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Abstract. The periodic zeta-function is defined by the ordinary Dirichlet series with periodic co-
efficients. In the paper, joint universality theorems on the approximation of a collection of analytic
functions by nonlinear shifts of periodic zeta-functions with multiplicative coefficients are obtained.
These theorems do not use any independence hypotheses on the coefficients of zeta-functions.
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1 Introduction

After a famous Voronin’s work [27], it is known that the majority of classical zeta- and
L-functions have the universality property, i.e., they approximate wide classes of analytic
functions. Voronin obtained the universality property for the Riemann zeta-function

ζ(s) =

∞∑
m=1

1

ms
, s = σ + it, σ > 1,

which has meromorphic continuation to the whole complex plane with unique simple pole
at the point s = 1 with residue 1. Let D = {s ∈ C: 1/2 < σ < 1}. Voronin considered
approximation of analytic functions defined on D by shifts ζ(s+ iτ), τ ∈ R. For the last
version of the Voronin universality theorem, it is convenient to use the following notation.
Denote by K the class of compact subsets of the strip D with connected complements,
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and by H0(K) with K ∈ K the class of continuous nonvanishing functions on K that
are analytic in the interior of K. Moreover, let measA stand for the Lebesgue measure
of a measurable set A ⊂ R. Then the Voronin theorem asserts that if K ∈ K and f(s) ∈
H0(K), then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣ζ(s+ iτ)− f(s)
∣∣ < ε

}
> 0.

A proof of the above statement by different methods is given in [1, 6], see also [13, 25].
A similar assertion is obtained for Dirichlet L-functions [1, 6, 11, 27]

L(s, χ) =

∞∑
m=1

χ(m)

ms
, σ > 1,

where χ is a Dirichlet character.
More general there are zeta-functions attached to certain cusp forms F

ζ(s, F ) =

∞∑
m=1

c(m)

ms
, σ >

κ+ 1

2
,

where c(m) are Fourier coefficients of the form F , and κ denotes the weight of F . Also,
the functions ζ(s, F ) has analytic continuation to an entire function. The universality for
ζ(s, F ) with normalized Hecke eigen cusp forms was obtained in [19].

The above mentioned zeta-functions have a one common feature, they have the Euler
product over prime numbers. For example,

ζ(s, F ) =
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1
,

where α(p) and β(p) are conjugate complex numbers such that c(p) = α(p) + β(p), and
p denotes a prime number.

A nonclassical generalization of the functions ζ(s) and L(s, χ) is the so-called peri-
odic zeta-function with multiplicative coefficients. Let a = {am: m ∈ N} be a periodic
sequence of complex numbers with minimal period q ∈ N. Obviously, there exists a con-
stant c = c(a) > 0 such that |am| 6 c for all m ∈ N. The periodic zeta-function ζ(s; a)
is defined by the Dirichlet series

ζ(s; a) =

∞∑
m=1

am
ms

,

which is absolutely convergent for σ > 1.
In virtue of the periodicity of a, the equality

ζ(s; a) =
1

qs

q∑
l=1

alζ

(
s,
l

q

)
(1)

Nonlinear Anal. Model. Control, 25(5):860–883

https://doi.org/10.15388/namc.2020.25.19278


862 A. Laurinčikas, M. Tekorė

holds, where ζ(s, α) is the classical Hurwitz zeta-function with parameter 0 < α 6 1 that
has, as ζ(s), meromorphic continuation to the whole complex plane with unique simple
pole at the point s = 1 with residue 1. Thus, the function ζ(s; a) can be analytically
continued to the whole complex plane, except for a simple pole at the point s = 1 with
residue

ra
def
=

1

q

q∑
l=1

al.

If ra = 0, then ζ(s; a) is an entire function.
Bagchi obtained [1] the universality of the function

ζ1(s; a) =

∞∑
m=1

(m,q)=1

am
ms

, σ > 1.

Steuding [24, 25] considered the function ζ(s; a) with nonmultiplicative sequence a and
proved its universality. The paper [20] is devoted to the universality of ζ(s; a) with mul-
tiplicative a (amn = aman for coprimes m and n, and a1 = 1). If the sequence a is
multiplicative, then the function ζ(s; a) has the Euler product, i.e., for σ > 1,

ζ(s; a) =
∏
p

(
1 +

∞∑
k=1

apk

pks

)
.

Kaczorowski [10] introduced new restricted type of universality for ζ(s; a) involving the
notion of height of the set K.

Zeta- and L-functions also have a joint universality property. In this case, a collection
of analytic functions is approximated simultaneously by a collection of shifts of zeta- or
L-functions. The first joint universality results were obtained for Dirichlet L-functions
in [1, 2, 6, 26], see also [11, 15, 25]. It is clear that, in the case of joint universality,
the approximating shifts must be in some sense independent. In the case of Dirichlet
L-functions, the nonequivalence of Dirichlet characters is used (two Dirichlet characters
are called equivalent if they are generated by the same primitive characters). The joint
universality Voronin theorem [26] says that if χ1, . . . , χr are pairwise nonequivalent
Dirichlet characters, for j = 1, . . . , r, Kj ∈ K and fj(s) ∈ H0(Kj), then, for every
ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: sup

16j6r
sup
s∈Kj

∣∣L(s+ iτ ;χj)− fj(s)
∣∣ < ε

}
> 0.

Pańkowski in [23] proposed a new way of joint universality for Dirichlet L-functions
by using different shifts for L-functions with arbitrary characters χ1, . . . , χr. Let α1,
. . . , αr ∈ R, a1, . . . , ar ∈ R+, and b1, . . . , br be such that

bj ∈

{
R if aj /∈ N,

(−∞, 0] ∪ (1 +∞) if aj ∈ N,
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and aj 6= ak or bj 6= bk if k 6= j. Moreover, let K ∈ K, f1, . . . , fr ∈ H0(K). Then the
Pańkowski theorem asserts that, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [2, T ]: sup

16j6r
sup
s∈K

∣∣L(s+ iαjτ
aj logbj τ ;χj

)
− fj(s)

∣∣ < ε
}
> 0.

Other joint universality results can be found in the excellent survey paper [21].
The present paper is devoted to the joint universality for periodic zeta-functions.

Suppose that, for j = 1, . . . , r, aj = {ajm: m ∈ N} is a periodic sequence of complex
numbers with minimal period qj ∈ N. Denote by q the least common multiple of the
periods q1, . . . , qr, by l1, . . . , lr1 (r1 = ϕ(q) is the Euler totient function) the reduced
system modulo q, and define the matrix

A =


a1l1 a2l1 . . . arl1
a1l2 a2l2 . . . arl2
. . . . . . . . . . . .
a1lr1 a2lr1 . . . arlr1

 .

Then, in [18], the following joint universality theorem has been proved.

Theorem 1. Suppose that the sequences a1, . . . , ar are multiplicative and rankA = r.
For j = 1, . . . , r, let Kj ∈ K and fj(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: sup

16j6r
sup
s∈Kj

∣∣ζ(s+ iτ ; aj)− fj(s)
∣∣ < ε

}
> 0.

To be precise, in [18], a technical condition
∞∑
k=1

|ajpk |
pk/2

6 cj < 1, j = 1, . . . , r,

was required, however, it can be easily removed.
Joint universality of more general collections of zeta-functions was studied in [12,14,

16, 17] and [7–9]. We note that joint mixed universality theorems imply those for zeta-
function with Euler product.

The aim of this paper is to replace the condition rankA = r in Theorem 1 by using
more general, nonlinear shifts ζ(s + iγj(τ); aj), with some functions γj(τ). In [18], the
linear shifts ζ(s+ iτ ; aj) were used. We propose two types of γj(τ).

Denote by U1(T0), T0 > 0, the class of real increasing to ∞ continuously differ-
entiable functions γ(τ) with monotonic derivative γ′(τ) on [T0,∞) such that γ(2τ) ×
maxτ6u62τ 1/γ′(u)� τ as τ →∞.

Theorem 2. Suppose that the sequences a1, . . . , ar are multiplicative, a1, . . . , ar are
real algebraic numbers linearly independent over the field of rational numbers Q, and
γ(τ) ∈ U1(T0). For j = 1, . . . , r, let Kj ∈ K and fj(s) ∈ H0(Kj). Then, for every
ε > 0,

lim inf
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ]: sup

16j6r
sup
s∈Kj

∣∣ζ(s+ iajγ(τ); aj
)
− fj(s)

∣∣ < ε
}
> 0.
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Moreover, the limit

lim
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ]: sup

16j6r
sup
s∈Kj

∣∣ζ(s+ iajγ(τ); aj
)
− fj(s)

∣∣ < ε
}
> 0

exists for all but at most countably many ε > 0.

Denote by Ur(T0) the class of real increasing to infinity continuously differentiable
functions γ1(τ), . . . , γr(τ) on [T0,∞) with derivatives γ′j(τ) = γ̂j(τ)(1 + o(1)), where
γ̂1(τ), . . . , γ̂r(τ) are monotonic and are compared in the sense that, for every subset J ⊂
{1, . . . , r}, #J > 2, there exists j0 = j0(J) such that γ̂j(τ) = o(γ̂j0(τ)) for j ∈ J ,
j 6= j0, and γj(2τ) maxτ6u62τ 1/γ̂j(u)� τ , j = 1, . . . , r, as τ →∞.

Theorem 3. Suppose that the sequences a1, . . . , ar are multiplicative, and (γ1(τ), . . . ,
γr(τ)) ∈ Ur(T0). For j = 1, . . . , r, let Kj ∈ K and fj(s) ∈ H0(Kj). Then, for every
ε > 0,

lim inf
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ]: sup

16j6r
sup
s∈Kj

∣∣ζ(s+ iγj(τ); aj
)
− fj(s)

∣∣ < ε
}
> 0.

Moreover, the limit

lim
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ]: sup

16j6r
sup
s∈Kj

∣∣ζ(s+ iγj(τ); aj
)
− fj(s)

∣∣ < ε
}
> 0

exists for all but at most countably many ε > 0.

For example, we may take a = (
√

2,
√

3,
√

5, . . . ,
√
pr), where pr is the rth prime

number, and γ(τ) = τ log τ , τ > 2, in Theorem 2, and γ1(τ) = τ log τ , γ2 = τ2 log τ,
. . . , γr(τ) = τ r log τ in Theorem 3.

Similar results can be obtained for more general zeta-functions with Euler product,
for example, for the Matsumoto zeta-functions.

For the proof of Theorems 2 and 3, we will apply the probabilistic approach based
on limit theorems for probability measures in the space of analytic functions. Denote by
B(X) the Borel σ-field of the space X, by H(D) the space of analytic functions on D =
{s ∈ C: 1/2 < σ < 1} endowed with the topology of uniform convergence on compacta,
let, for brevity, a = (a1, . . . , ar), a = (a1, . . . , ar), γ(τ) = (γ1(τ), . . . , γr(τ)), and

ζ(s; a) =
(
ζ(s; a1), . . . , ζ(s; ar)

)
.

More precisely, we will consider the weak convergence for

P 1
T (A)

def
=

1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

(
s+ iaγ(τ); a

)
∈ A

}
, A ∈ B

(
Hr(D)

)
,

and

P rT (A)
def
=

1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

(
s+ iγ(τ); a

)
∈ A

}
, A ∈ B

(
Hr(D)

)
,

as T →∞.
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2 Limit theorems on the torus

Let γ = {s ∈ C: |s| = 1} be the unit circle, P denote the set of all prime numbers, and

Ω =
∏
p∈P

γp,

where γp = γ for all p ∈ P. With the product topology and pointwise multiplication,
the torus Ω is a compact topological group, therefore on (Ω,B(Ω)), the probability
Haar measure exists. For the proof of Theorem 1 in [18], a limit theorem for probability
measures on (Ω,B(Ω)) was applied. In our case, the above theorem is not sufficient.
Define,

Ωr = Ω1 × · · · ×Ωr,
where Ωj = Ω for j = 1, . . . , r. Then, again, Ωr is a compact topological group,
therefore, on (Ωr,B(Ωr)), the probability Haar measure mr

H can be defined. This gives
the probability space (Ωr,B(Ωr),mr

H). For A ∈ B(Ωr), define

Q1
T (A) =

1

T − T0
meas

{
τ ∈ [T0, T ]:

(
p−ia1γ(τ): p ∈ P

)
, . . . ,(

p−iarγ(τ): p ∈ P
)
∈ A

}
.

Lemma 1. Suppose that a and γ(τ) satisfy the hypotheses of Theorem 2. Then Q1
T

converges weakly to the Haar measure mr
H as T →∞.

Proof. The dual group of Ωr is isomorphic to

r⊕
j=1

⊕
p∈P

Zjp,

where Zjp = Z for all j = 1, . . . , r and p ∈ P. Therefore, the Fourier transform g1T (k) of
Q1
T , k = (k1, . . . , kr), kj = {kjp ∈ Z: p ∈ P}, is of the form

g1T (k) =

∫
Ωr

r∏
j=1

∏∗

p∈P
ω
kjp
j (p) dQ1

T ,

where ωj(p) is the pth component of an element ωj ∈ Ωj , p ∈ P, and the star “ ∗ ” shows
that only a finite number of integers kjp are distinct from zero. Hence, by the definition
of Q1

T ,

g1T (k) =
1

T − T0

T∫
T0

r∏
j=1

∏∗

p∈P
p−iajγ(τ)kjp dτ

=
1

T − T0

T∫
T0

exp

{
−iγ(τ)

r∑
j=1

aj
∑∗

p∈P
kjp log p

}
dτ. (2)

Nonlinear Anal. Model. Control, 25(5):860–883
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Clearly,
g1T
(
(0, . . . , 0)

)
= 1. (3)

Now, suppose that k 6= (0, . . . , 0). We have

Ak
def
=

r∑
j=1

aj
∑∗

p∈P
kjp log p =

∑∗

p∈P
log p

r∑
j=1

ajkjp.

Let
pmin = min

16j6r
min
p

{
p: kjp ∈ kj , kjp 6= 0

}
and

pmax = max
16j6r

max
p

{
p: kjp ∈ kj , kjp 6= 0

}
.

Then there exists at least one p ∈ [pmin, pmax] such that kjp 6= 0 for some j, thus, by the
linear independence of the numbers a1, . . . , ar,

βp
def
=

r∑
j=1

ajkjp 6= 0.

The numbers βp are algebraic, moreover, it is well known that the set {log p: p ∈ P} is
linearly independent over Q. Therefore, by the Baker theorem, see, for example, [3], the
form

Ak =
∑∗

p∈P
βp log p 6= 0.

Using the monotonicity of γ′(τ) and the mean value theorem, we find by (2)

g1T (k)� 1

|A(k)|T
max

(
1

γ′(T )
,

1

γ′(T0)

)
. (4)

Since γ(τ) ∈ U1(T0), we have 1/γ′(T ) = o(T ). This, together with (3) and (4), shows
that

lim
T→∞

g1T (k) =

{
1 if k = (0, . . . , 0),

0 if k 6= (0, . . . , 0).

Since the right-hand side of the above equality is the Fourier transform of the Haar
measure mr

H , the lemma is proved.

For A ∈ B(Ωr), define

QrT (A) =
1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

(
s+ iγ(τ); a

)
∈ A

}
.

Lemma 2. Suppose that (γ1(τ), . . . , γr(τ)) ∈ Ur(T0). Then QrT converges weakly to the
Haar measure mr

H as T →∞.
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Proof. As in the proof of Lemma 1, we consider the Fourier transform of QrT

grT (k) =
1

T − T0

T∫
T0

exp

{
−i

r∑
j=1

γj(τ)
∑∗

p∈P
kjp log p

}
dτ. (5)

Obviously,
grT
(
(0, . . . , 0)

)
= 1. (6)

Therefore, it remains to consider the case k 6= (0, . . . , 0). For brevity, let

bj =
∑∗

p∈P
kjp log p.

Since, the set {log p: p ∈ P} is linearly independent over Q, we have bj 6= 0 for kj 6= 0,
j = 1, . . . , r. Put

A(τ) =

r∑
j=1

bjγj(τ).

Suppose that kj 6= 0 for j ∈ J ⊂ {1, . . . , r}, #J > 2. Then there exists j0 ∈ J such that
γ̂j(τ) = o(γ̂j0(τ)), τ →∞, for j ∈ J \ {j0}. Therefore,

A′(τ) =
∑
j∈J

bjγ
′
j(τ) =

∑
j∈J

bj γ̂j(τ)
(
1 + o(1)

)
= bj0 γ̂j0(τ)

(
1 + o(1)

)
,

(
A′(τ)

)−1
=

1

bj0 γ̂j0(τ)(1 + o(1))
=

1

bj0 γ̂j0(τ)

(
1 + o(1)

)
and

1

bj0 γ̂j0(τ)
=

(A(τ))−1

(1 + o(1))
=
(
A(τ)

)−1(
1 + o(1)

)
as τ →∞. Hence, using the monotonicity of γ̂j0(τ) and the second mean value theorem,
we find

T∫
T0

cosA(τ) dτ =

T∫
log T

cosA(τ) dτ +O(log T )

=

T∫
log T

1

A′(τ)
cosA(τ) dA(τ) +O(log T )

=

T∫
log T

1

bj0 γ̂j0(τ)
cosA(τ) dA(τ)

+

T∫
log T

o(1)

bj0 γ̂j0(τ)
cosA(τ) dA(τ) +O(log T )
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=

T∫
log T

1

bj0 γ̂j0(τ)
d
(

sinA(τ)
)

+

T∫
log T

o(1)(1 + o(1))

A′(τ)
cosA(τ) dA(τ) +O(log T )

= o(T ) +

T∫
log T

o(1) cosA(τ) dτ +O(log T )

= o(T ), T →∞,

because 1/(γ̂0(τ)) = o(τ) as τ →∞. By the same lines, we obtain

T∫
T0

sinA(τ) dτ = o(T ).

This, (6) and (5) show that, for k 6= (0, . . . , 0),

lim
T→∞

grT (k) = 0,

and the lemma follows from (6) in the same way as Lemma 1, because, in the case
#J = 1, A(τ) = bjγj(τ) for some j.

3 Case of absolutely convergent series

Lemmas 1 and 2 allow to prove limit theorems in the space Hr(D) for measures defined
by means of absolutely convergent Dirichlet series.

For fixed θ > 1/2, and m,n ∈ N, let vn(m) = exp{−(m/n)θ}. Define the series

ζn(s; aj) =

∞∑
m=1

ajmvn(m)

ms
, j = 1, . . . , r.

Then, in view of the definition of vn(m), the latter series are absolutely convergent for
σ > 1/2 [20]. For brevity, let

ζ
n
(s; a) =

(
ζn(s; a1), . . . , ζn(s; ar)

)
and, for B(Hr(D)),

P 1
T,n(A) =

1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

n

(
s+ iaγ(τ); a

)
∈ A

}
and

P rT,n(A) =
1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

n

(
s+ iγ(τ); a

)
∈ A

}
.
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Denote by ω = (ω1, . . . , ωr), ωj ∈ Ωj , j = 1, . . . , r, the elements of Ωr. Together with
series ζn(s; aj), we consider the series

ζn(s, ωj ; aj) =

∞∑
m=1

ajmωj(m)vn(m)

ms
, j = 1, . . . , r,

that are absolutely convergent for σ > 1/2 as well. Here, for m ∈ N,

ωj(m) =
∏
pl|m
pl+1-m

ωlj(p), j = 1, . . . , r.

Analogically, let, for ω ∈ Ωr,

ζ
n
(s, ω; a) =

(
ζn(s, ω1; a1), . . . , ζn(s, ωr; ar)

)
and, for B(Hr(D)),

P 1
T,n,ω(A) =

1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

n

(
s+ iaγ(τ), ω; a

)
∈ A

}
and

P rT,n,ω(A) =
1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

n

(
s+ iγ(τ), ω; a

)
∈ A

}
.

Let the mapping un : Ωr → Hr(D) be given by the formula

un(ω) = ζ
n
(s, ω; a).

Then the mapping un is continuous because of the absolute convergence of the series
ζn(s, ωj ; aj). Therefore, the definitions of P 1

T,n, P 1
T,n,ω and Q1

T , and P rT,n, P rT,n,ω and
QrT , Lemmas 1 and 2, and properties of weak convergence of probability measures [4,
Thm. 5.1] lead to the following limit theorems on (Hr(D),B(Hr(D))).

Lemma 3. Suppose that a and γ(τ) satisfy the hypotheses of Theorem 2. Then P 1
T,n and

P 1
T,n,ω converge weakly to the measure mr

Hu
−1
n as T →∞.

Lemma 4. Suppose that (γ1(τ), . . . , γr(τ)) ∈ Ur(T0). Then P rT,n and P rT,n,ω converge
weakly to the measure mr

Hu
−1
n as T →∞.

4 Mean square estimates

To pass from weak convergence for P 1
T,n and P rT,n to for P 1

T and P rT , respectively, as
T →∞, a certain approximation of ζ(s; a) by ζ

n
(s; a) is needed. This approximation is

based on the mean square estimates for ζ(s, aj).
Thus, let a be an arbitrary periodic sequence of complex numbers, and a ∈ R \ {0}.
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Lemma 5. Suppose that γ(τ) ∈ U1(T0). Then, for every fixed σ, 1/2 < σ < 1, and
t ∈ R,

T∫
T0

∣∣ζ(σ + iaγ(τ) + it; a
)∣∣2 dτ �σ,a T

(
1 + |t|

)
.

Proof. It is well known that, for fixed σ, 1/2 < σ < 1, the Hurwitz zeta-function ζ(s, α)
satisfies

T∫
T0

∣∣ζ(σ + it, α)
∣∣2 dt�σ,α T.

This, together with (1), implies the bound
T∫

T0

∣∣ζ(σ + it; a)
∣∣2 dt�σ,a T.

From this it follows
|t|+|a|γ(τ)∫
T0

∣∣ζ(σ + iu; a)
∣∣2 du�σ,a

(
|t|+ |a|γ(τ)

)
.

Therefore, for X > T0, we have that
2X∫
X

∣∣ζ(σ + iaγ(τ) + it; a
)∣∣2 dτ

=
1

a

2X∫
X

1

γ′(τ)

∣∣ζ(σ + iaγ(τ) + it; a
)∣∣2 dγ(τ)

�a max
X6τ62X

1

γ′(τ)

∣∣∣∣∣
2X∫
X

d

( t+aγ(τ)∫
T0

∣∣ζ(σ + iu; a)
∣∣2 du

)∣∣∣∣∣
�a,σ,a

(
|t|+ |a|γ(2X)

)
max

X6τ62X

1

γ′(τ)
�a,σ,a X

(
1 + |t|

)
because γ(τ) ∈ U1(T0). Taking T2−k−1 and summing over k = 0, 1, . . . , give the
estimate of the lemma.

Lemma 6. Let (γ1(τ), . . . , γr(τ)) ∈ Ur(T0). Then, for every fixed σ, 1/2 < σ < 1, and
t ∈ R,

T∫
T0

∣∣ζ(σ + iγj(τ) + it; a
)∣∣2 dτ �σ T

(
1 + |t|

)
for j = 1, . . . , r.
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Proof. Using the notation of Lemma 5, we have

2X∫
X

∣∣ζ(σ + iγj(τ) + it; a
)∣∣2 dτ

=

2X∫
X

1

γ′j(τ)

∣∣ζ(σ + iγj(τ) + it; a
)∣∣2 dγj(τ)

=

2X∫
X

(1 + o(1))

γ̂j(τ)
d

( t+γj(τ)∫
T0

∣∣ζ(σ + iu; a)
∣∣2 du

)

=

2X∫
X

1

γ̂j(τ)
d

( t+γj(τ)∫
T0

∣∣ζ(σ + iu; a)
∣∣2 du

)

+

2X∫
X

o(1)(1 + o(1))

γ′j(τ)
d

( t+γj(τ)∫
T0

∣∣ζ(σ + iu; a)
∣∣2 du

)

�σ,a |t|+ γj(2X) max
X6τ62X

1

γ̂j(τ)
+

2X∫
X

o(1)
∣∣ζ(σ + iγj(τ) + it; a

)∣∣2 dτ.

Hence,

2X∫
X

∣∣ζ(σ + iγj(τ) + it; a
)∣∣2 dτ �σ,a X

(
1 + |t|

)(
1 + r(X)

)
�σ,a X

(
1 + |t|

)
,

where r(X)→ 0 as X →∞. This proves the lemma.

Lemmas 5 and 6 have their modifications for

ζ(s, ω; a) =

∞∑
m=1

amω(m)

ms
, σ > 1,

with ω ∈ Ω. We note that the latter series is uniformly convergent on compact subsets of
the strip D for almost all ω with respect to the Haar measure on (Ω,B(Ω)).

Lemma 7. Suppose that γ(τ) ∈ U1(T0). Then, for every fixed σ, 1/2 < σ < 1, and
t ∈ R,

T∫
T0

∣∣ζ(σ + iaγ(τ) + it, ω; a
)∣∣2 dτ �σ,a,a T

(
1 + |t|

)
for almost all ω ∈ Ω.
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Proof. Since, for almost all ω ∈ Ω, see [20],

T∫
T0

∣∣ζ(σ + it, ω; a)
∣∣2 dt�σ,a T, (7)

the proof coincides with that of Lemma 5.

Lemma 8. Let (γ1(τ), . . . , γr(τ)) ∈ Ur(T0). Then, for every fixed σ, 1/2 < σ < 1, and
t ∈ R,

T∫
T0

∣∣ζ(σ + iaγj(τ) + it, ω; a
)∣∣2 dτ �σ,a T

(
1 + |t|

)
for almost all ω ∈ Ω, j = 1, . . . , r.

Proof. We repeat the proof of Lemma 6 and apply the estimate (7).

Now, we will apply Lemmas 5–8 for the approximation of ζ(s; a) by ζ
n
(s; a). For

g1, g2 ∈ H(D), let

ρ(g1, g2) =

∞∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
,

where {Kl: l ∈ N} ⊂ D is a sequence of compact sets such that

D =

∞⋃
l=1

Kl,

Kl ⊂ Kl+1, for all l ∈ N, and if K ⊂ D is a compact set, then K ⊂ Kl for some l. Then
ρ is a metric in H(D) inducing its topology of uniform convergence on compacta. Let
g
1

= (g11, . . . , g1r), g2 = (g21, . . . , g2r) ∈ Hr(D). Then taking

ρ(g
1
, g

2
) = max

16j6r
ρj(g1j , g2j)

gives the metric in the space Hr(D) inducing its product topology.

Lemma 9. Suppose that a1, . . . , ar ∈ R \ {0} and γ(τ) ∈ U1(T0). Then

lim
n→∞

lim sup
T→∞

1

T − T0

T∫
T0

ρ
(
ζ
(
s+ iaγ(τ); a

)
, ζ
n

(
s+ iaγ(τ); a

))
dτ = 0.

Moreover, for almost all ω ∈ Ω,

lim
n→∞

lim sup
T→∞

1

T − T0

T∫
T0

ρ
(
ζ
(
s+ iaγ(τ), ω; a

)
, ζ
n

(
s+ iaγ(τ), ω; a

))
dτ = 0.
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Proof. From the definitions of the metrics ρ and ρ it follows that it is sufficient to prove
that, for every compact set K ⊂ D,

lim
n→∞

lim sup
T→∞

1

T − T0

T∫
T0

sup
s∈K

∣∣ζ(s+ iajγ(τ); aj
)
− ζn(s+ iajγ(τ); aj)

∣∣dτ = 0

for all j = 1, . . . , r.
Let a and a 6= 0 be arbitrary. The definition of ζn(s; a) and the classical Mellin

formula

1

2πi

c+i∞∫
c−i∞

Γ(s)b−s ds = e−b, b, c > 0,

where Γ(s) denotes the Euler gamma-function, yield the integral representation [20]

ζn(s; a) =
1

2πi

θ+i∞∫
θ−i∞

ζ(s+ z; a)ln(z)
dz

z
, ln(s) =

s

θ
Γ

(
s

θ

)
ns.

Therefore, taking θ1 > 0, we have

ζn(s; a)− ζ(s; a) =
1

2πi

−θ1+i∞∫
−θ1−i∞

ζ(s+ z; a)ln(z)
dz

z
+Rn(s; a), (8)

where

Rn(s; a) = ra
ln(1− s)

1− s
.

Let K ⊂ D be an arbitrary compact set. Denote by σ + iv the points of K, and fix ε > 0
such that 1/2 + 2ε 6 σ 6 1− ε. Then, by (8),∣∣ζ(s+ iaγ(τ); a

)
− ζn

(
s+ iaγ(τ); a

)∣∣
�

∞∫
−∞

∣∣ζ(s+ iaγ(τ)− θ1 + it; a
)∣∣ |ln(−θ1 + it)|
| − θ1 + it|

dt+
∣∣Rn(s+ iaγ(τ); a

)∣∣.
Thus,

1

T − T0

T∫
T0

sup
s∈K

∣∣ζ(s+ iaγ(τ); a
)
− ζnv(s+ iaγ(τ); a

)∣∣dτ � I1 + I2, (9)

where

I1 =

∞∫
−∞

1

T − T0

T∫
T0

(∣∣∣∣ζ(1

2
+ ε+ i

(
t+ aγ(τ)

)
; a

)∣∣∣∣dτ) sup
s∈K

|ln( 1
2 + ε− s+ it)|
| 12 + ε− s+ it|

dt
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and

I2 =
1

T − T0

T∫
T0

sup
s∈K

∣∣Rn(s+ iaγ(τ); a
)∣∣dτ.

Since in the definition of ln(s) the gamma-function occurs, we can use the estimate

Γ(σ + it)� exp
{
−c|t|

}
, c > 0,

which is uniform in σ, σ1 6 σ 6 σ2, for arbitrary σ1 < σ2. Therefore, for s ∈ K,

|ln( 1
2 + ε− s+ it)|
| 12 + ε− s+ it|

=
n1/2+ε−σ

θ

∣∣∣∣Γ( 1
2 + ε− σ

θ
+

i(t− v)

θ

)∣∣∣∣
�θ,K n−ε exp

{
−c1
θ
|t|
}
, c1 > 0. (10)

Similarly, we find

Rn
(
s+ iaγ(τ); a

)
�θ,a,K n1−σ exp

{
−c2
θ
|a|γ(τ)

}
, c2 > 0. (11)

Now, putting θ = 1/2 + ε, and estimate (10) together with Lemma 5 yield

I1 �ε,K,a n
−ε

∞∫
−∞

(
1 + |t|

)
exp
{
−c3|t|

}
dt�ε,K,a n

−ε, c3 > 0. (12)

Moreover, properties of the functions γ(τ) and (11) show that with c4 > 0

I2 �ε,a,K n1/2−2ε
1

T − T0

T∫
T0

exp
{
−c4|a|γ(τ)

}
dτ

�ε,a,K n1/2−2ε

(
log T

T
+

1

T

T∫
log T

exp
{
−c4|a|γ(τ)

}
dτ

)

� n1/2−2ε

(
log T

T
+

1

T
exp

{
−c4

2
|a|γ(log T )

} T∫
log T

exp

{
−c4

2
|a|γ(τ)

}
dτ

)

= o(T )

as T →∞. This, (12) and (9) prove the first assertion of the lemma.
For almost all ω ∈ Ω, the function ζ(s, ω; a) is analytic in the half-plane σ > 1/2.

Therefore, the second assertion of the lemma is obtained similarly to that of the first with
using Lemma 7. In this case, we have not the integral I2.
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Lemma 10. Suppose that (γ1(τ), . . . , γr(τ)) ∈ Ur(T0). Then

lim
n→∞

lim sup
T→∞

1

T − T0

T∫
T0

ρ
(
ζ
(
s+ iγ(τ); a

)
, ζ
n

(
s+ iγ(τ); a

))
dτ = 0.

Moreover, for almost all ω ∈ Ω,

lim
n→∞

lim sup
T→∞

1

T − T0

T∫
T0

ρ
(
ζ
(
s+ iγ(τ), ω; a

)
, ζ
n

(
s+ iγ(τ), ω; a

))
dτ = 0.

Proof. We use Lemmas 6 and 8 and follow the proof of Lemma 9.

5 Limit theorems for ζ(s;a)

The results of Sections 3 and 4 are sufficient to prove limit theorems for ζ(s; a) without
explicit forms of limit measures. Together with P 1

T and P rT , we will prove the weak
convergence, as T →∞, for

P 1
T,ω(A) =

1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

(
s+ iaγ(τ), ω; a

)
∈ A

}
,

and

P rT,ω(A) =
1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

(
s+ iγ(τ), ω; a

)
∈ A

}
,

where A ∈ B(Hr(D)) and ω ∈ Ω.

Theorem 4. Suppose that a and γ(τ) satisfy hypotheses of Theorem 2. Then, on (Hr(D),
B(Hr(D))), there exists a probability measure P 1 such that P 1

T and P 1
T,ω both converge

weakly to P 1 as T →∞.

Proof. Let, for brevity, Vn = mr
Hu
−1
n , where un is the mapping from Lemma 3. Using

the absolute convergence for the series ζn(s; aj), we obtain by a standard way, see, for
example, [14], that the sequence of probability measures {Vn: n ∈ N} is tight, i.e., for
every ε > 0, there exists a compact setK = K(ε) ⊂ Hr(D) such that Vn(K) > 1−ε for
all n ∈ N. Then, by the Prokhorov theorem [4], the sequence {Vn} is relatively compact.
In what follows, we will use the language of random elements. Let θT be a random
variable on a certain probability space with measure µ, and uniformly distributed on
[T0, T ]. Define the Hr(D)-valued random element

X1
T,n = X1

T,n(s) = ζ
n

(
s+ iaγ(θT ); a

)
,

and denote by X1
n = X1

n(s) the Hr(D)-valued random element with the distribution Vn.
Then the assertion of Lemma 3 can be written in the form

X1
T,n

D−→
T→∞

X1
n. (13)

Nonlinear Anal. Model. Control, 25(5):860–883

https://doi.org/10.15388/namc.2020.25.19278


876 A. Laurinčikas, M. Tekorė

The relative compactness of {Vn} implies the existence of subsequences {Vnk
} such that

Vnk
converges weakly to a certain probability measure P 1 on (Hr(D), B(Hr(D))) as

k →∞. Thus,

X1
nk

D−→
k→∞

P 1. (14)

Define one more Hr(D)-valued random element

X1
T = X1

T (s) = ζ
(
s+ iaγ(θT ); a

)
.

Then, by the first assertion of Lemma 9, we find that, for every ε > 0,

lim
n→∞

lim sup
T→∞

µ
{
ρ
(
X1
T , X

1
T,n

)
> ε
}

6 lim
n→∞

lim sup
T→∞

1

T − T0

T∫
T0

ρ
(
ζ
(
s+ iaγ(τ), a

)
, ζ
n

(
s+ iaγ(τ), a

))
dτ = 0.

This, (13) and (14) show that all hypotheses of Theorem 4.2 from [4] are satisfied.
Therefore, we have the relation

X1
T

D−→
T→∞

P 1, (15)

or that P 1
T converges weakly to P 1 as T → ∞. Also, in view of (15), the measure P 1 is

independent of the subsequence {Vnk
}. Thus,

X1
n
D−→

T→∞
P 1. (16)

To obtain the weak convergence for P 1
T,ω , introduce the Hr(D)-valued random elements

X1
T,n,ω = X1

T,n,ω(s) = ζ
n

(
s+ iaγ(θT ), ω; a

)
and

X1
T,ω = X1

T,ω(s) = ζ
(
s+ iaγ(θT ), ω; a

)
.

Then, repeating the above arguments for X1
T,n,ω and X1

T,ω (all relations are true for
almost all ω ∈ Ωr) and using (16), we obtain the weak convergence of P 1

T,ω to P 1 as
T →∞. The theorem is proved.

Theorem 5. Suppose that (γ1(τ), . . . , γr(τ)) ∈ Ur(T0). Then, on (Hr(D), B(Hr(D))),
there exists a probability measure P r such that P rT and P rT,ω both converge weakly to P r

as T →∞.

Proof. We use arguments similar to those of the proof of Theorem 4 with application of
Lemmas 4 and 10.
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6 Identification of the limit measures

In this section, we identify the measures P 1 and P r in Theorems 4 and 5. For this, we
will use some results of ergodic theory.

For brevity, let, for τ > T0,

a1τ =
{(
p−ia1γ(τ): p ∈ P

)
, . . . ,

(
p−iarγ(τ): p ∈ P

)}
and

arτ =
{(
p−iγ1(τ): p ∈ P

)
, . . . ,

(
p−iγr(τ): p ∈ P

)}
.

Clearly, a1τ , a
r
τ ∈ Ω

r. On Ωr, define the families of transformations {Φ1
τ : τ > T0} and

{Φrτ : τ > T0}, where

Φ1
τ (ω) = a1τω and Φrτ (ω) = arτω, ω ∈ Ωr.

Then {Φ1
τ} and {Φrτ} are families of measurable measure preserving (because of invari-

ance of the Haar measure mr
H ) transformations on Ωr. Recall that a set A ∈ B(Ωr)

is called invariant with respect to {Φkτ : τ > T0} if, for every τ > T0, the sets A and
Aτ = Φkτ (A) can differ one from other at most by a set of mr

H -measure zero, k = 1 or
k = r. All invariant sets forms a σ-field. The family {Φkτ} is called ergodic if its σ-field
of invariant sets consists only from sets of mr

H -measure zero or one.

Lemma 11. The families {Φ1
τ} and {Φrτ} are ergodic.

Proof. We consider only {Φ1
τ} because the case {Φrτ} is similar, and apply the Fourier

transform method. In the proof of Lemma 1, we already have used that the characters χ
of the group Ωr are of the form

χ(ω) =

r∏
j=1

∏∗

p∈P
ω
kjp
j (p).

Thus, if the character χ is nontrivial (χ(ω) 6≡ 1), we have

χ(a1τ ) =

r∏
j=1

∏∗

p∈P
p−iajkjpγ(τ) = exp

{
−iγ(τ)

r∑
j=1

aj
∑∗

p∈P
kjp log p

}
.

Since the character χ is nontrivial, k 6= (0, . . . , 0). Thus, in the proof of Lemma 1, we
have seen that

r∑
j=1

aj
∑∗

p∈P
kjp log p 6= 0.

Therefore, there exists a value τ0 > T0 such that

χ
(
a1τ0
)
6= 1. (17)
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Now, let A be a invariant set with respect to {Φ1
τ}, and let IA is its indicator function.

Then, for almost all ω ∈ Ωr,
IA
(
a1τω

)
= IA(ω).

Thus, in view of the invariance of mr
H , the Fourier transform ÎA(χ) is

ÎA(χ) =

∫
Ωr

χ(ω)IA(ω) dmr
H =

∫
Ωr

χ
(
a1τ0ω

)
IA
(
a1τ0ω

)
dmr

H

= χ
(
a1τ0
) ∫
Ωr

χ(ω)IA(ω) dmr
H = χ

(
a1τ0
)
ÎA(χ).

Therefore, taking into account (17), we have

ÎA(χ) = 0 (18)

for all nontrivial characters of Ωr.
Denote by χ0 the trivial character of Ωr, and suppose that Î(χ0) = c. Then using the

orthogonality of characters and (18) give the equality

ÎA(χ) = c

∫
Ωr

χ(ω) dmr
H = c1̂(χ) = ĉ(χ)

for every character χ of Ωr. This shows that IA(ω) = c for almost all ω ∈ Ωr. Since
c = 0 or c = 1, we obtain that mr

H(A) = 0 or mr
H(A) = 1. The lemma is proved.

Lemma 11 allows to identify the limit measures in Theorems 4 and 5. On the proba-
bility space (Ωr,B(Ωr),mr

H), define the Hr(D)-valued random element

ζ(s, ω; a) =
(
ζ(s, ω1; a1), . . . , ζ(s, ωr; ar)

)
,

where

ζ(s, ωj ; aj) =

∞∑
m=1

ajmωj(m)

ms
, j = 1, . . . , r.

We note that the latter series, for almost all ωj , are uniformly convergent on compact
subsets of D. Moreover, in view of multiplicativity of ajm, for almost all ωj , the equality

ζ(s, ωj ; aj) =
∏
p∈P

(
1 +

∞∑
k=1

ajpkω
k
j (p)

pks

)

holds. Let Pζ be the distribution of the random element ζ(s, ω; a), i.e.,

Pζ(A) = mr
H

{
ω ∈ Ωr: ζ(s, ω; a) ∈ A

}
, A ∈ B

(
Hr(D)

)
.
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Theorem 6. Under hypotheses of Theorems 2 and 3, P 1
T and P rT converge weakly to the

measure Pζ as T →∞.

Proof. In view of Theorems 4 and 5, it suffices to prove that P 1 and P r coincides with
Pζ . We consider only the case of P 1.

Let A be a fixed continuity set of the measure P 1, i.e., P 1(∂A) = 0, where ∂A is
the boundary of A. Then the equivalent of weak convergence of probability measures in
terms of continuity sets [4] and Theorem 4 imply

lim
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

(
s+ iaγ(τ), ω; a

)
∈ A

}
= P 1(A). (19)

On the probability space (Ωr,B(Ωr),mr
H), define the random variable

θ(ω) =

{
1 if ζ(s, ω; a) ∈ A,
0 otherwise.

Clearly, the expectation of θ(ω) is

Eθ =

∫
Ωr

θ dmr
H = mr

H

{
ω ∈ Ωr: ζ(s, ω; a) ∈ A

}
= Pζ(A). (20)

In view of Lemma 11, the random process θ(Φ1
τ (ω)) is ergodic. Therefore, by the

Birkhoff–Khintchine ergodic theorem [5], for almost all ω ∈ Ωr,

lim
T→∞

1

T − T0

T∫
T0

θ
(
Φ1
τ (ω)

)
dτ = Eθ. (21)

On the other hand, by the definitions of θ and Φ1
τ ,

1

T − T0

T∫
T0

θ
(
Φ1
τ (ω)

)
dτ =

1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

(
s+ iaγ(τ), ω; a

)
∈ A

}
.

Thus, in virtue of (20) and (21),

lim
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ]: ζ

(
s+ iaγ(τ), ω; a

)
∈ A

}
= Pζ(A).

This, together with (19), implies the equality P 1(A) = Pζ(A) for all continuity sets A
of P 1. Hence, P 1(A) = Pζ(A) for all A ∈ B(Hr(D)). The theorem is proved.

7 Support

For the proof of universality theorems, supports of limit measures in the space of analytic
functions play the crucial role. Recall that the support of a probability measure P on
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(X,B(X)) is a minimal closed set SP such that P (SP ) = 1. The set SP consists of all
elements x ∈ X such that, for every open neighbourhoodG of x, the inequality P (G) > 0
is satisfied.

Theorem 7. Suppose that the sequences a1, . . . , ar are multiplicative. Then the support
of the measure Pζ is the set({

g ∈ H(D): g(s) 6= 0 or g(s) ≡ 0
})r

.

Proof. Denote by mjH the probability Haar measure on (Ωj ,B(Ωj)). Then mr
H is the

product of the measures m1H , . . . ,mrH , i.e., for A = A1 × · · · ×Ar ∈ B(Hr(D)) with
Aj ∈ B(H(D)),

mr
H(A) = m1H(A1) · · ·mrH(Ar).

The space Hr(D) is separable, therefore [4],

B
(
Hr(D)

)
= B

(
H(D)

)
× · · · × B

(
H(D)

)︸ ︷︷ ︸
r

.

Thus, it suffices to consider Pζ on the sets A = A1 × · · · ×Ar, A1, . . . , Ar ∈ B(H(D)).
It is known [20] that the supports of the measures

Pζj (A) = mjH

{
ωj ∈ Ωj : ζ(s, ωj ; aj) ∈ Aj

}
, Aj ∈ B

(
H(D)

)
, j = 1, . . . , r,

is the set {g ∈ H(D): g(s) 6= 0 or g(s) ≡ 0}. Moreover, by the above remarks,

Pζ(A) = mjH

{
ω ∈ Ωr: ζ(s, ω; a) ∈ A

}
= m1H

{
ω1 ∈ Ω1: ζ(s, ω1; a1) ∈ A1

}
· · ·mrH

{
ωr ∈ Ωr: ζ(s, ωr; ar) ∈ Ar

}
= Pζ1(A1) · · ·Pζr (Ar).

This, the supports of the measures Pζj and the minimality of the support prove the
theorem.

8 Proof of universality

Theorems 2 and 3 easily follows from Theorems 6 and 7 as well as the Mergelyan the-
orem [22] on the approximation of analytic functions by polynomials. For convenience,
we recall the latter beautiful theorem.

Lemma 12. Suppose thatK ⊂ C is a compact set with connected complements, and g(s)
is a continuous function on K and analytic in the interior of K. Then, for every ε > 0,
there exists a polynomial p(s) such that sups∈K |g(s)− p(s)| < ε.

Proof of Theorem 2.

1. Lemma 12 implies the existence of polynomials p1(s), . . . , pr(s) such that

sup
16j6r

sup
s∈Kj

∣∣fj(s)− epj(s)
∣∣ < ε

2
. (22)
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Consider the set

Gε =

{
(g1, . . . , gr) ∈ Hr(D): sup

16j6r
sup
s∈Kj

∣∣gj(s)− epj(s)
∣∣ < ε

2

}
.

By Theorem 7, the set Gε is an open neighbourhood of the element (ep1(s), . . . , epr(s)) of
the support of the measure Pζ . Thus, by a property of the support,

Pζ(Gε) > 0. (23)

Therefore, Theorem 6, together with equivalent of weak convergence of probability mea-
sures in terms of open sets [4, Thm. 2.1], gives

lim inf
T→∞

P 1
T (Gε) > Pζ(Gε) > 0.

This, the definitions of P 1
T and Gε, and (22) prove the first part of the theorem.

2. Define one more set

Ĝε =
{

(g1, . . . , gr) ∈ Hr(D): sup
16j6r

sup
s∈Kj

∣∣gj(s)− fj(s)∣∣ < ε
}
.

The boundary ∂Ĝε of Ĝε lies in the set{
(g1, . . . , gr) ∈ Hr(D): sup

16j6r
sup
s∈Kj

∣∣gj(s)− fj(s)∣∣ = ε
}
,

therefore, ∂Ĝε1 ∩ ∂Ĝε2 = ∅ for different positive ε1 and ε2. From this we have that
Pζ(∂Ĝε) = 0, i.e., the set Ĝε is a continuity set of the measure Pζ for all but at most
countably many ε > 0. Therefore, Theorem 6, together with equivalent of weak conver-
gence of probability measures in terms of continuity sets [4, Thm. 2.1], shows that

lim
T→∞

P 1
T (Ĝε) = Pζ(Ĝε) (24)

for all but at most countably many ε > 0. In view of (22), the inclusionGrε ⊂ Ĝrε follows.
Thus, by (23), we have Pζ(Ĝε) > 0. This, the definitions of P 1

T and Ĝε, and (24) prove
the second assertion of the theorem.

Proof of Theorem 3. We repeat the proof of Theorem 2 with P rT in place of P 1
T .
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12. A. Laurinčikas, Joint discrete universality for periodic zeta-functions. II, Quaest. Math.,
https://doi.org/10.2989/16073606.2019.1654554.
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16. A. Laurinčikas, Extension of the universality of zeta-functions with periodic coefficients, Sib.
Math. J., 57:330–339, 2016.
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