k_{j p} \log p=\sum_{p \in \mathbb{P}}^{*} \log p \sum_{j=1}^{r} a_{j} k_{j p} .
$$

Let

$$
p_{\min }=\min _{1 \leqslant j \leqslant r} \min _{p}\left\{p: k_{j p} \in \underline{k}_{j}, k_{j p} \neq 0\right\}
$$

and

$$
p_{\max }=\max _{1 \leqslant j \leqslant r} \max _{p}\left\{p: k_{j p} \in \underline{k}_{j}, k_{j p} \neq 0\right\} .
$$

Then there exists at least one $p \in\left[p_{\min }, p_{\max }\right]$ such that $k_{j p} \neq 0$ for some j, thus, by the linear independence of the numbers a_{1}, \ldots, a_{r},

$$
\beta_{p} \stackrel{\text { def }}{=} \sum_{j=1}^{r} a_{j} k_{j p} \neq 0 .
$$

The numbers β_{p} are algebraic, moreover, it is well known that the set $\{\log p: p \in \mathbb{P}\}$ is linearly independent over \mathbb{Q}. Therefore, by the Baker theorem, see, for example, [3], the form

$$
A_{\underline{k}}=\sum_{p \in \mathbb{P}}^{*} \beta_{p} \log p \neq 0 .
$$

Using the monotonicity of $\gamma^{\prime}(\tau)$ and the mean value theorem, we find by (2)

$$
\begin{equation*}
g_{T}^{1}(\underline{k}) \ll \frac{1}{|A(\underline{k})| T} \max \left(\frac{1}{\gamma^{\prime}(T)}, \frac{1}{\gamma^{\prime}\left(T_{0}\right)}\right) . \tag{4}
\end{equation*}
$$

Since $\gamma(\tau) \in U_{1}\left(T_{0}\right)$, we have $1 / \gamma^{\prime}(T)=o(T)$. This, together with (3) and (4), shows that

$$
\lim _{T \rightarrow \infty} g_{T}^{1}(\underline{k})= \begin{cases}1 & \text { if } \underline{k}=(\underline{0}, \ldots, \underline{0}) \\ 0 & \text { if } \underline{k} \neq(\underline{0}, \ldots, \underline{0}) .\end{cases}
$$

Since the right-hand side of the above equality is the Fourier transform of the Haar measure m_{H}^{r}, the lemma is proved.

For $A \in \mathcal{B}\left(\underline{\Omega}^{r}\right)$, define

$$
Q_{T}^{r}(A)=\frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}(s+\underline{\mathrm{i}} \underline{\gamma}(\tau) ; \underline{\mathfrak{a}}) \in A\right\} .
$$

Lemma 2. Suppose that $\left(\gamma_{1}(\tau), \ldots, \gamma_{r}(\tau)\right) \in U_{r}\left(T_{0}\right)$. Then Q_{T}^{r} converges weakly to the Haar measure m_{H}^{r} as $T \rightarrow \infty$.

Proof. As in the proof of Lemma 1, we consider the Fourier transform of Q_{T}^{r}

$$
\begin{equation*}
g_{T}^{r}(\underline{k})=\frac{1}{T-T_{0}} \int_{T_{0}}^{T} \exp \left\{-\mathrm{i} \sum_{j=1}^{r} \gamma_{j}(\tau) \sum_{p \in \mathbb{P}}^{*} k_{j p} \log p\right\} \mathrm{d} \tau \tag{5}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
g_{T}^{r}((\underline{0}, \ldots, \underline{0}))=1 . \tag{6}
\end{equation*}
$$

Therefore, it remains to consider the case $\underline{k} \neq(\underline{0}, \ldots, \underline{0})$. For brevity, let

$$
b_{j}=\sum_{p \in \mathbb{P}}^{*} k_{j p} \log p
$$

Since, the set $\{\log p: p \in \mathbb{P}\}$ is linearly independent over \mathbb{Q}, we have $b_{j} \neq 0$ for $\underline{k}_{j} \neq \underline{0}$, $j=1, \ldots, r$. Put

$$
A(\tau)=\sum_{j=1}^{r} b_{j} \gamma_{j}(\tau)
$$

Suppose that $\underline{k}_{j} \neq \underline{0}$ for $j \in J \subset\{1, \ldots, r\}, \# J \geqslant 2$. Then there exists $j_{0} \in J$ such that $\hat{\gamma}_{j}(\tau)=o\left(\hat{\gamma}_{j_{0}}(\tau)\right), \tau \rightarrow \infty$, for $j \in J \backslash\left\{j_{0}\right\}$. Therefore,

$$
\begin{gathered}
A^{\prime}(\tau)=\sum_{j \in J} b_{j} \gamma_{j}^{\prime}(\tau)=\sum_{j \in J} b_{j} \hat{\gamma}_{j}(\tau)(1+o(1))=b_{j_{0}} \hat{\gamma}_{j_{0}}(\tau)(1+o(1)) \\
\left(A^{\prime}(\tau)\right)^{-1}=\frac{1}{b_{j_{0}} \hat{\gamma}_{j_{0}}(\tau)(1+o(1))}=\frac{1}{b_{j_{0}} \hat{\gamma}_{j_{0}}(\tau)}(1+o(1))
\end{gathered}
$$

and

$$
\frac{1}{b_{j_{0}} \hat{\gamma}_{j_{0}}(\tau)}=\frac{(A(\tau))^{-1}}{(1+o(1))}=(A(\tau))^{-1}(1+o(1))
$$

as $\tau \rightarrow \infty$. Hence, using the monotonicity of $\hat{\gamma}_{j_{0}}(\tau)$ and the second mean value theorem, we find

$$
\begin{aligned}
\int_{T_{0}}^{T} \cos A(\tau) \mathrm{d} \tau= & \int_{\log T}^{T} \cos A(\tau) \mathrm{d} \tau+O(\log T) \\
= & \int_{\log T}^{T} \frac{1}{A^{\prime}(\tau)} \cos A(\tau) \mathrm{d} A(\tau)+O(\log T) \\
= & \int_{\log T}^{T} \frac{1}{b_{j_{0}} \hat{\gamma}_{j_{0}}(\tau)} \cos A(\tau) \mathrm{d} A(\tau) \\
& +\int_{\log T}^{T} \frac{o(1)}{b_{j_{0}} \hat{\gamma}_{j_{0}}(\tau)} \cos A(\tau) \mathrm{d} A(\tau)+O(\log T)
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{\log T}^{T} \frac{1}{b_{j_{0}} \hat{\gamma}_{j_{0}}(\tau)} \mathrm{d}(\sin A(\tau)) \\
& +\int_{\log T}^{T} \frac{o(1)(1+o(1))}{A^{\prime}(\tau)} \cos A(\tau) \mathrm{d} A(\tau)+O(\log T) \\
= & o(T)+\int_{\log T}^{T} o(1) \cos A(\tau) \mathrm{d} \tau+O(\log T) \\
= & o(T), \quad T \rightarrow \infty
\end{aligned}
$$

because $1 /\left(\hat{\gamma_{0}}(\tau)\right)=o(\tau)$ as $\tau \rightarrow \infty$. By the same lines, we obtain

$$
\int_{T_{0}}^{T} \sin A(\tau) \mathrm{d} \tau=o(T)
$$

This, (6) and (5) show that, for $\underline{k} \neq(\underline{0}, \ldots, \underline{0})$,

$$
\lim _{T \rightarrow \infty} g_{T}^{r}(\underline{k})=0
$$

and the lemma follows from (6) in the same way as Lemma 1, because, in the case $\# J=1, A(\tau)=b_{j} \gamma_{j}(\tau)$ for some j.

3 Case of absolutely convergent series

Lemmas 1 and 2 allow to prove limit theorems in the space $H^{r}(D)$ for measures defined by means of absolutely convergent Dirichlet series.

For fixed $\theta>1 / 2$, and $m, n \in \mathbb{N}$, let $v_{n}(m)=\exp \left\{-(m / n)^{\theta}\right\}$. Define the series

$$
\zeta_{n}\left(s ; \mathfrak{a}_{j}\right)=\sum_{m=1}^{\infty} \frac{a_{j m} v_{n}(m)}{m^{s}}, \quad j=1, \ldots, r
$$

Then, in view of the definition of $v_{n}(m)$, the latter series are absolutely convergent for $\sigma>1 / 2$ [20]. For brevity, let

$$
\underline{\zeta}_{n}(s ; \underline{\mathfrak{a}})=\left(\zeta_{n}\left(s ; \mathfrak{a}_{1}\right), \ldots, \zeta_{n}\left(s ; \mathfrak{a}_{r}\right)\right)
$$

and, for $\mathcal{B}\left(H^{r}(D)\right)$,

$$
P_{T, n}^{1}(A)=\frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}_{n}(s+\underline{\mathrm{i}} \underline{\gamma} \gamma(\tau) ; \underline{\mathfrak{a}}) \in A\right\}
$$

and

$$
P_{T, n}^{r}(A)=\frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}_{n}(s+\underline{\mathrm{i} \gamma}(\tau) ; \underline{\mathfrak{a}}) \in A\right\}
$$

Denote by $\underline{\omega}=\left(\omega_{1}, \ldots, \omega_{r}\right), \omega_{j} \in \Omega_{j}, j=1, \ldots, r$, the elements of $\underline{\Omega}^{r}$. Together with series $\zeta_{n}\left(s ; \mathfrak{a}_{j}\right)$, we consider the series

$$
\zeta_{n}\left(s, \omega_{j} ; \mathfrak{a}_{j}\right)=\sum_{m=1}^{\infty} \frac{a_{j m} \omega_{j}(m) v_{n}(m)}{m^{s}}, \quad j=1, \ldots, r
$$

that are absolutely convergent for $\sigma>1 / 2$ as well. Here, for $m \in \mathbb{N}$,

$$
\omega_{j}(m)=\prod_{\substack{p^{l} \mid m \\ p^{l+1} \nmid m}} \omega_{j}^{l}(p), \quad j=1, \ldots, r
$$

Analogically, let, for $\underline{\omega} \in \underline{\Omega}^{r}$,

$$
\underline{\zeta}_{n}(s, \underline{\omega} ; \underline{\mathfrak{a}})=\left(\zeta_{n}\left(s, \omega_{1} ; \mathfrak{a}_{1}\right), \ldots, \zeta_{n}\left(s, \omega_{r} ; \mathfrak{a}_{r}\right)\right)
$$

and, for $\mathcal{B}\left(H^{r}(D)\right)$,

$$
P_{T, n, \underline{\omega}}^{1}(A)=\frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}_{n}(s+\underline{\mathrm{i}} \underline{\gamma} \gamma(\tau), \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\}
$$

and

$$
P_{T, n, \underline{\omega}}^{r}(A)=\frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}_{n}(s+\underline{\mathrm{i}} \underline{\gamma}(\tau), \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\}
$$

Let the mapping $u_{n}: \underline{\Omega}^{r} \rightarrow H^{r}(D)$ be given by the formula

$$
u_{n}(\underline{\omega})=\underline{\zeta}_{n}(s, \underline{\omega} ; \underline{\mathfrak{a}}) .
$$

Then the mapping u_{n} is continuous because of the absolute convergence of the series $\zeta_{n}\left(s, \omega_{j} ; \mathfrak{a}_{j}\right)$. Therefore, the definitions of $P_{T, n}^{1}, P_{T, n, \underline{\omega}}^{1}$ and Q_{T}^{1}, and $P_{T, n}^{r}, P_{T, n, \underline{\omega}}^{r}$ and Q_{T}^{r}, Lemmas 1 and 2, and properties of weak convergence of probability measures [4, Thm. 5.1] lead to the following limit theorems on $\left(H^{r}(D), \mathcal{B}\left(H^{r}(D)\right)\right)$.

Lemma 3. Suppose that \underline{a} and $\gamma(\tau)$ satisfy the hypotheses of Theorem 2. Then $P_{T, n}^{1}$ and $P_{T, n, \underline{\omega}}^{1}$ converge weakly to the measure $m_{H}^{r} u_{n}^{-1}$ as $T \rightarrow \infty$.

Lemma 4. Suppose that $\left(\gamma_{1}(\tau), \ldots, \gamma_{r}(\tau)\right) \in U_{r}\left(T_{0}\right)$. Then $P_{T, n}^{r}$ and $P_{T, n, \underline{\omega}}^{r}$ converge weakly to the measure $m_{H}^{r} u_{n}^{-1}$ as $T \rightarrow \infty$.

4 Mean square estimates

To pass from weak convergence for $P_{T, n}^{1}$ and $P_{T, n}^{r}$ to for P_{T}^{1} and P_{T}^{r}, respectively, as $T \rightarrow \infty$, a certain approximation of $\underline{\zeta}(s ; \underline{\mathfrak{a}})$ by $\underline{\zeta}_{n}(s ; \underline{\mathfrak{a}})$ is needed. This approximation is based on the mean square estimates for $\zeta\left(s, \mathfrak{a}_{j}\right)$.

Thus, let \mathfrak{a} be an arbitrary periodic sequence of complex numbers, and $a \in \mathbb{R} \backslash\{0\}$.

Lemma 5. Suppose that $\gamma(\tau) \in U_{1}\left(T_{0}\right)$. Then, for every fixed $\sigma, 1 / 2<\sigma<1$, and $t \in \mathbb{R}$,

$$
\int_{T_{0}}^{T}|\zeta(\sigma+\mathrm{i} a \gamma(\tau)+\mathrm{i} t ; \mathfrak{a})|^{2} \mathrm{~d} \tau \ll_{\sigma, \mathfrak{a}} T(1+|t|) .
$$

Proof. It is well known that, for fixed $\sigma, 1 / 2<\sigma<1$, the Hurwitz zeta-function $\zeta(s, \alpha)$ satisfies

$$
\int_{T_{0}}^{T}|\zeta(\sigma+\mathrm{i} t, \alpha)|^{2} \mathrm{~d} t \ll_{\sigma, \alpha} T
$$

This, together with (1), implies the bound

$$
\int_{T_{0}}^{T}|\zeta(\sigma+\mathrm{i} t ; \mathfrak{a})|^{2} \mathrm{~d} t<_{\sigma, \mathfrak{a}} T
$$

From this it follows

$$
\int_{T_{0}}^{|t|+|a| \gamma(\tau)}|\zeta(\sigma+\mathrm{i} u ; \mathfrak{a})|^{2} \mathrm{~d} u<_{\sigma, \mathfrak{a}}(|t|+|a| \gamma(\tau)) .
$$

Therefore, for $X \geqslant T_{0}$, we have that

$$
\begin{aligned}
& \int_{X}^{2 X}|\zeta(\sigma+\mathrm{i} a \gamma(\tau)+\mathrm{i} t ; \mathfrak{a})|^{2} \mathrm{~d} \tau \\
& \quad=\frac{1}{a} \int_{X}^{2 X} \frac{1}{\gamma^{\prime}(\tau)}|\zeta(\sigma+\mathrm{i} a \gamma(\tau)+\mathrm{i} t ; \mathfrak{a})|^{2} \mathrm{~d} \gamma(\tau) \\
& \quad<_{a} \max _{X \leqslant \tau \leqslant 2 X} \frac{1}{\gamma^{\prime}(\tau)}\left|\int_{X}^{2 X} \mathrm{~d}\left(\int_{T_{0}}^{t+a \gamma(\tau)}|\zeta(\sigma+\mathrm{i} u ; \mathfrak{a})|^{2} \mathrm{~d} u\right)\right| \\
& \quad \ll a, \sigma, \mathfrak{a} \\
&
\end{aligned}
$$

because $\gamma(\tau) \in U_{1}\left(T_{0}\right)$. Taking $T 2^{-k-1}$ and summing over $k=0,1, \ldots$, give the estimate of the lemma.

Lemma 6. Let $\left(\gamma_{1}(\tau), \ldots, \gamma_{r}(\tau)\right) \in U_{r}\left(T_{0}\right)$. Then, for every fixed $\sigma, 1 / 2<\sigma<1$, and $t \in \mathbb{R}$,

$$
\int_{T_{0}}^{T}\left|\zeta\left(\sigma+\mathrm{i} \gamma_{j}(\tau)+\mathrm{i} t ; \mathfrak{a}\right)\right|^{2} \mathrm{~d} \tau \ll_{\sigma} T(1+|t|)
$$

for $j=1, \ldots, r$.

Proof. Using the notation of Lemma 5, we have

$$
\begin{aligned}
& \int_{X}^{2 X}\left|\zeta\left(\sigma+\mathrm{i} \gamma_{j}(\tau)+\mathrm{i} t ; \mathfrak{a}\right)\right|^{2} \mathrm{~d} \tau \\
& =\int_{X}^{2 X} \frac{1}{\gamma_{j}^{\prime}(\tau)}\left|\zeta\left(\sigma+\mathrm{i} \gamma_{j}(\tau)+\mathrm{i} t ; \mathfrak{a}\right)\right|^{2} \mathrm{~d} \gamma_{j}(\tau) \\
& =\int_{X}^{2 X} \frac{(1+o(1))}{\hat{\gamma}_{j}(\tau)} \mathrm{d}\left(\int_{T_{0}}^{t+\gamma_{j}(\tau)}|\zeta(\sigma+\mathrm{i} u ; \mathfrak{a})|^{2} \mathrm{~d} u\right) \\
& =\int_{X}^{2 X} \frac{1}{\hat{\gamma}_{j}(\tau)} \mathrm{d}\left(\int_{T_{0}}^{t+\gamma_{j}(\tau)}|\zeta(\sigma+\mathrm{i} u ; \mathfrak{a})|^{2} \mathrm{~d} u\right) \\
& \quad+\int_{X}^{2 X} \frac{o(1)(1+o(1))}{\gamma_{j}^{\prime}(\tau)} \mathrm{d}\left(\int_{T_{0}}^{t+\gamma_{j}(\tau)}|\zeta(\sigma+\mathrm{i} u ; \mathfrak{a})|^{2} \mathrm{~d} u\right) \\
& \ll{ }_{\sigma, \mathfrak{a}}|t|+\gamma_{j}(2 X) \max _{X \leqslant \tau \leqslant 2 X} \frac{1}{\hat{\gamma}_{j}(\tau)}+\int_{X}^{2 X} o(1)\left|\zeta\left(\sigma+\mathrm{i} \gamma_{j}(\tau)+\mathrm{i} t ; \mathfrak{a}\right)\right|^{2} \mathrm{~d} \tau .
\end{aligned}
$$

Hence,

$$
\int_{X}^{2 X}\left|\zeta\left(\sigma+\mathrm{i} \gamma_{j}(\tau)+\mathrm{i} t ; \mathfrak{a}\right)\right|^{2} \mathrm{~d} \tau<_{\sigma, \mathfrak{a}} X(1+|t|)(1+r(X))<_{\sigma, \mathfrak{a}} X(1+|t|)
$$

where $r(X) \rightarrow 0$ as $X \rightarrow \infty$. This proves the lemma.
Lemmas 5 and 6 have their modifications for

$$
\zeta(s, \omega ; \mathfrak{a})=\sum_{m=1}^{\infty} \frac{a_{m} \omega(m)}{m^{s}}, \quad \sigma>1
$$

with $\omega \in \Omega$. We note that the latter series is uniformly convergent on compact subsets of the strip D for almost all ω with respect to the Haar measure on $(\Omega, \mathcal{B}(\Omega))$.

Lemma 7. Suppose that $\gamma(\tau) \in U_{1}\left(T_{0}\right)$. Then, for every fixed $\sigma, 1 / 2<\sigma<1$, and $t \in \mathbb{R}$,

$$
\int_{T_{0}}^{T}|\zeta(\sigma+\mathrm{i} a \gamma(\tau)+\mathrm{i} t, \omega ; \mathfrak{a})|^{2} \mathrm{~d} \tau \ll_{\sigma, a, \mathfrak{a}} T(1+|t|)
$$

for almost all $\omega \in \Omega$.

Proof. Since, for almost all $\omega \in \Omega$, see [20],

$$
\begin{equation*}
\int_{T_{0}}^{T}|\zeta(\sigma+\mathrm{i} t, \omega ; \mathfrak{a})|^{2} \mathrm{~d} t<_{\sigma, \mathfrak{a}} T \tag{7}
\end{equation*}
$$

the proof coincides with that of Lemma 5.
Lemma 8. Let $\left(\gamma_{1}(\tau), \ldots, \gamma_{r}(\tau)\right) \in U_{r}\left(T_{0}\right)$. Then, for every fixed $\sigma, 1 / 2<\sigma<1$, and $t \in \mathbb{R}$,

$$
\int_{T_{0}}^{T}\left|\zeta\left(\sigma+\mathrm{i} a \gamma_{j}(\tau)+\mathrm{i} t, \omega ; \mathfrak{a}\right)\right|^{2} \mathrm{~d} \tau \ll_{\sigma, \mathfrak{a}} T(1+|t|)
$$

for almost all $\omega \in \Omega, j=1, \ldots, r$.
Proof. We repeat the proof of Lemma 6 and apply the estimate (7).
Now, we will apply Lemmas 5-8 for the approximation of $\underline{\zeta}(s ; \underline{\mathfrak{a}})$ by $\underline{\zeta}_{n}(s ; \underline{\mathfrak{a}})$. For $g_{1}, g_{2} \in H(D)$, let

$$
\rho\left(g_{1}, g_{2}\right)=\sum_{l=1}^{\infty} 2^{-l} \frac{\sup _{s \in K_{l}}\left|g_{1}(s)-g_{2}(s)\right|}{1+\sup _{s \in K_{l}}\left|g_{1}(s)-g_{2}(s)\right|}
$$

where $\left\{K_{l}: l \in \mathbb{N}\right\} \subset D$ is a sequence of compact sets such that

$$
D=\bigcup_{l=1}^{\infty} K_{l}
$$

$K_{l} \subset K_{l+1}$, for all $l \in \mathbb{N}$, and if $K \subset D$ is a compact set, then $K \subset K_{l}$ for some l. Then ρ is a metric in $H(D)$ inducing its topology of uniform convergence on compacta. Let $\underline{g}_{1}=\left(g_{11}, \ldots, g_{1 r}\right), \underline{g}_{2}=\left(g_{21}, \ldots, g_{2 r}\right) \in H^{r}(D)$. Then taking

$$
\underline{\rho}\left(\underline{g}_{1}, \underline{g}_{2}\right)=\max _{1 \leqslant j \leqslant r} \rho_{j}\left(g_{1 j}, g_{2 j}\right)
$$

gives the metric in the space $H^{r}(D)$ inducing its product topology.
Lemma 9. Suppose that $a_{1}, \ldots, a_{r} \in \mathbb{R} \backslash\{0\}$ and $\gamma(\tau) \in U_{1}\left(T_{0}\right)$. Then

$$
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T-T_{0}} \int_{T_{0}}^{T} \underline{\rho}\left(\underline{\zeta}(s+\underline{\mathrm{i}} \underline{a} \gamma(\tau) ; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+\underline{\mathrm{i}} \underline{\gamma} \gamma(\tau) ; \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0 .
$$

Moreover, for almost all $\underline{\omega} \in \underline{\Omega}$,

$$
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T-T_{0}} \int_{T_{0}}^{T} \underline{\rho}\left(\underline{\zeta}(s+\underline{\mathrm{i}} \underline{a} \gamma(\tau), \underline{\omega} ; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+\mathrm{i} \underline{\mathfrak{a}} \gamma(\tau), \underline{\omega} ; \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0
$$

Proof. From the definitions of the metrics $\underline{\rho}$ and ρ it follows that it is sufficient to prove that, for every compact set $K \subset D$,

$$
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T-T_{0}} \int_{T_{0}}^{T} \sup _{s \in K}\left|\zeta\left(s+\mathrm{i} a_{j} \gamma(\tau) ; \mathfrak{a}_{j}\right)-\zeta_{n}\left(s+\mathrm{i} a_{j} \gamma(\tau) ; \mathfrak{a}_{j}\right)\right| \mathrm{d} \tau=0
$$

for all $j=1, \ldots, r$.
Let \mathfrak{a} and $a \neq 0$ be arbitrary. The definition of $\zeta_{n}(s ; \mathfrak{a})$ and the classical Mellin formula

$$
\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \Gamma(s) b^{-s} \mathrm{~d} s=\mathrm{e}^{-b}, \quad b, c>0
$$

where $\Gamma(s)$ denotes the Euler gamma-function, yield the integral representation [20]

$$
\zeta_{n}(s ; \mathfrak{a})=\frac{1}{2 \pi \mathrm{i}} \int_{\theta-\mathrm{i} \infty}^{\theta+\mathrm{i} \infty} \zeta(s+z ; \mathfrak{a}) l_{n}(z) \frac{\mathrm{d} z}{z}, \quad l_{n}(s)=\frac{s}{\theta} \Gamma\left(\frac{s}{\theta}\right) n^{s} .
$$

Therefore, taking $\theta_{1}>0$, we have

$$
\begin{equation*}
\zeta_{n}(s ; \mathfrak{a})-\zeta(s ; \mathfrak{a})=\frac{1}{2 \pi \mathrm{i}} \int_{-\theta_{1}-\mathrm{i} \infty}^{-\theta_{1}+\mathrm{i} \infty} \zeta(s+z ; \mathfrak{a}) l_{n}(z) \frac{\mathrm{d} z}{z}+R_{n}(s ; \mathfrak{a}) \tag{8}
\end{equation*}
$$

where

$$
R_{n}(s ; \mathfrak{a})=r_{\mathfrak{a}} \frac{l_{n}(1-s)}{1-s}
$$

Let $K \subset D$ be an arbitrary compact set. Denote by $\sigma+\mathrm{i} v$ the points of K, and fix $\varepsilon>0$ such that $1 / 2+2 \varepsilon \leqslant \sigma \leqslant 1-\varepsilon$. Then, by (8),

$$
\begin{aligned}
& \left|\zeta(s+\mathrm{i} a \gamma(\tau) ; \mathfrak{a})-\zeta_{n}(s+\mathrm{i} a \gamma(\tau) ; \mathfrak{a})\right| \\
& \quad \ll \int_{-\infty}^{\infty}\left|\zeta\left(s+\mathrm{i} a \gamma(\tau)-\theta_{1}+\mathrm{i} t ; \mathfrak{a}\right)\right| \frac{\left|l_{n}\left(-\theta_{1}+\mathrm{i} t\right)\right|}{\left|-\theta_{1}+\mathrm{i} t\right|} \mathrm{d} t+\left|R_{n}(s+\mathrm{i} a \gamma(\tau) ; \mathfrak{a})\right| .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\frac{1}{T-T_{0}} \int_{T_{0}}^{T} \sup _{s \in K}\left|\zeta(s+\mathrm{i} a \gamma(\tau) ; \mathfrak{a})-\zeta_{n} v(s+\mathrm{i} a \gamma(\tau) ; \mathfrak{a})\right| \mathrm{d} \tau \ll I_{1}+I_{2} \tag{9}
\end{equation*}
$$

where

$$
I_{1}=\int_{-\infty}^{\infty} \frac{1}{T-T_{0}} \int_{T_{0}}^{T}\left(\left|\zeta\left(\frac{1}{2}+\varepsilon+\mathrm{i}(t+a \gamma(\tau)) ; \mathfrak{a}\right)\right| \mathrm{d} \tau\right) \sup _{s \in K} \frac{\left|l_{n}\left(\frac{1}{2}+\varepsilon-s+\mathrm{i} t\right)\right|}{\left|\frac{1}{2}+\varepsilon-s+\mathrm{i} t\right|} \mathrm{d} t
$$

and

$$
I_{2}=\frac{1}{T-T_{0}} \int_{T_{0}}^{T} \sup _{s \in K}\left|R_{n}(s+\mathrm{i} a \gamma(\tau) ; \mathfrak{a})\right| \mathrm{d} \tau
$$

Since in the definition of $l_{n}(s)$ the gamma-function occurs, we can use the estimate

$$
\Gamma(\sigma+\mathrm{i} t) \ll \exp \{-c|t|\}, \quad c>0
$$

which is uniform in $\sigma, \sigma_{1} \leqslant \sigma \leqslant \sigma_{2}$, for arbitrary $\sigma_{1}<\sigma_{2}$. Therefore, for $s \in K$,

$$
\begin{align*}
\frac{\left|l_{n}\left(\frac{1}{2}+\varepsilon-s+\mathrm{i} t\right)\right|}{\left|\frac{1}{2}+\varepsilon-s+\mathrm{i} t\right|} & =\frac{n^{1 / 2+\varepsilon-\sigma}}{\theta}\left|\Gamma\left(\frac{\frac{1}{2}+\varepsilon-\sigma}{\theta}+\frac{\mathrm{i}(t-v)}{\theta}\right)\right| \\
& \ll \theta_{\theta, K} n^{-\varepsilon} \exp \left\{-\frac{c_{1}}{\theta}|t|\right\}, \quad c_{1}>0 . \tag{10}
\end{align*}
$$

Similarly, we find

$$
\begin{equation*}
R_{n}(s+\mathrm{i} a \gamma(\tau) ; \mathfrak{a})<_{\theta, \mathfrak{a}, K} n^{1-\sigma} \exp \left\{-\frac{c_{2}}{\theta}|a| \gamma(\tau)\right\}, \quad c_{2}>0 . \tag{11}
\end{equation*}
$$

Now, putting $\theta=1 / 2+\varepsilon$, and estimate (10) together with Lemma 5 yield

$$
\begin{equation*}
I_{1}<_{\varepsilon, K, \mathfrak{a}} n^{-\varepsilon} \int_{-\infty}^{\infty}(1+|t|) \exp \left\{-c_{3}|t|\right\} \mathrm{d} t<_{\varepsilon, K, \mathfrak{a}} n^{-\varepsilon}, \quad c_{3}>0 \tag{12}
\end{equation*}
$$

Moreover, properties of the functions $\gamma(\tau)$ and (11) show that with $c_{4}>0$

$$
\begin{aligned}
I_{2} & \ll \varepsilon, \mathfrak{a}, K n^{1 / 2-2 \varepsilon} \frac{1}{T-T_{0}} \int_{T_{0}}^{T} \exp \left\{-c_{4}|a| \gamma(\tau)\right\} \mathrm{d} \tau \\
& \ll \varepsilon, \mathfrak{a}, K n^{1 / 2-2 \varepsilon}\left(\frac{\log T}{T}+\frac{1}{T} \int_{\log T}^{T} \exp \left\{-c_{4}|a| \gamma(\tau)\right\} \mathrm{d} \tau\right) \\
& \ll n^{1 / 2-2 \varepsilon}\left(\frac{\log T}{T}+\frac{1}{T} \exp \left\{-\frac{c_{4}}{2}|a| \gamma(\log T)\right\} \int_{\log T}^{T} \exp \left\{-\frac{c_{4}}{2}|a| \gamma(\tau)\right\} \mathrm{d} \tau\right) \\
& =o(T)
\end{aligned}
$$

as $T \rightarrow \infty$. This, (12) and (9) prove the first assertion of the lemma.
For almost all $\omega \in \Omega$, the function $\zeta(s, \omega ; \mathfrak{a})$ is analytic in the half-plane $\sigma>1 / 2$. Therefore, the second assertion of the lemma is obtained similarly to that of the first with using Lemma 7. In this case, we have not the integral I_{2}.

Lemma 10. Suppose that $\left(\gamma_{1}(\tau), \ldots, \gamma_{r}(\tau)\right) \in U_{r}\left(T_{0}\right)$. Then

$$
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T-T_{0}} \int_{T_{0}}^{T} \underline{\rho}\left(\underline{\zeta}(s+\underline{\mathrm{i}} \underline{\gamma}(\tau) ; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+\mathrm{i} \underline{\gamma}(\tau) ; \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0 .
$$

Moreover, for almost all $\underline{\omega} \in \underline{\Omega}$,

$$
\lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T-T_{0}} \int_{T_{0}}^{T} \underline{\rho}\left(\underline{\zeta}(s+\underline{\mathrm{i}} \underline{\gamma}(\tau), \underline{\omega} ; \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+\mathrm{i} \underline{\gamma}(\tau), \underline{\omega} ; \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0
$$

Proof. We use Lemmas 6 and 8 and follow the proof of Lemma 9.

5 Limit theorems for $\boldsymbol{\zeta}(s ; \mathfrak{a})$

The results of Sections 3 and 4 are sufficient to prove limit theorems for $\underline{\zeta}(s ; \mathfrak{a})$ without explicit forms of limit measures. Together with P_{T}^{1} and P_{T}^{r}, we will prove the weak convergence, as $T \rightarrow \infty$, for

$$
P_{T, \underline{\omega}}^{1}(A)=\frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}(s+\underline{\mathrm{i}} \underline{a} \gamma(\tau), \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\},
$$

and

$$
P_{T, \underline{\omega}}^{r}(A)=\frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}(s+\underline{\mathrm{i}} \underline{\gamma}(\tau), \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\}
$$

where $A \in \mathcal{B}\left(H^{r}(D)\right)$ and $\underline{\omega} \in \underline{\Omega}$.
Theorem 4. Suppose that \underline{a} and $\gamma(\tau)$ satisfy hypotheses of Theorem 2. Then, on $\left(H^{r}(D)\right.$, $\mathcal{B}\left(H^{r}(D)\right)$), there exists a probability measure P^{1} such that P_{T}^{1} and $P_{T, \underline{\omega}}^{1}$ both converge weakly to P^{1} as $T \rightarrow \infty$.

Proof. Let, for brevity, $V_{n}=m_{H}^{r} u_{n}^{-1}$, where u_{n} is the mapping from Lemma 3. Using the absolute convergence for the series $\zeta_{n}\left(s ; \mathfrak{a}_{j}\right)$, we obtain by a standard way, see, for example, [14], that the sequence of probability measures $\left\{V_{n}: n \in \mathbb{N}\right\}$ is tight, i.e., for every $\varepsilon>0$, there exists a compact set $K=K(\varepsilon) \subset H^{r}(D)$ such that $V_{n}(K)>1-\varepsilon$ for all $n \in \mathbb{N}$. Then, by the Prokhorov theorem [4], the sequence $\left\{V_{n}\right\}$ is relatively compact. In what follows, we will use the language of random elements. Let θ_{T} be a random variable on a certain probability space with measure μ, and uniformly distributed on $\left[T_{0}, T\right]$. Define the $H^{r}(D)$-valued random element

$$
\underline{X}_{T, n}^{1}=\underline{X}_{T, n}^{1}(s)=\underline{\zeta}_{n}\left(s+\dot{\mathrm{i}} \underline{a} \gamma\left(\theta_{T}\right) ; \underline{\mathfrak{a}}\right),
$$

and denote by $\underline{X}_{n}^{1}=\underline{X}_{n}^{1}(s)$ the $H^{r}(D)$-valued random element with the distribution V_{n}. Then the assertion of Lemma 3 can be written in the form

$$
\begin{equation*}
\underline{X}_{T, n}^{1} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} \underline{X}_{n}^{1} . \tag{13}
\end{equation*}
$$

The relative compactness of $\left\{V_{n}\right\}$ implies the existence of subsequences $\left\{V_{n_{k}}\right\}$ such that $V_{n_{k}}$ converges weakly to a certain probability measure P^{1} on $\left(H^{r}(D), \mathcal{B}\left(H^{r}(D)\right)\right)$ as $k \rightarrow \infty$. Thus,

$$
\begin{equation*}
\underline{X}_{n_{k}}^{1} \xrightarrow[k \rightarrow \infty]{\mathcal{D}} P^{1} . \tag{14}
\end{equation*}
$$

Define one more $H^{r}(D)$-valued random element

$$
\underline{X}_{T}^{1}=\underline{X}_{T}^{1}(s)=\underline{\zeta}\left(s+\underline{\mathrm{i}} \underline{\gamma} \gamma\left(\theta_{T}\right) ; \underline{\mathfrak{a}}\right) .
$$

Then, by the first assertion of Lemma 9, we find that, for every $\varepsilon>0$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \mu\left\{\underline{\rho}\left(\underline{X}_{T}^{1}, \underline{X}_{T, n}^{1}\right) \geqslant \varepsilon\right\} \\
& \quad \leqslant \lim _{n \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{T-T_{0}} \int_{T_{0}}^{T} \underline{\rho}\left(\underline{\zeta}(s+\underline{\mathrm{i}} \underline{a} \gamma(\tau), \underline{\mathfrak{a}}), \underline{\zeta}_{n}(s+\mathrm{i} \underline{\hat{a}} \gamma(\tau), \underline{\mathfrak{a}})\right) \mathrm{d} \tau=0 .
\end{aligned}
$$

This, (13) and (14) show that all hypotheses of Theorem 4.2 from [4] are satisfied. Therefore, we have the relation

$$
\begin{equation*}
\underline{X}_{T}^{1} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} P^{1}, \tag{15}
\end{equation*}
$$

or that P_{T}^{1} converges weakly to P^{1} as $T \rightarrow \infty$. Also, in view of (15), the measure P^{1} is independent of the subsequence $\left\{V_{n_{k}}\right\}$. Thus,

$$
\begin{equation*}
\underline{X}_{n}^{1} \xrightarrow[T \rightarrow \infty]{\mathcal{D}} P^{1} . \tag{16}
\end{equation*}
$$

To obtain the weak convergence for $P_{T, \underline{\omega}}^{1}$, introduce the $H^{r}(D)$-valued random elements

$$
\underline{X}_{T, n, \underline{\omega}}^{1}=\underline{X}_{T, n, \underline{\omega}}^{1}(s)=\underline{\zeta}_{n}\left(s+\underline{\mathrm{i}} \underline{\gamma} \gamma\left(\theta_{T}\right), \underline{\omega} ; \underline{\mathfrak{a}}\right)
$$

and

$$
\underline{X}_{T, \underline{\omega}}^{1}=\underline{X}_{T, \underline{\omega}}^{1}(s)=\underline{\zeta}\left(s+\mathrm{i} \underline{\mathrm{a}} \gamma\left(\theta_{T}\right), \underline{\omega} ; \underline{\mathfrak{a}}\right) .
$$

Then, repeating the above arguments for $\underline{X}_{T, n, \underline{\omega}}^{1}$ and $\underline{X}_{T, \underline{\omega}}^{1}$ (all relations are true for almost all $\underline{\omega} \in \underline{\Omega}^{r}$) and using (16), we obtain the weak convergence of $P_{T, \underline{\omega}}^{1}$ to P^{1} as $T \rightarrow \infty$. The theorem is proved.

Theorem 5. Suppose that $\left(\gamma_{1}(\tau), \ldots, \gamma_{r}(\tau)\right) \in U_{r}\left(T_{0}\right)$. Then, on $\left(H^{r}(D), \mathcal{B}\left(H^{r}(D)\right)\right)$, there exists a probability measure P^{r} such that P_{T}^{r} and $P_{T, \underline{\omega}}^{r}$ both converge weakly to P^{r} as $T \rightarrow \infty$.

Proof. We use arguments similar to those of the proof of Theorem 4 with application of Lemmas 4 and 10.

6 Identification of the limit measures

In this section, we identify the measures P^{1} and P^{r} in Theorems 4 and 5. For this, we will use some results of ergodic theory.

For brevity, let, for $\tau \geqslant T_{0}$,

$$
\underline{a}_{\tau}^{1}=\left\{\left(p^{-\mathrm{i} a_{1} \gamma(\tau)}: p \in \mathbb{P}\right), \ldots,\left(p^{-\mathrm{i} a_{r} \gamma(\tau)}: p \in \mathbb{P}\right)\right\}
$$

and

$$
\underline{a}_{\tau}^{r}=\left\{\left(p^{-\mathrm{i} \gamma_{1}(\tau)}: p \in \mathbb{P}\right), \ldots,\left(p^{-\mathrm{i} \gamma_{r}(\tau)}: p \in \mathbb{P}\right)\right\}
$$

Clearly, $\underline{a}_{\tau}^{1}, \underline{a}_{\tau}^{r} \in \underline{\Omega}^{r}$. On $\underline{\Omega}^{r}$, define the families of transformations $\left\{\Phi_{\tau}^{1}: \tau \geqslant T_{0}\right\}$ and $\left\{\Phi_{\tau}^{r}: \tau \geqslant T_{0}\right\}$, where

$$
\Phi_{\tau}^{1}(\underline{\omega})=\underline{a}_{\tau}^{1} \underline{\omega} \quad \text { and } \quad \Phi_{\tau}^{r}(\underline{\omega})=\underline{a}_{\tau}^{r} \underline{\omega}, \quad \underline{\omega} \in \underline{\Omega}^{r} .
$$

Then $\left\{\Phi_{\tau}^{1}\right\}$ and $\left\{\Phi_{\tau}^{r}\right\}$ are families of measurable measure preserving (because of invariance of the Haar measure $\left.m_{H}^{r}\right)$ transformations on $\underline{\Omega}^{r}$. Recall that a set $A \in \mathcal{B}\left(\underline{\Omega}^{r}\right)$ is called invariant with respect to $\left\{\Phi_{\tau}^{k}: \tau \geqslant T_{0}\right\}$ if, for every $\tau \geqslant T_{0}$, the sets A and $A_{\tau}=\Phi_{\tau}^{k}(A)$ can differ one from other at most by a set of m_{H}^{r}-measure zero, $k=1$ or $k=r$. All invariant sets forms a σ-field. The family $\left\{\Phi_{\tau}^{k}\right\}$ is called ergodic if its σ-field of invariant sets consists only from sets of m_{H}^{r}-measure zero or one.

Lemma 11. The families $\left\{\Phi_{\tau}^{1}\right\}$ and $\left\{\Phi_{\tau}^{r}\right\}$ are ergodic.
Proof. We consider only $\left\{\Phi_{\tau}^{1}\right\}$ because the case $\left\{\Phi_{\tau}^{r}\right\}$ is similar, and apply the Fourier transform method. In the proof of Lemma 1, we already have used that the characters χ of the group $\underline{\Omega}^{r}$ are of the form

$$
\chi(\underline{\omega})=\prod_{j=1}^{r} \prod_{p \in \mathbb{P}}^{*} \omega_{j}^{k_{j p}}(p)
$$

Thus, if the character χ is nontrivial $(\chi(\underline{\omega}) \not \equiv 1)$, we have

$$
\chi\left(\underline{a}_{\tau}^{1}\right)=\prod_{j=1}^{r} \prod_{p \in \mathbb{P}}^{*} p^{-\mathrm{i} a_{j} k_{j p} \gamma(\tau)}=\exp \left\{-\mathrm{i} \gamma(\tau) \sum_{j=1}^{r} a_{j} \sum_{p \in \mathbb{P}}^{*} k_{j p} \log p\right\} .
$$

Since the character χ is nontrivial, $\underline{k} \neq(\underline{0}, \ldots, \underline{0})$. Thus, in the proof of Lemma 1, we have seen that

$$
\sum_{j=1}^{r} a_{j} \sum_{p \in \mathbb{P}}^{*} k_{j p} \log p \neq 0
$$

Therefore, there exists a value $\tau_{0} \geqslant T_{0}$ such that

$$
\begin{equation*}
\chi\left(\underline{a}_{\tau_{0}}^{1}\right) \neq 1 . \tag{17}
\end{equation*}
$$

Now, let A be a invariant set with respect to $\left\{\Phi_{\tau}^{1}\right\}$, and let I_{A} is its indicator function. Then, for almost all $\underline{\omega} \in \underline{\Omega}^{r}$,

$$
I_{A}\left(\underline{a}_{\tau}^{1} \underline{\omega}\right)=I_{A}(\underline{\omega}) .
$$

Thus, in view of the invariance of m_{H}^{r}, the Fourier transform $\hat{I}_{A}(\chi)$ is

$$
\begin{aligned}
\hat{I}_{A}(\chi) & =\int_{\underline{\Omega}^{r}} \chi(\underline{\omega}) I_{A}(\underline{\omega}) \mathrm{d} m_{H}^{r}=\int_{\underline{\Omega}^{r}} \chi\left(\underline{a}_{\tau_{0}}^{1} \underline{\omega}\right) I_{A}\left(\underline{a}_{\tau_{0}}^{1} \underline{\omega}\right) \mathrm{d} m_{H}^{r} \\
& =\chi\left(\underline{a}_{\tau_{0}}^{1}\right) \int_{\underline{\Omega}^{r}} \chi(\underline{\omega}) I_{A}(\underline{\omega}) \mathrm{d} m_{H}^{r}=\chi\left(\underline{a}_{\tau_{0}}^{1}\right) \hat{I}_{A}(\chi) .
\end{aligned}
$$

Therefore, taking into account (17), we have

$$
\begin{equation*}
\hat{I}_{A}(\chi)=0 \tag{18}
\end{equation*}
$$

for all nontrivial characters of $\underline{\Omega}^{r}$.
Denote by χ_{0} the trivial character of $\underline{\Omega}^{r}$, and suppose that $\hat{I}\left(\chi_{0}\right)=c$. Then using the orthogonality of characters and (18) give the equality

$$
\hat{I}_{A}(\chi)=c \int_{\underline{\Omega}^{r}} \chi(\underline{\omega}) \mathrm{d} m_{H}^{r}=c \hat{1}(\chi)=\hat{c}(\chi)
$$

for every character χ of $\underline{\Omega}^{r}$. This shows that $I_{A}(\underline{\omega})=c$ for almost all $\underline{\omega} \in \underline{\Omega}^{r}$. Since $c=0$ or $c=1$, we obtain that $m_{H}^{r}(A)=0$ or $m_{H}^{r}(A)=1$. The lemma is proved.

Lemma 11 allows to identify the limit measures in Theorems 4 and 5. On the probability space $\left(\underline{\Omega}^{r}, \mathcal{B}\left(\underline{\Omega}^{r}\right), m_{H}^{r}\right)$, define the $H^{r}(D)$-valued random element

$$
\underline{\zeta}(s, \underline{\omega} ; \underline{\mathfrak{a}})=\left(\zeta\left(s, \omega_{1} ; \mathfrak{a}_{1}\right), \ldots, \zeta\left(s, \omega_{r} ; \mathfrak{a}_{r}\right)\right),
$$

where

$$
\zeta\left(s, \omega_{j} ; \mathfrak{a}_{j}\right)=\sum_{m=1}^{\infty} \frac{a_{j m} \omega_{j}(m)}{m^{s}}, \quad j=1, \ldots, r
$$

We note that the latter series, for almost all ω_{j}, are uniformly convergent on compact subsets of D. Moreover, in view of multiplicativity of $a_{j m}$, for almost all ω_{j}, the equality

$$
\zeta\left(s, \omega_{j} ; \mathfrak{a}_{j}\right)=\prod_{p \in \mathbb{P}}\left(1+\sum_{k=1}^{\infty} \frac{a_{j p^{k}} \omega_{j}^{k}(p)}{p^{k s}}\right)
$$

holds. Let P_{ζ} be the distribution of the random element $\underline{\zeta}(s, \underline{\omega} ; \underline{\mathfrak{a}})$, i.e.,

$$
P_{\underline{\underline{\zeta}}}(A)=m_{H}^{r}\left\{\underline{\omega} \in \underline{\Omega}^{r}: \underline{\zeta}(s, \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\}, \quad A \in \mathcal{B}\left(H^{r}(D)\right) .
$$

Theorem 6. Under hypotheses of Theorems 2 and 3, P_{T}^{1} and P_{T}^{r} converge weakly to the measure $P_{\underline{\zeta}}$ as $T \rightarrow \infty$.
Proof. In view of Theorems 4 and 5, it suffices to prove that P^{1} and P^{r} coincides with $P_{\underline{\xi}}$. We consider only the case of P^{1}.

Let A be a fixed continuity set of the measure P^{1}, i.e., $P^{1}(\partial A)=0$, where ∂A is the boundary of A. Then the equivalent of weak convergence of probability measures in terms of continuity sets [4] and Theorem 4 imply

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}(s+\underline{\mathrm{i}} \underline{a} \gamma(\tau), \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\}=P^{1}(A) \tag{19}
\end{equation*}
$$

On the probability space $\left(\underline{\Omega}^{r}, \mathcal{B}\left(\underline{\Omega}^{r}\right), m_{H}^{r}\right)$, define the random variable

$$
\theta(\underline{\omega})= \begin{cases}1 & \text { if } \underline{\zeta}(s, \underline{\omega} ; \underline{\mathfrak{a}}) \in A \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, the expectation of $\theta(\underline{\omega})$ is

$$
\begin{equation*}
\mathbf{E} \theta=\int_{\underline{\Omega}^{r}} \theta \mathrm{~d} m_{H}^{r}=m_{H}^{r}\left\{\underline{\omega} \in \underline{\Omega}^{r}: \underline{\zeta}(s, \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\}=P_{\underline{\zeta}}(A) . \tag{20}
\end{equation*}
$$

In view of Lemma 11, the random process $\theta\left(\Phi_{\tau}^{1}(\underline{\omega})\right)$ is ergodic. Therefore, by the Birkhoff-Khintchine ergodic theorem [5], for almost all $\underline{\omega} \in \underline{\Omega}^{r}$,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T-T_{0}} \int_{T_{0}}^{T} \theta\left(\Phi_{\tau}^{1}(\underline{\omega})\right) \mathrm{d} \tau=\mathbf{E} \theta \tag{21}
\end{equation*}
$$

On the other hand, by the definitions of θ and Φ_{τ}^{1},

$$
\frac{1}{T-T_{0}} \int_{T_{0}}^{T} \theta\left(\Phi_{\tau}^{1}(\underline{\omega})\right) \mathrm{d} \tau=\frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}(s+\underline{\mathrm{i}} \underline{\alpha} \gamma(\tau), \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\} .
$$

Thus, in virtue of (20) and (21),

$$
\lim _{T \rightarrow \infty} \frac{1}{T-T_{0}} \operatorname{meas}\left\{\tau \in\left[T_{0}, T\right]: \underline{\zeta}(s+\underline{\mathrm{i}} \underline{a} \gamma(\tau), \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\}=P_{\underline{\underline{\zeta}}}(A) .
$$

This, together with (19), implies the equality $P^{1}(A)=P_{\underline{\zeta}}(A)$ for all continuity sets A of P^{1}. Hence, $P^{1}(A)=P_{\underline{\zeta}}(A)$ for all $A \in \mathcal{B}\left(H^{r}(D)\right)$. The theorem is proved.

7 Support

For the proof of universality theorems, supports of limit measures in the space of analytic functions play the crucial role. Recall that the support of a probability measure P on
$(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ is a minimal closed set S_{P} such that $P\left(S_{P}\right)=1$. The set S_{P} consists of all elements $x \in \mathbb{X}$ such that, for every open neighbourhood G of x, the inequality $P(G)>0$ is satisfied.

Theorem 7. Suppose that the sequences $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are multiplicative. Then the support of the measure $P_{\underline{\zeta}}$ is the set

$$
(\{g \in H(D): g(s) \neq 0 \text { or } g(s) \equiv 0\})^{r} .
$$

Proof. Denote by $m_{j H}$ the probability Haar measure on $\left(\Omega_{j}, \mathcal{B}\left(\Omega_{j}\right)\right)$. Then m_{H}^{r} is the product of the measures $m_{1 H}, \ldots, m_{r H}$, i.e., for $A=A_{1} \times \cdots \times A_{r} \in \mathcal{B}\left(H^{r}(D)\right)$ with $A_{j} \in \mathcal{B}(H(D))$,

$$
m_{H}^{r}(A)=m_{1 H}\left(A_{1}\right) \cdots m_{r H}\left(A_{r}\right) .
$$

The space $H^{r}(D)$ is separable, therefore [4],

$$
\mathcal{B}\left(H^{r}(D)\right)=\underbrace{\mathcal{B}(H(D)) \times \cdots \times \mathcal{B}(H(D))}_{r} .
$$

Thus, it suffices to consider P_{ζ} on the sets $A=A_{1} \times \cdots \times A_{r}, A_{1}, \ldots, A_{r} \in \mathcal{B}(H(D))$. It is known [20] that the supports of the measures

$$
P_{\zeta_{j}}(A)=m_{j H}\left\{\omega_{j} \in \Omega_{j}: \zeta\left(s, \omega_{j} ; \mathfrak{a}_{j}\right) \in A_{j}\right\}, \quad A_{j} \in \mathcal{B}(H(D)), j=1, \ldots, r,
$$

is the set $\{g \in H(D): g(s) \neq 0$ or $g(s) \equiv 0\}$. Moreover, by the above remarks,

$$
\begin{aligned}
P_{\underline{\zeta}}(A) & =m_{j H}\left\{\underline{\omega} \in \underline{\Omega}^{r}: \underline{\zeta}(s, \underline{\omega} ; \underline{\mathfrak{a}}) \in A\right\} \\
& =m_{1 H}\left\{\omega_{1} \in \Omega_{1}: \zeta\left(s, \omega_{1} ; \mathfrak{a}_{1}\right) \in A_{1}\right\} \cdots m_{r H}\left\{\omega_{r} \in \Omega_{r}: \zeta\left(s, \omega_{r} ; \mathfrak{a}_{r}\right) \in A_{r}\right\} \\
& =P_{\zeta_{1}}\left(A_{1}\right) \cdots P_{\zeta_{r}}\left(A_{r}\right) .
\end{aligned}
$$

This, the supports of the measures $P_{\zeta_{j}}$ and the minimality of the support prove the theorem.

8 Proof of universality

Theorems 2 and 3 easily follows from Theorems 6 and 7 as well as the Mergelyan theorem [22] on the approximation of analytic functions by polynomials. For convenience, we recall the latter beautiful theorem.

Lemma 12. Suppose that $K \subset \mathbb{C}$ is a compact set with connected complements, and $g(s)$ is a continuous function on K and analytic in the interior of K. Then, for every $\varepsilon>0$, there exists a polynomial $p(s)$ such that $\sup _{s \in K}|g(s)-p(s)|<\varepsilon$.

Proof of Theorem 2.

1. Lemma 12 implies the existence of polynomials $p_{1}(s), \ldots, p_{r}(s)$ such that

$$
\begin{equation*}
\sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|f_{j}(s)-\mathrm{e}^{p_{j}(s)}\right|<\frac{\varepsilon}{2} . \tag{22}
\end{equation*}
$$

Consider the set

$$
G_{\varepsilon}=\left\{\left(g_{1}, \ldots, g_{r}\right) \in H^{r}(D): \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|g_{j}(s)-\mathrm{e}^{p_{j}(s)}\right|<\frac{\varepsilon}{2}\right\} .
$$

By Theorem 7, the set G_{ε} is an open neighbourhood of the element $\left(\mathrm{e}^{p_{1}(s)}, \ldots, \mathrm{e}^{p_{r}(s)}\right)$ of the support of the measure $P_{\underline{\zeta}}$. Thus, by a property of the support,

$$
\begin{equation*}
P_{\underline{\zeta}}\left(G_{\varepsilon}\right)>0 . \tag{23}
\end{equation*}
$$

Therefore, Theorem 6, together with equivalent of weak convergence of probability measures in terms of open sets [4, Thm. 2.1], gives

$$
\liminf _{T \rightarrow \infty} P_{T}^{1}\left(G_{\varepsilon}\right) \geqslant P_{\underline{\zeta}}\left(G_{\varepsilon}\right)>0
$$

This, the definitions of P_{T}^{1} and G_{ε}, and (22) prove the first part of the theorem.
2. Define one more set

$$
\hat{G}_{\varepsilon}=\left\{\left(g_{1}, \ldots, g_{r}\right) \in H^{r}(D): \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|g_{j}(s)-f_{j}(s)\right|<\varepsilon\right\}
$$

The boundary $\partial \hat{G}_{\varepsilon}$ of \hat{G}_{ε} lies in the set

$$
\left\{\left(g_{1}, \ldots, g_{r}\right) \in H^{r}(D): \sup _{1 \leqslant j \leqslant r} \sup _{s \in K_{j}}\left|g_{j}(s)-f_{j}(s)\right|=\varepsilon\right\}
$$

therefore, $\partial \hat{G}_{\varepsilon_{1}} \cap \partial \hat{G}_{\varepsilon_{2}}=\emptyset$ for different positive ε_{1} and ε_{2}. From this we have that $P_{\underline{\zeta}}\left(\partial \hat{G}_{\varepsilon}\right)=0$, i.e., the set \hat{G}_{ε} is a continuity set of the measure $P_{\underline{\zeta}}$ for all but at most countably many $\varepsilon>0$. Therefore, Theorem 6 , together with equivalent of weak convergence of probability measures in terms of continuity sets [4, Thm. 2.1], shows that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} P_{T}^{1}\left(\hat{G}_{\varepsilon}\right)=P_{\underline{\zeta}}\left(\hat{G}_{\varepsilon}\right) \tag{24}
\end{equation*}
$$

for all but at most countably many $\varepsilon>0$. In view of (22), the inclusion $G_{\varepsilon}^{r} \subset \hat{G}_{\varepsilon}^{r}$ follows. Thus, by (23), we have $P_{\underline{\zeta}}\left(\hat{G}_{\varepsilon}\right)>0$. This, the definitions of P_{T}^{1} and \hat{G}_{ε}, and (24) prove the second assertion of the theorem.

Proof of Theorem 3. We repeat the proof of Theorem 2 with P_{T}^{r} in place of P_{T}^{1}.

References

1. B. Bagchi, The Statistical Behaviour and Universality Properties of the Riemann zeta-function and allied Dirichlet Series, PhD thesis, Indian Statistical Institute, Calcutta, 1981.
2. B. Bagchi, Joint universality theorem for Dirichlet L-functions, Math. Z., 181(3):319-334, 1982.
3. A. Baker, The theory of linear forms in logarithms, in A. Baker, D.W. Masser (Eds.), Transcendence Theory: Advances and Applications. Proceedings of a Conference Held in Cambridge in 1976, Academic Press, Boston, MA, 1977, pp. 1-27.
4. P. Billingsley, Convergence of Probability Measures, Willey, New York, 1968.
5. H. Cramér, M. Leadbetter, Stationary and Related Stochastic Processes, Willey, New York, 1967.
6. S.M. Gonek, Analytic Properties of Zeta and L-Functions, PhD thesis, University of Michigan, Ann Arbor, 1979.
7. R. Kačinskaitè, K. Matsumoto, The mixed joint universality for a class of zeta-functions, Math. Nachr, 288(16):1900-1909, 2015.
8. R. Kačinskaitè, K. Matsumoto, Remarks on the mixed joint universality for a class of zetafunctions, Bull. Aust. Math. Soc., 95(2):187-198, 2017.
9. R. Kačinskaitė, K. Matsumoto, On mixed joint discrete universality for a class of zetafunctions. II, Lith. Math. J., 59(1):54-66, 2019.
10. J. Kaczorowski, Some remarks on the universality of periodic L-functions, in R. Steuding, J. Sreuding (Eds.), New Directions in Value-Distribution Theory of Zeta and L-functions. Proceedings of the Würzburg Conference, Shaker Verlag, Aachen, 2009, pp. 113-120.
11. A.A. Karatsuba, S.M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin, 1992.
12. A. Laurinčikas, Joint discrete universality for periodic zeta-functions. II, Quaest. Math., https://doi.org/10.2989/16073606.2019.1654554.
13. A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, Boston, London, 1996.
14. A. Laurinčikas, Joint universality of zeta-functions with periodic coefficients, Izv. Ross. Akad. Nauk, Ser. Mat., 74:79-102, 2010.
15. A. Laurinčikas, On joint universality of Dirichlet L-functions, Chebyshevskii Sb., 12(1):124139, 2011.
16. A. Laurinčikas, Extension of the universality of zeta-functions with periodic coefficients, Sib. Math. J., 57:330-339, 2016.
17. A. Laurinčikas, Joint discrete universality for periodic zeta-functions, Quaest. Math., 42(5): 687-699, 2019.
18. A. Laurinčikas, R. Macaitienė, On the joint universality for periodic zeta-functions, Math. Notes, 85(1-2):51-60, 2009.
19. A. Laurinčikas, K. Matsumoto, The universality of zeta-functions attached to certain cusp forms, Acta Arith., 98:345-359, 2001.
20. A. Laurinčikas, D. Šiaučiūnas, Remarks on the universality of the periodic zeta-functions, Math. Notes, 80(3-4):532-538, 2006.
21. K. Matsumoto, A survey on the theory of universality for zeta and L-functions, in M. Kaneko, Sh. Kanemitsu, J. Liu (Eds.), Number Theory: Plowing and Starring Through High Wawe Forms. Proceedings of the 7th China-Japan Seminar, Fukuoka, Japan, 28 October1 November, 2013, Number Theory Appl., Vol. 11,, World Scientific, Singapore, 2015, pp. 95144.
22. S.N. Mergelyan, Uniform approximations to functions of a complex variable, Usp. Mat. Nauk, 7(2):31-122, 1952 (in Russian).
23. Ł. Pańkowski, Joint universality for dependent L-functions, Ramanujan J., 45:181-195, 2018.
24. J. Steuding, On Dirichlet series with periodic coefficients, Ramanujan J., 6:295-306, 2002.
25. J. Steuding, Value-Distribution of L-Functions, Lect. Notes Math., Vol. 1877, Springer, Berlin, Heidelberg, New York, 2007.
26. S.M. Voronin, On the functional independence of Dirichlet L-functions, Acta Arith., 27:493503, 1975 (in Russian).
27. S.M. Voronin, Theorem on the "universality" of the Riemann zeta-function, Izv. Akad. Nauk SSSR, Ser. Mat., 39(3):475-486, 1975 (in Russian).

[^0]: ${ }^{1}$ The author is supported by the European Social Fund (project No. 09.3.3-LMT-K-712-01-0037) under grant agreement with the Research Council of Lithuania (LMT LT).
 (C) 2020 Authors. Published by Vilnius University Press

 This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

