
Distinct Neurotoxic Effects of Extracellular Tau Species in Primary
Neuronal-Glial Cultures

Katryna Pampuscenko1
& Ramune Morkuniene1

& Lukas Krasauskas2 & Vytautas Smirnovas2 & Taisuke Tomita3 &

Vilmante Borutaite1

Received: 15 May 2020 /Accepted: 23 September 2020
# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Recent data from various experimental models support the link between extracellular tau and neurodegeneration; however, the
exact mechanisms by which extracellular tau or its modified forms or aggregates cause neuronal death remain unclear. We have
previously shown that exogenously applied monomers and oligomers of the longest tau isoform (2N4R) at micromolar concen-
trations induced microglial phagocytosis of stressed-but-viable neurons in vitro. In this study, we investigated whether extracel-
lular phosphorylated tau2N4R (p-tau2N4R), isoform 1N4R (tau1N4R) and K18 peptide can induce neuronal death or loss in primary
neuronal-glial cell cultures. We found that p-tau2N4R at 30 nM concentration induced loss of viable neurons; however, 700 nM p-
tau2N4R caused necrosis of both neurons and microglia, and this neuronal death was partially glial cell-dependent. We also found
that extracellular tau1N4R oligomers, but not monomers, at 3 μMconcentration caused neuronal death in mixed cell cultures: self-
assembly tau1N4R dimers-tetramers induced neuronal necrosis and apoptosis, whereas Aβ-promoted tau1N4R oligomers caused
glial cell-dependent loss of neurons without signs of increased cell death. Monomeric and pre-aggregated tau peptide containing
4R repeats (K18) had no effect in mixed cultures, suggesting that tau neurotoxicity might be dependent on N-terminal part of the
protein. Taken together, our results show that extracellular p-tau2N4R is the most toxic form among investigated tau species
inducing loss of neurons at low nanomolar concentrations and that neurotoxicity of tau1N4R is dependent on its aggregation state.
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SDS-PAGE Sodium dodecyl sulfate–polyacrylamide
gel electrophoresis

LDS Lithium dodecyl sulfate

Introduction

Structural changes and aggregation of tau (tubulin associated
unit) protein are thought to be involved in pathogenesis of
various neurodegenerative diseases including Alzheimer’s
disease (AD), corticobasal degeneration, Pick’s disease, pro-
gressive supranuclear palsy and others. Tau is a natively un-
folded protein, specifically expressed in neuronal cells.
Alternative splicing produces six protein isoforms varying in
number of N-terminal inserts (N) and C-terminal repeats (R):
2N4R, 1N4R, 0N4R, 2N3R, 1N3R, and 0N3R [1]. Normally,
tau protein stabilizes neuronal microtubules and may act as a
signalling protein. However, under pathological conditions,
tau may undergo hyperphosphorylation, truncation and aggre-
gation and may detach from microtubules causing disruption
of physiological integrity of neurons [2].

Intracellular tau inclusions, known as neurofibrillary tan-
gles (NFT), as well as accumulation of extracellular tau have
been detected in brains affected by neurodegenerative pro-
cesses (for review see [3]). In AD, elevated amounts of tau
were also found to be present in cerebrospinal fluid (CSF) and
blood of patients [4–6]. Initially the accumulation of tau in
CSF of AD patients has been thought to be related to neuronal
death [7]. However, since the first report in 2010 [8], more and
more studies clearly indicate that tau can be actively secreted
by neurons and even glial cells and that changes in extracel-
lular tau levels and composition are linked to pathological
conditions [9]. It has been shown that levels of total tau as
well as phosphorylated tau (p-tau) in CSF increase substan-
tially with the progression of AD [10–12], and changes in
CSF-total-tau levels may occur long before onset of clinical
symptoms [13]. While total tau is considered as a non-specific
marker for brain damage, p-tau is suggested to reflect NFT
pathology allowing to distinguish AD from other dementia [5,
14]. Moreover, in CSF of AD patients, in contrast to healthy
individuals, dimeric, trimeric and high molecular weight
(˃ 669 kDa) tau forms have been detected [15]. It has been
also reported that CSFs from AD patients contain N-terminal
andmid-domain tau fragments [16, 17], R repeats [18–20] and
full-length tau [21]. There is evidence that full-length tau and
various tau fragments can be secreted and taken up by cells
[22] and that pathological tau modifications (such as oligo-
merization and truncation) may stimulate secretion-
internalization cycle potentially promoting transmission of pa-
thology through the brain [23, 24]. Despite the fact that vari-
ous forms of extracellular tau are detected in brains and CSFs
of patients, little is known which of these tau species are most
toxic and cause neurodegeneration.

Aggregation/oligomerization of extracellular tau has been
suggested as one of the factors contributing to its toxicity.
Oligomers of various extracellular tau isoforms have been
shown to exert deleterious effects on synaptic function and
memory loss [25]. However, the extent of damage in tau
oligomer-treated cells may depend on the tau isoform compo-
sition [26]. Monomeric extracellular full-length tau, that is
generally considered as non-toxic form, may also be involved
in the fibrilization of intracellular tau [27, 28]. Thus, the link
between aggregation state of tau, isoform, post-translational
modification and neurotoxicity remains controversial.

Neuroinflammation and activation of microglia are com-
mon features of several tauopathies [29]. It has been shown
that microglia take up and secrete tau in vitro and in vivo [30,
31] and thus may accelerate tau propagation between neurons
[32].Microglia fromADbrain have been shown to contain tau
species that normally are not expressed by these cells [33].
Moreover, tau protein has been shown to activate microglial
cells and to enhance their phagocytic activity in various
models of neurodegeneration [34–36].

Previously, we have shown that extracellular full-length
tau2N4R, independently of its aggregation state, causes
microglia-dependent loss of stressed-but-viable neurons [37],
and Brelstaff and colleges have reported that neurons in trans-
genic P301S-tau mice are phagocytosed by microglia [38]. In
this study using rat mixed neuronal-glial cell cultures, we
compared neuronal-death-inducing effects of 3 extracellular
tau species—phosphorylated tau2N4R (p-tau2N4R), isoform
1N4R (tau1N4R) and K18 peptide, a microtubule binding do-
main composed of four repeats (4R) located in the C-terminal
part of the molecule. We found that among tau species inves-
tigated, p-tau2N4R, added extracellularly, was the most toxic
and induced proliferation of microglia and loss of neurons
from cultures already at low, 30 nM concentration, whereas
high, 700 nM p-tau2N4R concentration induced substantial
neuronal and microglial necrosis, while a number of
microglial cells remained unchanged. The neurotoxic effects
of extracellular tau1N4R were detected only at micromolar con-
centrations and were found to be dependent on oligomeriza-
tion state, whereas K18 tau fragment of 4R repeats was not
toxic to neuronal-glial cultures even at micromolar
concentrations.

Methods

Materials and Reagents

NuPAGE LDS sample buffer, NuPAGE 3–8% Tris-Acetate
Protein Gel, anti-tau (TAU5) antibody, alkaline phosphatase-
conjugated anti-mouse secondary antibody, chemilumines-
cent CDP-Star substrate, E. coli BL21 Star™ (DE3) strain
and isolectin GS-IB4 from Griffonia simplicifolia conjugated
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with Alexa Fluor488 and TNF-α (Rat) ELISA kit were pur-
chased from Invitrogen, ThermoFisher Scientific (USA). Cell
culture reagents DMEM Glutamax, foetal bovine serum,
horse serum, penicillin-streptomycin and Versene solution
were from Gibco, ThermoFisher Scientific (USA). Poly-(L)-
lysine was from R&D systems (USA). Synthetic Aβ1–42 was
obtained from Bachem (Switzerland), recombinant human
GSK-3β-phosphorylated Tau441 from SignalChem
(Canada) and human Tau K18/Tau PHF Core Protein from
R&D systems (USA). All other materials were purchased from
Sigma-Aldrich (USA).

Expression and Purification of Recombinant Tau

The pRK172 DNA construct expressing full-length tau 1N4R
isoform (tau1N4R) [39] was generously provided by Dr.
Michel Goedert (MRC Laboratory of Molecular Biology).
Recombinant tau1N4R protein was expressed in E. coli BL21
Star™ (DE3) strain and purified as described previously for
tau 2N4R isoform [37].

Cell Cultures and Treatments

Cell cultures were prepared from 5 to 7-day-old Wistar rats of
both sexes. Experimental procedures involving animals were
undertaken in accordance with the EU Directive 2010/63/EU
for animal experiments and the Republic of Lithuania law on
the care, keeping and use of experimental animals (approved
by Lithuanian State Food and Veterinary Service, ethical ap-
proval No. B6 (1.9)-855). Animals were bred and kept under
controlled environmental conditions with a 12-h light/12-h
dark cycle, at a constant temperature of 22 ± 1 °C. They were
housed in plastic cages (one female rat with pups per cage)
with water and food ad libitum in the animal breeding and
housing facilities of Lithuanian University of Health
Sciences. Rats were killed by increasing concentration of
CO2 in the air followed by cervical dislocation.

Primary neuronal-glial cell cultures (also called cerebellar
granule cells; CGC) were prepared from rat cerebellum as
described [40]. In brief, rat cerebellum was dissociated in
Versene (1:5000) solution, centrifuged (270 g × 5 min) and
suspended in DMEMGlutamax growth medium supplement-
ed with 5% foetal bovine serum, 5% horse serum, 13 mM
glucose, 20 mM KCl and 1% penicillin/streptomycin. Cell
cultures were plated in 0.001% poly-(L)-lysine coated 96-
well plates at 0.5 mln/ml density and grown for 6–7 days
before treatments. These mixed brain cell cultures consisted
of 87.2 ± 1.4% neurons and 8.9 ± 1.2% astrocytes (according
to cellular and nuclear morphology, and also immunostaining
test with NeuN and GFAP, respectively, was performed) and
3.9 ± 0.4% microglia (isolectin-IB4 positive). To block prolif-
eration of glial cells, cultures were treated with 10 μM cyto-
sine β-D-arabinofuranoside (Ara-C) at 2 DIV. The purity of

CGC cultures treated with Ara-C was 96%, with 0.5% mi-
croglia and 3.5% astrocytes.

Stock solutions of recombinant human GSK-3β-
phosphorylated tau441 (p-tau2N4R) and human tau K18/Tau
PHF core protein (K18) were prepared according to manufac-
turer’s recommendations; molar concentrations were calculat-
ed using provided information. Different conformations of
tau412 (tau1N4R) and tau K18 were prepared as described
previously [35, 39, 41]. Briefly, for preparation of fresh, mo-
nomeric tau (I protocol) recombinant tau1N4R or tau K18 was
suspended in 10 mM HEPES buffer (pH 7.4) at 1 mg/ml con-
centration. In the second protocol (II), tau1N4R or tau K18 was
suspended in 10 mM HEPES buffer (pH 7.4) at 1 mg/ml and
incubated at room temperature for 24 h. In the third protocol
(III), tau solution prepared by the second protocol was supple-
mented with Aβ1–42 oligomers (ratio of tau/Aβweight 140:1)
followed by pipetting for 1 min. Then, the sample was incu-
bated for 24 h at room temperature with continuous agitation
on orbital shaker at a 25 rpm speed. Soluble Aβ1–42 oligomers
were prepared as described in [42]. All protein solutions were
aliquoted and stored at − 80 °C.

Cell Viability Assessment

Cell viability was assessed by propidium iodide (PI; 7 μM)
and Hoechst 33342 (4 μg/ml) staining using fluorescence mi-
croscope (OLYMPUS IX71S1F-3, USA) as described in [42].
Neuronal cells were distinguished from glial cells by charac-
teristic morphology in phase-contrast images. PI-positive cells
were classified as necrotic and cells with condensed chromatin
as apoptotic. Microglial cells were stained with isolectin GS-
IB4 conjugated with AlexaFluor488 (7 ng/ml). Neuronal and
microglial cell numbers in neuronal-glial cultures were
assessed by counting specific cells in at least 5 microscopic
fields/well. Neuronal viability was expressed as percentage of
specific cells (viable, necrotic, apoptotic) of the total number
of neurons per microscopic field. The number of neurons/
microglia in tau protein-treated cultures was expressed as the
per cent of the total number of neurons/microglia in the con-
trol group, which was considered as 100%. All quantifications
were carried out using ImageJ program.

Non-reducing SDS-PAGE and Western Blot Analysis

The aggregation state of recombinant human tau1N4R protein
was determined by non-reducing SDS-PAGE and Western
blot analysis. Tau1N4R protein samples (150 ng) were supple-
mented with NuPAGE LDS (Invitrogen) sample buffer (with-
out heating and reductive agents) and immediately loaded
onto the precast NuPAGE 3–8% Tris-Acetate Protein Gel
(Invitrogen). Electrophoretic separation was performed using
50 mM Tricine, 50 mM Tris Base, 0.1% SDS running buffer.
Proteins were transferred onto polyvinylidene fluoride
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(PVDF; 0.45 μm) membrane using 25 mM Bicine, 25 mM
Bis-Tris (free base), 1 mM EDTA transfer buffer. Membrane
was blocked with 5% bovine serum albumin BSA (in Tris-
buffered saline with 0.05% Tween 20) for 1 h and then incu-
bated with primary antibody TAU5 (0,5 μg/ml) overnight
(4 °C). Detection was done using ready-to-use alkaline
phosphatase-conjugated anti-mouse secondary antibody
(Invitrogen) and chemiluminescent CDP-Star substrate
(Invitrogen). Analysis was performed using UVP imaging
system and Vision WorksLS Software.

Statistical Analysis

All data are presented as mean ± standard error (SE) of inde-
pendent cell culture preparations. Statistical comparison be-
tween independent experimental groups was performed using
a one-way ANOVA followed by a Tukey’s test. Statistical
analysis was carried out using SigmaPlot (11.0 version soft-
ware). p values < 0.05 were considered significant.

Results

Extracellular Phosphorylated Tau2N4R Exerts
Concentration-Dependent Neurotoxic Effects on
Neuronal-Glial Cultures

To test whether extracellular phosphorylated full-length
tau2N4R is neurotoxic, we incubated CGC cultures with
GSK-3β-phosphorylated tau2N4R (p-tau2N4R) for 48 h.
Typical phase-contrast and fluorescence microscopy images
of CGC cultures non-treated (control) and treated with 30 nM
and 700 nM p-tau2N4R are shown in Fig. 1a. We found that
30 nM p-tau2N4R had no effect on neuronal viability (center
panel of Fig. 1a and Fig. 1b) but significantly decreased the
total number of neurons by 29% (center panel of Fig.1a and
Fig. 1c) compared with control cultures (left panel of Fig. 1a
and Fig. 1c). The total number of viable, necrotic and apopto-
tic neurons was 250 ± 43 cells/field in p-tau-treated cultures
compared with 371 ± 31 cells/field in control cultures.
Treatment with 30 nM p-tau2N4R also caused microglial pro-
liferation: there was about 2-fold increase in microglial cell
numbers in p-tau2N4R group compared with control (green
fluorescent isolectin-IB4-labelled cells in the central panel of
Fig.1a and Fig. 1d). In contrast, 700 nM p-tau2N4R causes
substantial necrosis identified as intensive PI-red fluorescence
of nuclei of both neurons and microglia (right panel of Fig.
1a): the number of PI-positive (necrotic) neuronal cells in-
creases up to 76%, whereas the percentage of neurons with
condensed chromatin (apoptotic) remains unchanged (Fig.
1b). Importantly, 700 nM p-tau2N4R did not change the total
number of neurons in cultures (Fig. 1c) as well as the total
number of microglial cells (isolectin-IB4 positive) compared

with the control (right panel of Fig. 1a and Fig. 1d). The total
number of viable, necrotic and apoptotic neurons was 437 ±
23 cells/field in cultures treated with 700 nM p-tau2N4R which
is comparable with numbers in control cultures (see above).
Note that most of microglial cells (~ 95%) were PI-positive
necrotic or with unstained nuclei (Fig. 1e). We also tested
lower concentrations of p-tau; however, addition of 3 nM p-
tau2N4R had no effect on neuronal and microglial viability and
cell numbers in CGC cultures during 48-h incubations (data
not shown).

To test whether glial cells mediate neurotoxic effects of p-
tau2N4R in neuronal-glial cultures, the experiments were per-
formed using CGC cultures treated with 10 μM Ara-C to
prevent proliferation of glial cells. After such treatment, cul-
tures contained about 96% neuronal cells. In Ara-C-treated
cultures, 30 nM p-tau2N4R had no effect on neuronal viability
(Fig. 1b), nor on the total number of neurons in cultures during
48-h incubation (Fig. 1c). Total numbers of viable, necrotic
and apoptotic neurons were 432 ± 43 in control and 522 ± 71
in p-tau2N4R group. Addition of 700 nM p-tau2N4R to Ara-C-
treated cultures causes 39% neuronal necrosis after 48-h incu-
bation (Fig. 1b), and this effect of p-tau2N4R is about 50%
lower than in Ara-C untreated CGC cultures. The percentage
of apoptotic cells remained unchanged (Fig. 1b). Viability of
neurons in Ara-C-treated cultures is about 55%, and this pa-
rameter is also substantially higher than in neuronal-glial cul-
tures without Ara-C treatment (Fig. 1b). The total number of
neurons in Ara-C-treated cultures remain unchanged after in-
cubation with 700 nM p-tau2N4R (Fig. 1c) – 483 ± 39 cells/
field. These data suggest that glial cells―microglia or/and
astrocytes―mediate at least partially the neurotoxic effect of
extracellular p-tau2N4R.

Extracellular Tau1N4R Exerts Aggregation State-
Dependent Neurotoxic Effects in Neuronal-Glial
Cultures

Recently we have shown that tau2N4R exerts aggregation-
independent but microglia-mediated neurotoxic effects in
CGC cultures [37]. In this study, we investigated whether
another isoform tau1N4R can be toxic to neurons and whether
neurotoxicity depends on the oligomerization level of tau pro-
tein. We used 3 preparations of tau1N4R: fresh, monomeric
tau1N4R (I) and tau1N4R incubated for 24 h at room temperature
(II) and tau1N4R incubated for 24 h at room temperature in the
presence of Aβ1–42 oligomers (at 140:1 ratio of tau/Aβ; III).
Distribution of monomeric/oligomeric tau species in prepara-
tions was confirmed by SDS gel electrophoresis followed by
Western blot analysis. As can be seen in Fig. 2, tau1N4R pre-
pared by the I protocol gave only ~ 65 kDa band which rep-
resents monomeric form. Incubation of tau1N4R at room tem-
perature for 24 h (II protocol) resulted in the formation of ~
130 kDa and ~ 250 kDa species representing dimeric and
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tetrameric forms. And incubation of tau1N4R with Aβ oligo-
mers at room temperature (III protocol) generated ~ 130 kDa
and 250 kDa and higher molecular weight tau1N4R aggregates.

As shown in Fig. 3, monomeric tau1N4R prepared by the I
protocol and added to cultures at 3 μM concentration had no
effect on neuronal viability (Fig. 3a) and total neuronal cell
numbers in cultures (Fig. 3b). However, tau1N4R prepared by
the II protocol was highly neurotoxic: as shown in Fig. 3a,
only 13 ± 5% of neurons remain viable, while percentage of
necrotic and apoptotic cells increases to 60 ± 6% and 28 ± 8%,
respectively. The total number of neurons in tau1N4R (II)-treat-
ed cultures significantly decreases by 34% compared with
neuronal numbers in control cultures (Fig. 3b). Tau1N4R pre-
pared by III protocol did not change viability of neuronal cells
(Fig. 3a); however, it significantly, by 40%, reduced the total

number of neurons compared with the control cultures (Fig.
3b). Meanwhile, total numbers of microglial cells during 48-h
incubation are similar in all treatment groups―control and
treated with tau1N4R prepared by all 3 protocols (Fig. 3c).
Microglial viability was also not affected by any of tau1N4R

preparations (data not shown). Lower extracellular tau1N4R

concentrations, 1–2 μM, prepared by 3 different protocols
and added to neuronal-glial cultures for 24 and 48 h, did not
induce neuronal death or loss of neurons (data not shown). In
these experiments, vehicle controls were not different from
control cells (data not shown).

To test the role of glia in tau1N4R-induced neurotoxicity, we
performed experiments on Ara-C-treated, 96% neuronal cell
cultures. Addition of 3 μM tau1N4R (II protocol) to Ara-C-
treated cultures causes 35% necrosis and only 5% apoptosis
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Fig. 1 Effects of phosphorylated tau2N4R protein (p-tau2N4R) on
neuronal-glial (CGC) and Ara-C-treated CGC cultures. To inhibit glial
cell proliferation neuronal-glial CGC cultures were treated with 10 μMof
Ara-C at 2 DIV. Cell cultures were treated with p-tau2N4R for 48 h. a
Representative images of control and p-tau2N4R-treated cell cultures.
Neurons were visualized by phase-contrast microscopy and identified
according to characteristic shape and morphology. Cell nuclei were
stained with propidium iodide (PI) and Hoechst 33342. PI-positive cells
(red) were classified as necrotic, cells showing nuclear shrinkage or
fragmentation (Hoechst, bright blue) as apoptotic, and PI-negative cells
with homogeneous Hoechst-staining as viable. Microglial cells were
labelled with isolectin GS-IB4 -AlexaFluor488 conjugate (green). Scale
bars, 100 μm. b The effect of p-tau2N4R on neuronal viability. Neuronal
viability was expressed as percentage of specific cells (viable, necrotic,
apoptotic) of the total number of neurons per field. The total number of

neurons was quantified in five randomly chosen microscopic fields (at ×
20 magnification) and averaged for each experiment. There were 415 ±
24 viable, 20 ± 6 necrotic and 2 ± 1 apoptotic neurons in a field of view in
the control group. c The effect of p-tau2N4R on number of neurons in
cultures. The total number of neurons (viable, necrotic and apoptotic)
was quantified in five randomly chosen microscopic fields. Neuronal
number in control group was taken as 100%. d The effect of p-tau2N4R

on number and e viability of microglia in cultures. Microglial cell number
presented as percentage of control group (100%). Microglia were counted
at × 10 magnification. ***Statistically significant effect (p < 0.001)
compared with control group, **statistically significant effect (p < 0.01)
versus control, ###statistically significant effect (p < 0.001) compared
with p-tau2N4R group. Data are presented as means ± SE for 3
independent experiments
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of neurons after 48-h incubation (Fig. 3a). These parameters
of neuronal death were significantly lower than in mixed
neuronal-glial cultures. In accord, neuronal viability after in-
cubation with tau1N4R (II protocol) is about 3 times higher in
Ara-C-treated than in Ara-C untreated CGC cultures (Fig. 3a).
Addition of tau1N4R (III protocol, 3 μM) had no effect on the
viability of neuronal cells in Ara-C-treated cultures (Fig. 3a).
Importantly, significant reduction of number of glial cells
(from 13 to 4%) in Ara-C-treated cultures prevented
tau1N4R-induced decrease in total neuronal number which
was observed in mixed neuronal-glial cultures after treatment
with tau1N4R prepared by both II and III protocols: total num-
bers of neurons in Ara-C-treated cultures exposed to tau1N4R

are similar as in control group (Fig. 3b), suggesting involve-
ment of glial cells in tau1N4R-induced removal of neurons
from cultures.

Taken together, the data suggest that effects of extracellular
tau1N4R are highly dependent on its aggregation state: mono-
meric tau1N4R is not toxic to neuronal-glial cultures, while
tau1N4R aggregates generated by II and III protocols were
toxic but in different ways—dimers-tetramers of tau1N4R lead
to extensive neuronal cell death, whereas tau1N4R dimers-
tetramers and higher aggregates induced neuronal loss without
apparent signs of death. In the presence of low number of glial
cells in Ara-C-treated cultures, neurotoxic effects of tau1N4R

aggregates were less pronounced.

Tau K18 Fragment Is Non-toxic to Neuronal-Glial
Cultures

Finally, we investigated whether tau 4-repeat domain frag-
ment K18 is neurotoxic when applied extracellularly in mixed
neuronal-glial cultures. Similarly as in the case of tau1N4R, 3
different preparations of K18 peptides were added to CGC
cultures at 3 μM concentrations and incubated for 48 h. As
demonstrated in Fig. 4, regardless of K18 preparation used,
the peptide had no effect on neuronal viability and numbers of
neurons and microglia in CGC cultures (Fig. 4), suggesting
that extracellular tau K18 peptide is not toxic to neuronal and
glial cells.

Discussion

In the current study, we demonstrated that p-tau2N4R is the
most toxic form of tau compared with tau1N4R, K18 peptide
and previously described effects of tau2N4R [37]: p-tau2N4R

induced loss of neurons (without apparent signs of cell death)
from mixed neuronal-glial cultures at low nanomolar (30 nM)
concentration, whereas toxicity of other forms of tau was ob-
served in the range of much higher micromolar concentra-
tions. 30 nM p-tau-induced neuronal loss was accompanied
by proliferation of microglia and was prevented in the glia-
depleted cultures suggesting that loss of neurons in this case
was mediated by glial cells. Similar microglia-mediated neu-
ronal loss was previously demonstrated to occur in CGC cul-
tures treated with tau2N4R but at 3 μM concentration [37]. At
700 nM concentration, p-tau2N4R caused extensive necrosis of
neurons. However, in glia-depleted cultures, deleterious effect
of 700 nM p-tau2N4R was less pronounced than in mixed cul-
tures, and resulted in higher numbers of viable neurons and
less necrosis, suggesting that glial cells might be also involved
in p-tau-induced neuronal death. Interestingly, the numerical
densities of neurons in cultures treated with 700 nM p-tau2N4R

were not affected indicating that dead (necrotic and apoptotic)
neurons were not removed from these cultures. This may be at
least partially related to death of microglial cells which was
also observed in 700 nM p-tau2N4R-treated cultures resulting
in lower numbers of microglia than in cultures treated with

55
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Fig. 2 Representative image of PVDF membrane showing the
aggregation of recombinant tau1N4R protein. Recombinant tau1N4R

protein samples were prepared by 3 different protocols: tau1N4R protein
was suspended in 10 mM HEPES buffer (pH 7.4) at 1 mg/ml concentra-
tion (I protocol) and was incubated at room temperature for 24 h (II
protocol) or incubated with Aβ1–42 oligomers (ratio tau/Aβ 140:1) (III
protocol). PVDF membrane was probed with anti-tau (TAU5) antibody.
For details, see Methods, Section “Non-reducing SDS-PAGE and
Western Blot Analysis”. Non-reducing SDS-PAGE and Western blot
analysis
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30 nM p-tau2N4R. Toxic effects of p-tau have been previously
described in other studies showing that soluble fractions de-
rived from AD hippocampi or transgenic mice brains and rich
in p-tau produced reduction in the numbers of viable cells in
primary microglia or BV2 cell cultures [43]. It has been also
shown that phagocytosis of apoptotic SH-SY5Y cells contain-
ing intracellular p-tau species caused microglial death in vitro
[43]. Recently, we have shown that CSF from AD patients
exhibited distinct neurotoxicity in neuronal-glial co-cultures
leading to loss of viable neurons (early stage AD-CSF) or
neuronal necrosis and reduction in microglial numbers (mid-
dle stage AD-CSF, rich in p-tau) [12].

One may argue that concentrations of p-tau2N4R (30 and
700 nM representing 2 and 50μg/ml, respectively) used in our
study were higher than found in interstitial fluid (ISF) of trans-
genic mice (~ 250 ng/ml, total-tau) [44, 45] or in CSFs of

patients with neurodegenerative disorders (~ 300–400 pg/ml,
total-tau; ~ 50–100 pg/ml, p-tau) [10–12]. However, it is not
clear what local concentrations of various tau species may be
present in the brain under pathological conditions. It has been
suggested that since intraneuronal tau concentration was esti-
mated to be in micromolar range (~ 2 μM) and in AD frontal
and temporal cortex tau concentrations were found to be in-
creased by 5–7-folds, the local tau concentrations after cell
death might be higher than in CSF or ISF [46–49].

Changes in tau isoform content appear to contribute to
cognitive decline in mouse models of neurodegeneration
[50], and growing evidence suggests that there is a link be-
tween tau predominant isoform and tauopathy [51–53]. In our
study, we showed that extracellular tau1N4R exerts aggregation
state-dependent neurotoxicity in neuronal-glial cultures dis-
tinct from previously described aggregation state-
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Fig. 4 Tau K18 peptide has no effect in neuronal-glial cultures. Cell
cultures were treated with 3 μM tau K18 of different preparations for
48 h as described in Methods. The effect of tau K18 on (a) neuronal
viability, (b) numbers of neuronal and (c) microglial cells in cultures.
Cell viability was measured by PI and Hoechst 33342 staining and

expressed as ratio of viable to total (viable, necrotic, apoptotic) number
of neurons. Neuronal and microglial cell number are presented as
percentage of control group (100%). There was no statistically significant
differences between groups. Data are presented as means ± SE for 3
independent experiments
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Fig. 3 Neurotoxic effects of tau1N4R in neuronal-glial (CGC) and Ara-C-
treated CGC cultures. To induce aggregation, monomeric tau1N4R protein
(I protocol) was incubated at room temperature for 24 h with (III
protocol) or without (II protocol) Aβ1–42 oligomers (ratio tau/Aβ
140:1). Cell cultures were treated with 3 μM tau1N4R. To inhibit glial
cell proliferation, neuronal-glial co-cultures were treated with 10 μM of
Ara-C at 2 DIV. a The effect of tau1N4R on neuronal viability. Neuronal
viability was measured by Hoechst33342/propidium iodide staining as

described in methods. b The effect of tau1N4R on neuronal and c
microglial cell numbers. Number of neurons and microglia in tau1N4R -
treated groups expressed as the percent of the total number of appropriate
cells in the control group, which were considered as 100%.
***Statistically significant effect (p < 0.001) compared with control
group. Data are presented as means ± SE for 3–13 independent
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independent neurotoxicity of the longest tau isoform tau2N4R

[37]. In the current study, we demonstrated that tau1N4R olig-
omers, but not tau1N4R monomers, caused neuronal loss in
neuronal-glial cultures: tau1N4R oligomers prepared by II pro-
tocol (self-aggregation, dimers-tetramers) caused massive
neuronal necrosis and apoptosis that was only partially
microglia- and/or astrocyte-dependent. Meanwhile tau1N4R

oligomers obtained using III protocol (pre-incubated with
trace amounts of Aβ, larger aggregates) caused disappearance
of neurons without morphological features of cell death, and
this loss was abolished by reduction of glial cells in culture.
Different neurotoxicity of tau1N4R oligomers could be ex-
plained by distinct size and/or shape of tau species that might
affect their internalization [54–57].

Here we show that neurotoxicity of p-tau2N4R and tau1N4R

oligomers was significantly prevented by elimination of glial
cells, indicating relationship between extracellular tau-caused
neuronal loss and neuroinflammatory processes. Several stud-
ies have shown that tau can directly activate glial cells [34, 58,
59], and even overexpression of tau protein in neurons caused
changes in microglial cells [36, 60]. However, the specific
isoforms or oligomeric species of tau involved in neuronal
damage and the interaction between neurons and microglia
under pathological conditions need to be investigated in more
details.

Tau2N4R and tau1N4R differ by the number of N-terminal
inserts (N) derived from alternative splicing of MAPT tran-
scripts [1]. Sincemonomeric and pre-aggregated K18 contain-
ing 4R fragment had no effect in neuronal-glial cultures, it is
possible to speculate that C-terminus of molecule has no in-
fluence on extracellular tau neurotoxicity. The role of N-
terminal residues in tau-caused neurotoxicity have been de-
scribed in several studies showing that overexpression and
accumulation of the particular N-terminal tau fragments
caused mitochondrial dysregulation, NMDA receptor-
mediated calpain and ERK/MAPK activation leading to cell
death [61, 62]. Tau protein in human CSF appears in isoforms
containing 0 N, 1 N and 2 N [63], but whether tau isoform
profile changes along with neurodegeneration is unknown.

Conclusions

In summary, our results indicate that neurotoxicity of extra-
cellular tau depends on the isoform as well as on phosphory-
lation and aggregation state of tau species and involve partic-
ipation of glial cells. The identification of the link between
extracellular tau protein type/state, neuronal dysfunction and
glial cell activation status may have potential implications for
control of inflammation in neurodegeneration.
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