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ABBREVIATIONS 

APC antigen presenting cell 
AT archetype 
BHB barcoding hydrogel bead 
bHLH basic helix–loop–helix 
BSA bovine serum albumin 
CSC cancer stem cell 
CTC circulating tumor cell 
DC dendritic cell 
DE differential expression 
DEG differentially expressed gene 
ECM extracellular matrix 
EDTA ethylenediaminetetraacetic acid 
EGF epidermal growth factor 
EMD earth mover distance 
EMT epithelial to mesenchymal transition 
ER estrogen receptor 
FACS fluorescence-activated cell sorting 
FGF fibroblast growth factor 
GSEA gene set enrichment analysis 
GWAS genome-wide association study 
HER2 human epidermal growth factor receptor 2 
HGF hepatocyte growth factor 
HMLE Human Mammary Epithelial 
HVGs highly variable genes 
ICB immune checkpoint blockade  
IFCs integrated fluidic circuits 
IVT in vitro transcription 
K562 human immortalized myelogenous leukemia cells 
MEGM Mammary Epithelial Cell Growth Medium 
MET Mesenchymal-Epithelial Transition 
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MHC major histocompatibility complex 
NK cells Natural killer cells 
PBMC peripheral blood mononuclear cell 
PCA principal component analysis 
PCR polymerase chain reaction 
pDC plasmacytoid dendritic cell 
PDMS poly(dimethylsiloxane) 
PR progesterone receptor 
QC quality control 
qPCR quantitative polymerase chain reaction 
RT reverse transcription 
RTK tyrosine kinase receptor 
scRNA-Seq single-cell transcriptome sequencing 
SSS second-strand synthesis 
t-SNE t stochastic neighbor embedding 
TAM tumor-associated macrophage 
TF transcription factor 
Th cell T helper cell 
TIL tumor-infiltrating leukocyte 
TME tumor microenvironment 
TNBC Triple-Negative Breast Cancer 
Treg cell T regulatory cell 
UMAP uniform Manifold Approximation and Projection 
UMI unique molecular identifier 
WHO world health organization 
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INTRODUCTION 

It is widely accepted that cells are the basic functional units of life [1]. The 
sequencing of the human genome was a vital stepping stone towards the 
understanding of the biology of human cells [2]. However, it was clear from 
the outset that the genetic information alone will not be sufficient to fully 
understand the observed diversity in a complex organism as it will be identical 
between all cells of the same individual. On the other hand, studying the 
transcriptome is particularly useful for unraveling the cell identity. It can 
reveal the active functional elements of the genome and the molecular 
constituents shaping cell phenotypes, but is difficult to study in bulk when the 
cells are averaged. While bulk transcriptomic analysis was first demonstrated 
in 1995 [3], the notable breakthrough for studying the biology of complex 
organisms came in 2009 with the first method for analyzing the transcriptomes 
of single cells [4]. However, the initial attempts were slow and costly, 
restricted to only a handful of individual cells. As a result, broader use of 
single-cell transcriptome analysis was impractical and out of reach for many 
researchers. Ultimately, in 2015 a major technological breakthrough came in 
the form of droplet microfluidic platforms for high-throughput single-cell 
analysis, allowing for the analysis of tens of thousands of single cells in a 
single experiment [5, 6]. These technological advances have galvanized the 
research community and ushered in a new age of complex organism biology. 
New discoveries followed immediately after – a new type of dendritic cells 
(DCs) was identified, a new cell type responsible of cystic fibrosis was 
identified and a number of tissue atlases were constructed to reveal new rare 
cell types. Success of these initial efforts have proven the potential of this new 
technology. Its importance was further solidified by the establishment of the 
Human Cell Atlas consortium that aims to create a comprehensive reference 
map of all human cells [7, 8]. Naturally, given the early stage of the research 
field, the single-cell transcriptome analysis still faces many challenges on 
different fronts. From a technological viewpoint, single-cell transcriptome 
analysis needs to become more efficient, robust, and cheaper to enable its 
widespread use and applications beyond fundamental research. On the other 
hand, even in its imperfect form, the technology is indispensable for complex 
biological system analysis and will undoubtedly lead to meaningful 
discoveries. 

Cells are not static but dynamic systems that can acquire different 
phenotypes. One of the well-studied and fascinating phenotypic transitions is 
the Epithelial-Mesenchymal Transition (EMT). During the EMT process, 
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polarized epithelial cells progressively lose their attachment to each other and 
the basal membrane, assuming a spindle-like morphology and becoming 
motile. In the human body, EMT is observed in different biological contexts 
and is accordingly classified into three types [9, 10]. Type 1 EMT is associated 
with development processes. EMT in the context of wound healing and tissue 
regeneration in a fully developed organism is assigned to Type 2. In this 
setting, EMT is not only beneficial but can also lead to organ fibrosis. Finally, 
Type 3 EMT is observed in cancer. Together with genetic and epigenetic 
changes, EMT circuitry promotes tumor formation, survival, and is critical for 
metastasis formation. EMT has been studied for over 30 years. Many insights 
have already been gained about the EMT process and its significance in 
different biological processes [11]. Initially, the research focused on 
understanding the role of EMT in development. However, over the last two 
decades, increasing efforts have been devoted to studying EMT in the context 
of cancer. Given its significance in pathology, EMT is an attractive target for 
therapy. However, many open questions remain, and to date, it has been hard 
to capitalize on the extensive knowledge accumulated due to the complexity 
of the underlying biochemical circuitry. 
Whereas phenotypic changes during EMT is a natural process important for 
healthy organism development and survival, phenotypic and genotypic 
changes during tumor development often lead to serious health consequences. 
Cancer cells, typically through the process of mutagenesis, acquire new 
phenotypes that can impede the survival of the entire organism. For example 
breast cancer is the most frequent cancer type found in women [12]. An 
estimated 2.1 million women were diagnosed in 2018, with over 600,000 
patients succumbing to the disease [13]. The prevalence of breast cancer is on 
the rise, with a 3.1% yearly increase in cases globally [14]. Overall, breast 
cancer is a well-studied disease, and systematic treatment guidelines are 
established. As a result, 70-80% of patients with early-stage, non-metastatic 
disease are cured [12]. By contrast, patients with advanced (metastatic) 
disease are considered incurable, and their median survival is 2-3 years [15]. 
Thus, improvements in advanced breast cancer care are as relevant as ever.  
On a molecular level, breast cancer is a highly heterogeneous disease defined 
by different genetic mutations and diverse tumor microenvironments. 
Recently, immune infiltration of breast cancer tumors has been receiving 
renewed attention, as it is becoming a clearly potent therapeutic target. 
However, clinical developments in breast cancer immunotherapy have been 
slow as compared to other tumor types. Historically, breast cancer tumors 
have been considered immunologically quiescent or ‘cold’. However, recent 
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evidence shows that this is not true as a significant amount of immune cells is 
detected in most breast cancer tumors [16, 17]. Furthermore, in line with the 
observed heterogeneity of breast cancer, the immune cell subset also heavily 
depends on a particular tumor type [18]. Overall, while a lot is now known 
about separate immune cell types and signaling pathways operating in the 
breast TME, the full picture is far from clear, making it hard to draw general 
conclusions. Understanding the intricate interplay between different cell types 
in different breast tumor types is the key to the successful application of 
immunotherapy in breast cancer care. 

  
Study goal 
 

To optimize and apply high-throughput droplet microfluidics based 
single-cell transcriptome analysis platform to studying complex biological 
systems. 
 
Objectives 

• Describe a detailed protocol for implementing the high-throughput 
single-cell transcriptome analytical platform 

• Optimize the single-cell RNA-Seq library preparation 
• Characterize the EMT process using the HMLE cell model system 
• Predict and validate the targets of the ZEB1 transcription factor, which 

plays a key role in EMT process 
• Construct an immune cell atlas of breast cancer patients 
• Characterize the immune cell infiltrate of breast cancer tumors 

 
Scientific novelty 
 

In this work, a detailed protocol for high-throughput single-cell 
transcriptome analysis (scRNA-Seq) using droplet microfluidics was 
described for the first time. This method is termed “inDrops” and the 
described procedure, which is reported in a high-tier journal, enables the non-
expert users to conduct transcriptome studies on thousands of single-cells. 
Furthermore, the optimizations of the inDrops protocol described in this work 
have led up to 10-times more efficient capture of unique transcripts of the 
individual cells as compared to the previous protocol version. The 
optimizations also provide additional cost savings, an important consideration 
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when working with multiple samples. Results presented in this thesis are 
relevant not only for the inDrops method but also for other single-cell 
transcriptome analysis techniques as many of them share at least some of the 
protocol steps.  

In the second part of this work the described scRNA-Seq platform was 
used to study a complex biological process employing a well established 
model system. To this end, the Epithelial-Mesenchymal Transition was 
characterized at single-cell resolution for the first time using HMLE cell 
model. Results provide an unprecedentedly detailed view of the EMT process. 
Given the novelty of scRNA-Seq technology, the initial part of the analysis 
was focused on investigating whether the single-cell results capture the 
already known biological features such as activation of certain gene pathways. 
Results presented in this work show that single-cell transcriptome analysis can 
reliably uncover the inctricate biological insights precisely matching the 
cellular mechanisms characterized through decades of research. It proves that 
the droplet-based scRNA-Seq technology can provide unbiased and 
biologically relevant data. For example, in this study it was shown that 
epithelial cells undergoing EMT first revert to a stem-like state before 
acquiring the mesenchymal phenotype; a phenomena that has been questioned 
and debated for a long time. One drawback of scRNA-Seq technology, 
however, is the sparse nature of the data. Because of this, weak gene-gene 
corelations can be obscured in scRNA-Seq data. To overcome this limitation, 
we have shown how the so called zero-inflated distributions of gene-
expression matrices can be addressed using imputation algorithms based on 
data diffusion. The imputed data was then used to accurately predict the 
targets of the master-regulator transcription factor of the EMT process – 
ZEB1, revealing a previously unapreciated extent of trancsriptional 
reprograming that occurs during the EMT. The results presented in this section 
of the thesis demonstrate how single-cell transcriptome analysis can be used 
to discover regulatory gene-gene relationships without the need for system 
perturbations. Such approach is particularly valuable for clinical sample 
analysis and could ease the discovery of rogue regulatory pathways in disease. 

Having shown that droplet-based scRNA-Seq can successfully 
reconstitute complex cellular processes, the final part of this thesis focuses on 
clinical samples. In collaboration with MSKCC (USA) clinicians for the first 
time, an atlas of immune cells was constructed combining over 62000 
individual immune cells isolated from eight patients and spanning normal and 
cancerous breast tissue, as well as peripheral blood and the lymph node. This 
atlas revealed a vast diversity in immune cells of both the adaptive and innate 
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immune systems. Results confirm a high degree of variability between 
patients, as could be expected. Importantly, the diversity of T cell phenotypic 
states was observed to be significantly expanded in breast tumors as compared 
to normal breast tissue, indicating that the complex signaling and local niches 
in tumor microenvironment plays a significant role in shaping the host 
immune response. The top three components contributing to this phenotypic 
expansion are the T cell activation, terminal differentiation, and hypoxic 
response. The results presented in this study show gradual cell ordering along 
the activation component and argue against a prevalent view of activated T 
cells rapidly traversing through sparse transitional cell states toward a few 
predominant, discrete, and stable states, including Treg, effector, memory, and 
exhausted T cells. Similar results have also been recently reported in the 
context of autoimmune disease [19]. Finally, the results of this work, in 
concordance with several recent reports in the field, prove that macrophage 
activation states exist as continuum of states and not as mutually exclusive 
discrete states. Results presented in this work solidify and reinforce recently 
reported similar findings from bulk analyses of tumor-associated 
macrophages. 
 
Defending statements 

• The efficiency of droplet microfluidics based single-cell 
transcriptome analysis platform can be increased by optimizing 
individual steps in the workflow. 

• Imputation algorithms are effective for recovering gene-gene 
relationship information in sparse single-cell transcriptomics data. 

• Single-cell transcriptome analysis can accurately predict activation 
targets of transcription factors. 

• Tissue microenvironment affects the diversity of immune phenotypic 
states. 

• T cells in breast tumor span a phenotypic state continuum that is 
shaped by local niches of the tumor microenvironment. 
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1 LITERATURE REVIEW 

1.1. Single-cell transcriptome sequencing technologies 

1.1.1.  The development of single-cell sequencing technologies 

Technological advancements often lead to new biological discoveries. A 
perfect example is an invention of the microscope in the 17th century that led 
to the discovery of cells [20]. Today it is understood that cells are the basic 
functional units of life [1]. A major stepping stone towards the understanding 
of how a human cell functions was the sequencing of the human genome. 
However, the genetic information alone is not sufficient to understand the 
observed diversity in a complex organism. What is need is the study of the 
transcriptome, which could reveal the active functional elements of the 
genome and the molecular constituents of different cells [21]. Therefore it is 
not surprising that the development of single-cell transcriptome sequencing 
(scRNA-Seq) has transformed the analysis of complex biological systems [22, 
23]. The power of scRNA-Seq was first demonstrated in 2009 and scaled 
rapidly over the next decade [4, 24]. Initial efforts relied on manual cell 
separation and focused on profiling a few cells at a high depth [25-27]. 
However, it was soon realized that the power of the technology lies in the 
sampling of many cells in parallel [28]. A substantial number of different 
methods have been published over the years [29-31]. Each of these has aimed 
to increase the throughput and decrease the cost of the analysis (Table 1.1) 
and a few different technologies were commercialized along the way (Table 
1.2). The commercial systems offer a straightforward workflow and high-
quality data, yet they tend to have a higher price tag as compared to the in-
house protocols. Combining the diverse academic and industrial 
developments of the scRNA-Seq technology has grown in importance in many 
branches of life sciences. The formation of an international initiative best 
exemplifies this. The Human Cell Atlas consortium aims to create a 
comprehensive reference map of all human cells [7, 8]. To date, the initiative 
has over 1800 individual members from 71 countries. It has the potential to 
transform cell biology similarly to the Human Genome Project at the turn of 
the century [31, 32].  
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Table 1.1. Summary of single-cell transcriptome analysis technologies. * marks 
costs indicated in the original publication. • marks the „inDrops“ method. 

Year Number 
of cells 

Cell isolation 
technology 

Cost per 
cell Focus Citation 

2009 30 Manual N/A First 
demonstration [4] 

2011 92 Manual 50$* Sample 
multiplexing [28] 

2013 91 Integrated fluidic 
circuits 9-25$ [29] Automation [33] 

2014 1536 
FACS, 

Liquid-handling 
robots 

1.3$ [29] 
Automation and 

throughput 
increase 

[34] 

2015 11 149 Droplet 
microfluidics• 0.1$ [35] 

Cost reduction 
and throughput 

increase 
[5] 

2015 44,808 Droplet 
microfluidics 0.1$ [29] 

Cost reduction 
and throughput 

increase 
[6] 

2017 14 218 Picowells 0.1$* Ease of use [36] 

2017 42 035 In situ barcoding 0.03$* 
Cost reduction 
and throughput 

increase 
[37] 

2018 156 049 In situ barcoding 0.01$* 
Cost reduction 
and throughput 

increase 
[38] 

 
 
Table 1.2 Summary of commercial scRNA-Seq solutions. Costs as of April 2020. 
Costs do not include sequencing costs. 

Company Cell isolation 
technology 

Cost per 
cell 

Cells analyzed 
per run Analysis type 

10X 
Genomics 

Droplet 
microfluidics 0.5-1$ Up to 24 000 3’ counting WTA 

Dolomite 
bio 

Droplet 
microfluidics 0.25-0.4$ Up to 50 000 3’ counting WTA 

1cellbio Droplet 
microfluidics 0.2$ Up to 40 000 3’ counting WTA 

Rio-rad Droplet 
microfluidics 1$ Up to 1200 3’ counting WTA 

Celsee Microwells N/A Up to 40 000 3’ counting WTA 

BD Microwells 0.6$ Up to 10 000 3’ counting WTA 
and targeted panels 

Fluidigm Integrated 
fluidic circuits 3$ Up to 800 3’ counting or Full-

length WTA 

Split Bio In situ 
barcoding N/A Up to 100 000 3’ counting WTA 

 
  



16 
 
 

1.1.2.  Single-cell transcriptome amplification strategies 

scRNA-Seq protocols rely on reverse transcription (RT) reaction to 
barcode the cell transcriptome. Using specifically designed barcoded RT 
primers, the mRNA of individual cells is copied and converted to copy DNA 
(cDNA) molecules. The primers have a few distinct features: i) RNA capture 
sequence, ii) a UMI for digital transcript counting, iii) a barcode that will be 
common to all transcripts from a single cell (cell barcode), and iv) a standard 
sequencing adapter that can also be used as a PCR handle (Figure 1.1, panel 
A) [31]. Most protocols rely on having poly(T) sequences at 3’ end for 
capturing polyadenylated RNA, thus efficiently excluding rRNA and tRNA 
from further analysis. Specific protocols are available for the analysis of 
totalRNA [39, 40] or miRNAs [41]. Similarly, commercial options for 
targeted panel analysis at single-cell resolution are available (Table 1.2)  

The amount of totalRNA in individual cells ranges from 1-50pg [42]. Such 
a low amount of material means that the barcoded cDNA needs to be amplified 
before the sequencing library is produced. There are two strategies for cDNA 
amplification: exponential amplification by PCR and linear amplification by 
IVT(Figure 1.1, panel B). Amplification by PCR requires a second adaptor 
sequence to be added to the cDNA molecule. This can be done by utilizing the 
intrinsic terminal transferase activity of the M-MuLV reverse transcription 
enzyme. The enzyme tends to add a few nucleotides (mostly cytosines) at the 
3' end of the cDNA molecule [43]. This short sequence is then used as an 
annealing site for the template switching primer (termed TSO). This primer 
serves as a template for the reverse transcription enzyme to synthesize the end 
of cDNA molecule. Because TSO sequence will be identical for all cDNA 
molecules this site can be used as a primer binding site during PCR [28] 
(Figure 1.1, Panel B). Alternatively, poly(A) tail can be added to the 3' end of 
the cDNA molecule by terminal deoxynucleotidyl transferase. This tail is then 
used as a priming site for the second strand synthesis, during which a second 
PCR primer site is introduced [4, 44]. The linear amplification of cDNA by 
IVT requires a T7 promoter sequence to be included in the RT primer (Figure 
1.1, Panel A). After producing a double-stranded cDNA molecule in the 
second strand synthesis reaction, the T7 protomer is used to produce multiple 
copies of antisense RNA (Figure 1.1, Panel B) [45, 46].  

Regardless of the strategy used, amplification leads to noise and bias in the 
final data [29, 47]. Due to its linear nature, the IVT amplification strategy is 
less prone to produce noise [48]. However, this comes at the cost of additional 
downstream protocol steps, more hands-on time, and an overall longer 
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protocol. On the other hand, limiting PCR cycles can help to reduce the noise 
during exponential amplification [29]. Furthermore, amplification noise and 
biases are corrected by UMI counting during the data processing step [49, 50]. 
To achieve this, the UMI needs to be sequenced together with the cDNA 
molecule. Such an approach analyzes the transcriptome by digital counting of 
3' or 5' transcript ends, and full-length transcript analysis is not possible [31, 
48]. While this is a cost-effective transcript quantification strategy, it means 
that largely no sequence information is retained. Detection of splice variants, 
alternative transcripts, single-nucleotide variants, and fusion transcripts is 
possible only with a full-length transcriptome sequencing protocol [48]. It is 
important to note that such an approach is significantly more expensive [29]. 
Utilizing long-read sequencing technologies allows retaining UMI for digital 
transcript counting and full-length sequence information [51]. However, the 
sequencing throughput of long-read technologies is not yet sufficient for 
transcriptome-wide quantification. A recently developed strategy allows 
researchers to utilize UMIs transcript counting and to partially reconstruct the 
sequenced transcripts in silico [52]. Such an approach enables digital 
transcriptome quantification as well as assigning particular transcripts to 
specific isoforms and allelic origin.  

 

 
Figure 1.1. Panel A: RT primer structure schematics. Panel B: Library 
amplification strategies. 
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1.1.3.  Single-cell transcriptome barcoding platforms 

One of the main technical challenges of the scRNA-Seq process is the 
compartmentalization of the transcriptome barcoding reaction. It is a crucial 
step that, to a large extent, determines the throughput of the analysis. The aim 
is to compartmentalize the single-cell transcriptome barcoding reaction in 
such a way that only a single cell would get a single cell barcode (Figure 1.1). 
Several different strategies exist for the isolation of single cells. Cells can be 
sorted into microwell plates, isolated in integrated microfluidic circuits, 
encapsulated in microfluidic droplets, distributed in microfluidic picowells, or 
permeabilized and barcoded in situ (Figure 1.2) [31]. It is important to note 
that most scRNA-Seq methods require a single cell suspension as the input 
[31]. This means that tissues need to be dissociated into single cell suspensions 
before transcriptome barcoding. The preparation of high-quality single-cell 
suspensions is vital for high-quality data [48]. Tissue dissociation procedures 
can be a source of significant noise and bias in the final data and can lead to 
particular cell type loss [53-55]. One way to circumvent the fresh tissue 
handling issues is to use single nuclei from frozen tissues for transcriptome 
barcoding [53, 56-58]. Analyzing RNA from nuclei can provide the same cell 
type deconvolution information as fresh tissue sample analysis [59]. However, 
single nuclei sequencing typically results in reduced transcriptome capture 
efficiency [31, 48]. 

The first scRNA-Seq protocols relied on manual isolation of cells into 
individual tubes [4, 27]. Advances in sample multiplexing allowed to increase 
the scale of the analysis and to adopt microtiter plates [28]. Cells can be 
distributed into wells by limiting dilution. However, more often, fluorescence-
activated cell sorting (FACS) is used to arrange single cells into microtiter 
plates or custom microwell arrays (Figure 1.2, Panel A) [34, 60-62]. Each well 
has a unique primer that contains a unique cell barcode sequence. Using FACS 
to isolate cells facilitates the exclusion of dead or damaged cells, and allows 
to enrich for target cell populations (e.g., through surface marker labeling). 
However, specialized flow cytometers and liquid handling robots required by 
such protocols are expensive and require dedicated staff [24]. Furthermore, 
relatively large reaction volumes mean that cost per cell is high due to the 
amount of consumables used and would it be prohibitively expensive to 
process large cell numbers (Table 1.1) [29]. Moreover, studies have shown 
that cell sorting can have a distinct effect on gene expression profiles [63].  

Three different issues have to be addressed to increase the cell barcoding 
throughput: cell compartmentalization made fully automated, reaction 
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volumes scaled-down, and the number of compartments drastically increased. 
Microfluidic technologies can be successfully employed to address these 
challenges [64]. Initially integrated fluidic circuits (IFCs) were used to 
automate cell capture (Figure 1.2, Panel B) [33, 65]. However, IFC did not see 
widespread adoption due to the limited throughput and high associated costs 
(Table 1.2) [24]. A real breakthrough in single-cell transcriptome barcoding 
came with the development of droplet microfluidics platforms that can 
simultaneously address all of the challenges specified above (Figure 1.2, Panel 
C) [5, 6]. Such platforms rely on microfluidic chips to combine aqueous 
phases with inert oil to produce monodisperse droplet emulsions. Typically a 
few different aqueous phases are infused into a chip containing: cells, 
barcoding beads (each bead has covalently attached unique primers), and RT 
reagents. Cell loading is governed by Poisson distribution, and only a fraction 
of droplets contain a cell. Using dilute cell suspensions ensures that double 
cell events (termed doublets) are rare. Depending on the particular platform, 
barcoding beads are introduced into droplets in a random - Poisson [6] or 
controlled manner [5]. Combined with the random cell loading, this means not 
every cell gets barcoded. Depending on the particular platform, only 2-4% [6] 
or over 75% [35] of cells will get a barcode. This limitation makes the droplet-
based platforms less attractive when rare cell populations need to be sampled 
or when the sample size is limited (less than 2000 cells) [31]. On the other 
hand, droplet microfluidics offers unparalleled throughput allowing users to 
barcode over 50000 cells in a single experiment. Furthermore, several droplet 
microfluidic platforms were successfully commercialized (Table 1.2) and 
have been widely adopted by the research community [66].  

As an alternative to droplet microfluidics, picoliter well arrays (picowell 
platforms) can be used towards the same goal (Figure 1.2, Panel D) [36, 67-
69]. Separate wells on the array act as separate compartments for single-cell 
transcriptome barcoding. The same barcoded beads that are used in droplet 
microfluidic platforms are delivered into individual wells by gravitational 
settling. Occupancy of wells by beads is limited by geometry in such a way 
that only a single bead fits a single well, while Poisson statistics governs cell 
loading. Thus a diluted cell suspension is used to avoid doublets. One 
important feature of picowell platforms is that no special microfluidic 
equipment is required for the experiments [24, 36]. However, picowell 
platforms require more hands-on time. Moreover, the throughput of such 
platforms is limited to the array size. For example, the Seq-Well platform 
utilizes an 86000 well array, and it is possible to barcode up to 8000 cells in a 
single experiment [36]. 
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Further barcoding throughput increase and cost reduction were enabled by 
in situ single-cell barcoding technologies (Figure 1.2, Panel E) [37, 38]. These 
platforms utilize a fixed and permeabilized cell or nuclei as a transcriptome 
barcoding compartment. Barcode diversity is generated by the split-and-pool 
strategy. Fixed single cells or nuclei are permeabilized and deposited into 96-
well plate were each well contains a unique primer (unique cell barcode). Each 
well may get 10-100 cells, and transcripts are barcoded in situ by adding 
barcode sequences via RT or ligation reactions. Cells are then pooled and 
deposited into a different 96-well plate containing different barcodes, and the 
barcoding process is repeated. Such an approach allows to combinatorically 
scale the barcode diversity – 96n (where n is the number of barcoding plates 
used). In situ barcoding, approaches allow to barcode over 100000 cells in a 
single run in the most cost-effective manner (Table 1.1) and do not require the 
use of any sophisticated equipment. However, no independent benchmarking 
of in situ barcoding platforms has been performed yet, and it remains unclear 
how well the protocols perform on different cell types and in the hands of 
independent users. 

It is important to note that both the droplet and the picowell based 
platforms have a lower transcript recovery than the microplate-based 
protocols [29, 31, 48]. Most recent microtiter plate platform improvements 
allow to capture up to 80% of the cell transcriptome [52]. However, the 
sensitivity (ability to detect genes that are expressed at a low level – a few 
molecules per cell) is not dependent on the cell compartmentalization platform 
[30]. Therefore, choosing which platform to use depends on the aim of the 
study. If many cells need to be profiled, droplet or picowell based platforms 
are the most cost-effective solution. If, on the other hand, the cell sample size 
is limited, and transcriptomes need to interrogated at a high depth – microtiter 
plate based platforms are a better choice. Furthermore, In situ barcoding 
platforms hold much promise for ultra-high throughput scRNA-Seq 
applications. However, external benchmarking is needed before these 
platforms can be directly compared to other existing solutions. 

Over 50 different single-cell transcriptome barcoding protocols and 
protocol variants exist [31]. Specific protocols differ in their features, 
throughput, workflow duration, and required equipment. Furthermore, 
protocols are continuously being updated and improved. High protocol 
diversity makes it difficult to point out the best one. Several detailed protocols 
have been published [35, 60, 70], and different commercial options are 
available (Table 1.2). Altogether, this makes single-cell transcriptome 
analysis widely accessible to biological researchers. Moreover, single-cell 
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analysis is fast becoming a tool that is transforming the way complex 
biological systems are analyzed. 

 
Figure 1.2. Different single cell transcriptome barcoding platforms. Panel A: 
Cells are sorted into 96-well plates with FACS. Panel B: Valve microfluidics 
platform. Panel C: Droplet microfluidics platform. Panel D: Nanowell 
microfluidics platform. Panel E: Split-and-poll method for barcoding single-cell 
transcriptomes. 
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1.2. Single-cell transcriptomics data analysis strategies 

1.2.1. Overview of single-cell transcriptomics data analysis 

Single-cell transcriptomics data analysis is a multistep process. It can be 
divided as follows: pre-processing, cleaning and normalization, imputation, 
dimensionality reduction and visualization, downstream analysis. Each step 
has different tools and considerations associated with it that are detailed in the 
following sections. Overall, scRNA-Seq data analysis is a fast-growing 
research field that, to date, lacks standardization. Over 600 different analysis 
tools exist, and they are implemented in a variety of programming languages 
[71, 72]. A typical single-cell analysis workflow consists of a collection of 
independently developed tools. However, integrated environments – analysis 
platforms have been developed to facilitate data movement between 
algorithms and improve user experience different [71]. A few of the most 
popular command-line platforms are Scater [73], Seurat [74], and Scanpy 
[75]. Graphical user interface platforms have also been developed – Granatum 
[76], ASAP [77], FASTGenomics [78]. While such applications are more 
convenient to use, they provided limited analysis flexibility, and their use is 
not widespread. Efforts to standardize scRNA-Seq data analysis are underway 
in the framework of the Human Cell Atlas project [79]. General guidelines are 
already being put in place [72]. However, new tools are constantly being 
developed while their benchmarking naturally lags behind. Often, results from 
benchmarking studies indicate that no single algorithm can provide the best 
result in all cases [80-82]. Therefore scRNA-Seq analysis will keep requiring 
highly skilled experts to deliver reliable results. A particular area of promise 
is deep learning algorithms. Having transformed fields like computer vision 
and natural language processing, these algorithms are starting to be 
increasingly applied in genomics and single-cell analysis [83, 84]. 

 

 
Figure 1.3. Data pre-processing and subsequent analysis workflow steps.  
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1.2.2. Single-cell transcriptomics data pre-processing. 

The output of scRNA-Seq experiments is raw sequencing data that needs 
to be processed before any meaningful insights can be gained. The first step 
of the analysis process is called data pre-processing. The goal is to generate 
matrices of transcript counts (count matrices) or read counts (read matrices), 
depending on the type of scRNA-Seq analysis – digital transcript counting 
with UMIs or full-length transcript sequencing. Pre-processing workflow has 
a few different steps (Figure 1.3). First, sequencing read quality is evaluated, 
and low-quality reads are removed. The most popular tool for this is the 
FastQC algorithm [85]. Sequencing reads of adequate quality are then sorted 
by unique cell barcodes (a process called “demultiplexing”). This step differs 
depending on the particular scRNA-Seq protocol used to barcode single cells. 
If a full-length transcriptome protocol is employed typically, the cell barcode 
will correspond to the library index read [25, 60]. For the digital transcript 
counting approaches demultiplexing process is more complicated because the 
cell barcode sequence comprises only part of sequencing read [48]. Usually, 
dedicated algorithms within the pre-processing pipelines perform 
demultiplexing without additional user input. If the expected barcode list is 
known, the process may involve sequencing error correction [5, 86]. 

Once reads are demultiplexed, they are then passed onto alignment 
algorithms. Alignment can be done to the genome or the transcriptome. It is 
recommended to map the reads to the genome as single-cell, and particularly 
single-nuclei transcriptomic data contains a high fraction of intronic and 
intergenic reads [31, 87]. Furthermore, mapping to the transcriptome alone 
has been shown to increase multimapping [88]. Typically 10-15% of the 
mapped reads span splicing junctions. Therefore splice-aware algorithms are 
preferable [31, 48]. Popular algorithms include TopHat [89] and STAR [90] 
aligners, both of which were developed for bulk RNA-Seq data. As the amount 
of data produced in scRNA-Seq experiments is increasing, the alignment 
speed is becoming an important parameter. Faster alignment algorithms that 
rely on pseudoalignment were recently developed to address the scaling issue 
[91, 92]. Overall, when correct transcript mapping parameters are used, the 
choice of a particular algorithm appears to have little impact on subsequent 
analysis [31, 88].  

After the reads are demultiplexed and aligned, the transcripts need to be 
quantified. Typically only reads that map to exonic loci are counted [93]. 
However, recently it was demonstrated that intronic reads could be useful for 
downstream analysis [94]. Transcript counting algorithms are specific to the 
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scRNA-Seq protocol used to barcode transcriptomes. For full-length transcript 
sequencing protocols, validated bulk RNA-Seq transcript counting algorithms 
can be applied. A few popular ones are RSEM [95], Cufflinks [96] and HTSeq 
[97]. For scRNA-Seq data that relies on UMIs for digital transcript counting, 
specialized tools need to be used, which can account for sequencing errors in 
the UMI [98]. While a lot of specific tools exist for individual processing 
steps, single-cell data processing pipelines have been developed to integrate 
and automate the process and have been widely adopted. Popular pipelines - 
Cell Ranger[99], indrops [5], SEQC [86], zUMIs [87] take raw sequencing 
data and return a count or a read matrix that has the dimensions of barcodes x 
number of transcripts. 

Once the count or read matrix is generated, quality control needs to be 
performed to ensure that all cell barcodes correspond to viable cells. Not every 
barcode will correspond to an actual single cell. Double cell events, apoptotic 
cells, ambient RNA, and empty compartments are sources of considerable 
noise in the data [72, 100, 101]. Usually, QC is performed based on three 
metrics: the number for counts per barcode, the number of genes per barcode, 
and the fraction of mitochondrial genes per barcode (Figure 1.4) [100, 101]. 
Filtering is performed by manual thresholding, and it is important to consider 
all three metrics together as relying on only a single one may lead to incorrect 
cutoffs [72]. For example, cells with a low number of captured transcripts and 
few expressed genes may correspond to an inactive cell population. Similarly, 
a high mitochondrial gene fraction may be indicative of an active respiratory 
process in the population. The next QC step is to filter out the genes that have 
low expression in the dataset. Correct thresholding is essential as it may 
impact cell population detection [72]. If, for example, genes that are expressed 
in less than 20 cells are filtered out, then it will become difficult to detect a 
population consisting of fewer than 20 cells. 

Specialized algorithms have also been developed to reduce particular noise 
in the data. A few different algorithms for doublets detection and removal 
have been recently published [102-104]. Similarly, different strategies were 
suggested for correcting ambient RNA introduced biases in droplet-based 
platforms [105-107]. Overall, QC filtering is an iterative process. As data 
quality cannot be determined a priori, thresholds differ between the 
experiments [108]. Typically, whether the data quality is sufficient or not is 
judged based on the performance of the downstream analysis. Accordingly, it 
is often necessary to adjust QC thresholds multiple times during the analysis. 
Also, care needs to be taken not to use QC filtering to improve the outcome 
of any statistical tests that are performed at a later stage. 
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Figure 1.4. Data filtering by different metrics. Panel A – data filtering by detected 
UMIs per cell. Red line indicates threshold. Panel B – data filtering by detected genes 
per cell. Red line indicates threshold. Panel C – data filtering by number of 
mitochondric transcripts. Red line indicates threshold. 

 

1.2.3. Single-cell transcriptomics data normalization and correction 

Each entry in the count matrix represents a captured transcript. However, 
two identical cells may have very different values in the matrix due to the 
many technical variations in the protocols [31, 72]. For example, cell lysis, 
transcript capture, and cDNA synthesis efficiencies may differ between 
different compartments. Furthermore, different cells may be sequenced to a 
different depth. Such technical variations mean that differences between two 
cells in the matrix may have arisen only due to sampling effects. Data needs 
to be normalized to correct for these effects. It has been proven that data 
normalization is the most critical step in the single-cell data analysis process 
[109-111]. A standard normalization method is to divide counts for each gene 
in a cell by the total counts of that cell [31, 109]. This approach assumes that 
every cell in the dataset had the same number of mRNA molecules [112]. Such 
an assumption is false as samples are heterogeneous, and RNA amounts differ 
considerably between cells [113]. Furthermore, during the RT reaction, only 
part of the cell transcriptomes are captured due to the limited efficiency of the 
reaction [114]. This phenomenon is termed "dropout" and results in sparse 
data matrices [115]. Most values in such data matrices are 0, as no information 
for that particular transcripts is recorded. This makes algorithms used for bulk 
RNA-Seq normalization unsuitable for scRNA-Seq datasets [109, 111, 116]. 
Specialized algorithms have been developed for single-cell data 
normalization. Top among them is the Scran algorithm [111] that has been 
shown to be the best performer during independent benchmarking [72, 109]. 
The algorithm relies on estimating cell size factors based on a linear regression 
over genes after cells are pooled to avoid technical dropout effects. Non-linear 
normalization methods have also been developed and allow to account for 
more complex technical variations [117, 118]. These methods may be better 
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suited for data where there are significant batch effects [72] [48]. For example, 
the microtiter plate based protocol exhibits a more significant variation in 
count depth between compartments than droplet-based platforms due to 
evaporation effects [30].  

A single normalization method will not be appropriate for all single 
scRNA-Seq data types [72, 117, 119]. For example, full-length transcript 
sequencing data is more similar to bulk RNA-Seq data and can benefit from 
normalization methods that take gene length into account [120, 121]. On the 
other hand, digital transcript counting methods suffer from significant dropout 
effects and thus need specific algorithms to account for that. Therefore, care 
needs to be taken to select the most appropriate normalization algorithm for 
the given data. After normalization, the data matrix is typically log-
transformed, which is useful for downstream applications – differential 
expression (DE) analysis [122] or batch correction algorithms[123].  
Batch effects typically appear when cells are handled in distinct groups – 
different timepoints or different barcoding platforms. When integrating 
diverse data into a single dataset, it is important to remove the variation 
coming from purely technical handling differences. The best strategy for this 
is to avoid as much of technical variation as possible in the experiment design 
stage. Recently different methods have been proposed for sample pooling into 
a single barcoding experiment by tagging cells in a particular sample with a 
particular nucleotide sequence – i.e., a synthetic transcript. This can be 
achieved by tagging cells with antibodies [124], lipids [125], or by 
transfection [126]. However, this may not always be possible. For example, 
data from different experiments may need to be integrated in a retrospective 
manner. A widely used batch correction method for bulk RNA-Seq data – 
ComBat [127] can be successfully applied to scRNA-Seq data as well [123]. 
Several different algorithms for data integration specific to scRNA-Seq data 
have been developed [74, 128, 129]. Nevertheless, little systematic 
comparison between them exists, and general guidelines for their application 
have not been developed [72]. 

Data normalization aims to correct for differences in transcript sampling. 
It is a crucial step in data analysis workflow that can introduce biases if 
performed improperly [109, 112]. On the other hand, separate algorithms exist 
for addressing further sources of unwanted variation in the data – batch 
effects, cell cycle effects, and dropout [72]. It is important to note that these 
that it is not always appropriate to correct for these factors. The decision 
depends on the intended downstream analysis and overall experiment goal. 
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1.2.4. Single-cell transcriptomics data imputation 

One of the most prominent sources of noise in scRNA-Seq data is dropout 
[111, 115, 130]. This term refers to 0 values in the data matrix for particular 
gene expression in a particular cell. There are two explanations of gene 
expression being zero. Either the gene was not being expressed at the time that 
the cell transcriptome was sampled (biological zero) or transcripts present in 
the cell were not detected due to technical limitations of scRNA-Seq protocols 
(technical zero). Correcting for this effect means determining which of the 0 
values in the data matrix are true zeros and inferring the values lost due to 
technical noise. This process is called imputation. The concept of imputation 
is not new to scRNA-Seq. It has been successfully applied in GWAS data 
analysis to infer the missing single-nucleotide polymorphism values [131]. 
However, typically imputation algorithms rely on a reference dataset - 1000 
Genomes project in the case of GWAS [132]. The single-cell analysis field 
does not have extensive reference datasets yet, which means that the 
imputation algorithms have to rely on the supplied data to infer the missing 
values in it. Imputation algorithms for scRNA-Seq can be categorized into 
three distinct groups [133]. The first group of methods aims to infer the 
probabilistic model that would describe the data generation step. After such a 
model is defined, it can be used to identify (probabilistically), which 0 values 
are technical zeros and need to be imputed. Imputation is then performed in a 
number of different ways depending on the particular algorithm – regression, 
similar cell identification through k-means clustering, or dimensionality 
reduction. Typically algorithms combine a few different techniques for 
imputation to get the best result [133]. Some of the more popular methods in 
this category are – SAVER [134], ScImpute [135], bayNorm [136], and 
VIPER [137].  

The second group of imputation algorithms relies on data smoothing to 
infer missing values. Similar cells are usually identified by looking into local 
neighborhoods in the high-dimensional expression space. Once similar cells 
have been determined, expression values for every cell are adjusted based on 
the expression values of similar cells. This means all entries in the data matrix 
–biological zeros, technical zeros, and non-zero values get adjusted. 
Therefore, data smoothing acts as data denoising and can be useful in 
revealing gene-gene correlations [72]. Some of the more popular algorithms 
in this category are – MAGIC [138], kNN-smooth [139], netSmooth [140], 
and DrImptute [141].  



28 
 
 

The third group of algorithms aims to reconstruct the latent (feature) space 
of the cells. Essentially, this means capturing the underlying biological signals 
in the data. This can be done in two ways. Either through matrix factorization 
(for example, PCA) or using unsupervised machine learning algorithms 
(autoencoders, deep neural networks) [133]. Matrix factorizations are linear 
transformations that aim to decompose the observed data into a number of 
factors-components. Similar approaches are used for dimensionality reduction 
purposes. Once these factors are identified, they can be used to reconstruct the 
data - perform imputation. Popular algorithms for this approach are - ALRA 
[142], mcImpute [143] and PBLR[144]. More recently, unsupervised machine 
learning algorithms have emerged that use autoencoders to learn the latent 
space [84]. Autoencoders are artificial neural networks for unsupervised 
learning. The goal of these algorithms is to learn an efficient representation of 
the data by reconstructing the input dataset as accurately as possible under 
provided constraints [145]. By learning the underlying identity function, 
autoencoders are able to generate an imputed matrix that has the zero values 
filled in. Utilizing autoencoders allows performing not only data imputation 
but also denoising and batch effect correction [84]. Popular algorithms in the 
field are – AutoImpute [146], DCA [147], DeepImpute [148], scVI [149]. 
Finally, a few algorithms have also been developed that incorporate external 
information as a reference for imputation. ADImpute [150] utilizes gene 
regulatory network information, SAVER-X [151] uses information from atlas-
type resources, and SCRABBLE [152] uses matched bulk RNA-Seq data for 
imputation.  

The main problem with imputation algorithms is circularity. Most 
algorithms rely on internal information in the dataset to impute missing values. 
In turn, this tends to artificially amplify large signals present in the data and 
smooth over small differences. Imputation can introduce false-positive results 
in downstream data analysis, particularly in differential gene expression 
analysis [82, 153]. Imputation also shows limited benefit when considering 
other downstream analyses like clustering or trajectory inference [82]. On the 
other hand, imputation methods are useful for recovering bulk expression 
profiles and log fold changes of individual genes between cell types (without 
accounting for cell-cell variability). This means that for gene-gene correlation 
analysis, imputation algorithms provide substantial improvement [82]. A 
systematic evaluation of imputation algorithms has revealed that MAGIC, 
kNN-smoothing, and SAVER algorithms outperform most other methods 
[82]. On the other hand, the MAGIC algorithm performed worse than many 
others in terms of identifying differentially expressed genes (DEG) while 
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taking cell variability into account. Therefore, it is important to note that there 
is no single algorithm that performs the best under all circumstances [82, 154]. 
Furthermore, imputation algorithms, especially deep learning ones, depend on 
the parameter choice [82, 84]. Overall, it is considered that imputation is more 
useful for exploratory purposes rather than hypothesis generation [72]. 

 

1.2.5. Single-cell transcriptomics data dimensionality reduction and visualization 

In theory, human single-cell transcriptomics dataset can contain expression 
values for over 20000 genes present in the genome [155]. In practice, this 
number is lower, due to incomplete sampling and variations in gene 
expression. A typical scRNA-Seq dataset will have over 15000 dimensions 
[72]. This means that any given cell in a dataset has over 15000 values 
associated with it and exists in a high-dimensional space. Such data is difficult 
to interpret and computationally taxing to analyze. However, it can be 
simplified by taking advantage of the manifold assumption [156]. A manifold 
is a mathematical construct that represents a significantly lower-dimensional 
structure that exists in the high-dimensional space. This concept can be 
applied to single-cell data analysis because gene expression is not random, 
and cells exist in defined cellular states. Furthermore, transitions between cell 
states typically are smooth as gene expression gradually changes. Therefore, 
in a high-dimensional scRNA-Seq dataset space, there is a lower-dimensional 
structure – manifold along which all the cells are ordered [156, 157]. The true 
structure of the data can be accurately captured by a considerably smaller 
number of linear or non-linear vectors as compared to the original number of 
dimensions. The process of determining those vectors is called dimensionality 
reduction. Having fewer dimensions allows improving the computational 
performance of downstream data analysis algorithms significantly. 
Furthermore, dimensionality reduction is essential for data visualization 
algorithms that aim to reduce the dataset into two or three dimensions [72].  

The first step in dimensionality reduction is called feature selection. Not 
all the genes will be informative of the variations in the dataset, and the gene 
list can be filtered to keep only those genes that are informative of the 
variability in the data [33]. The set of genes that is selected for the analysis is 
called – Highly Variable Genes (HVGs). Gene selection is carried out after 
normalization and technical noise correct as various effects, for example – 
batch effects, can significantly contribute to gene variation [122]. A few 
different algorithms exist for determining HVGs. All of them use the 
relationship between variance, or its variations, and the mean as an indicator 
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[158]. A popular method for selecting HVGs is binning them by their mean 
expression and then using the highest variance-to-mean ratio to select an HVG 
in each bin [72]. Downstream analysis is typically robust to the exact number 
of HVGs selected [5]. However, because it is the first step of dimensionality 
reduction, it is recommended to select more rather than fewer HVGs [72]. 

Once HVGs are selected, the reduced matrix is then subjected to dedicated 
dimensionality reduction algorithms. The most popular linear method for 
dimensionality reduction is principal component analysis [159]. It maximizes 
the captured residual variance in each further dimension. PCA reduces the 
dataset into N principal components, where N is determined by plotting 
components by explained variance and then manually selecting a threshold. 
Each separate component explains a specific amount of variance in the data. 
Due to the linear nature of PCA, distances in the reduced dimensions have a 
consistent interpretation throughout the low-dimensional space. Therefore, 
particular components can be correlated to particular sources of variance in 
the data. This can be useful when inspecting the performance of data 
correction steps [123] or showing the importance of particular genes in the 
dataset [160]. PCA allows to reduce dimensions from thousands down to 
hundreds or even less and is often used as a pre-processing step for many 
downstream algorithms (visualization, clustering, differential expression 
analysis).  

Single-cell transcriptomics data is inherently non-linear. Therefore, linear 
dimensionality reduction algorithms like PCA cannot capture enough 
information in two or three components to be useful in visualization. 
Manifold-learning (non-linear) dimensionality reduction algorithms are 
needed for visualization purposes. One of the most popular methods for 
dimensionality reduction and visualization is t-distributed stochastic neighbor 
embedding (t-SNE) [161]. The algorithm captures local similarities in the 
manifold, but underrepresents the global structure. Visualization is generated 
by placing similar cells (based on localized similarity in their gene 
expressions) close to each other and placing dissimilar cells far away from 
each other in the visualization space. The algorithm is good at grouping 
similar cells into clusters, but their arrangement and distances between them 
are essentially meaningless [162]. As a result, t-SNE tends to fragment natural 
progressions-trajectories into separate unrelated clusters and makes it hard to 
interpret continuous biological processes [163]. Furthermore, the visualization 
depends on the choice of algorithm parameters, which makes it challenging to 
implement efficiently. More recently, alternative manifold-learning 
algorithms have been proposed for visualization purposes - Uniform Manifold 
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Approximation and Projection method (UMAP) [164] and a graph-based tool 
SPRING [165]. Both of these methods are substantially better than t-SNE at 
preserving global manifold structure [164, 166]. Furthermore, UMAP scales 
well on large datasets and thus has seen rapid adoption [72, 164].  

Non-linear algorithms can also be applied for summarization purposes. An 
efficient manifold-learning method for preserving global manifold structure is 
the diffusion map [167, 168]. Diffusion maps can efficiently capture trends in 
the data and contain them in relatively few dimensions [169]. Main uses for 
this dimensionality reduction method are in data imputation and trajectory 
inference algorithms. The diffusion map cannot be readily used for 
visualization as the algorithm returns more than two dimensions. However, 
the concept was recently extended to visualization methods by the creation of 
the PHATE algorithm [163]. It takes into account both near and far manifold-
intrinsic distances when plotting cells in two dimensions. As a result, this 
algorithm is efficient at visualizing not only cell clusters but also trajectories 
or progressions. 

Dimensionality reduction is vital for most downstream analysis algorithms 
and different analysis methods may require different type of dimensionality 
reduction. A few tools discussed above (PCA, diffusion map, tSNE, UMAP) 
have been widely accepted and implemented [72]. Additionally, deep learning 
based algorithms for dimensionality reduction have been proposed [170-172]. 
However, these algorithms heavily depend on parameters and are not trivial 
to implement successfully [173]. A special case of dimensionality reduction 
are visualization algorithms that aim to accurately represent highly-
dimensional scRNA-Seq data in two or three dimension. As a result, 
visualization is probably the most important tool for intuitively exploring the 
underlying biology. However, generated plots should not be used to make 
conclusions about the underlying biology. Rather, they should serve as a 
medium for exploring results of downstream analysis algorithm (clustering, 
trajectory inference, differential expression) and can help to understand 
technical variations in the data (batch effects) [48]. Recent years have seen 
efforts to create interactive visualization tools that would allow to share and 
explore scRNA-Seq data in a convenient and accessible way [174]. 

 

1.2.6. Single-cell transcriptomics downstream analysis 

Downstream analysis methods are a group of diverse algorithms that are 
used to gain insights and understand the underlying biological processes. 
ScRNA-Seq primarily focuses on analyzing sample heterogeneity at a single-
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cell level. Therefore, identifying new cell types and states is one of the main 
applications of the technology. Cell populations are identified by clustering 
cells based on the similarity of their gene expression. Clustering is typically 
performed in an unsupervised manner using machine learning algorithms. 
Most clustering algorithms use data after dimensionality reduction, because 
distances between cells in the original high-dimensional space tend to be too 
small to identify cell grouping [81]. One of the most widespread clustering 
algorithms is k-means clustering. The algorithm iteratively identifies k cluster 
centers (centroids) and assigns each cell to the closest centroid. The standard 
method for performing k-means is Lloyd’s algorithm [81, 175]. It scales 
linearly with the number of points, which means that the algorithm can easily 
be applied to large data sets. One drawback of the k-means clustering is that 
the expected cluster number needs to be supplied to the algorithm. This 
number is typically unknown and must be determined heuristically [72]. 
Furthermore, the algorithm has a bias towards generating equal size clusters. 
Because of this, rare cell types can be hidden within a larger cluster. A few 
methods have been developed that aim to overcome this limitation – RaceID 
[176] and SIMLR [177].  

Another clustering strategy that can be applied to scRNA-Seq data is 
hierarchical clustering. The algorithm sequentially combines cells into larger 
clusters or alternatively divides existing clusters into smaller sub-clusters. 
Such a strategy improves the ability to identify small clusters [81]. However, 
the approach is not scalable to more extensive datasets. Due to limitations of 
k-means and hierarchical clustering strategies, it is becoming increasingly 
popular to use community detection strategies for cell clustering [72, 81]. This 
strategy relies on constructing a kNN-graph where each cell is a node and then 
identifying communities of densely connected nodes within the graph. The 
most popular algorithm for identifying communities in a graph is the Louvain 
algorithm [178]. It was first applied to scRNA-Seq data clustering by the 
development of the PhenoGraph algorithm [179]. This approach is easily 
scalable to large datasets and does not require the user to input the expected 
number of clusters. In recent benchmarking studies, community detection 
algorithms have been shown to outperform other clustering algorithms [180, 
181]. It is essential to keep in mind that, depending on the results of the 
clustering algorithm, a particular cluster may not correspond to a particular 
cell type. A single cell type can be disturbed over separate clusters. 
Alternatively, a single cluster may be comprised of a few cell types [72, 81]. 

Some biological processes cannot be efficiently described by discrete 
classification of cells into clusters. Cell development, activation, 
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differentiation are continuous transformations that require a different 
approach [182]. Typically such processes are analyzed by trajectory inference 
algorithms that order cells along the pseudotime variable that corresponds to 
transition time. A large number of trajectory inference algorithms exist, and 
no single method shows clear superiority [80]. The topology of trajectories 
can be very different – linear, tree-shaped, cyclical, or even discontinuous 
graphs. Therefore, it is not surprising that different methods perform better for 
different datasets. While early trajectory inference methods required users to 
fix the topology beforehand [183, 184], more recent algorithms attempt to 
infer the underlying topology [185, 186]. Detailed guidelines for trajectory 
inference analysis have been recently proposed [80]. To test the robustness of 
the hypotheses, it is essential to validate the results by at least a few different 
algorithms. Also, care needs to be taken, as inferred trajectories may not 
represent actual biological processes and only denote transcriptional similarity 
[72]. On the other hand, if a complex data topology is identified, it could 
indicate that the underlying biology is more complicated than anticipated by 
the user [80].  

Once cells are grouped into clusters or ordered along the pseudotime 
trajectory, cell identities need to be determined. Typically expression profile 
of the cells in one cluster is compared to the expression profile of the rest of 
the cells. This analysis is called differential expression analysis. It used to 
reveal differentially expressed genes (upregulated and downregulated) in a 
particular cluster. DE algorithms are extensively used in bulk RNA-Seq 
analysis [187]. Building on similar ideas, algorithms specific for scRNA-Seq 
analysis have been developed [115, 122]. However, a recent benchmarking of 
both bulk and specific scRNA-Seq DE algorithms in single-cell transcriptomic 
analysis has revealed little difference between them [120]. A differentiating 
factor is the computational efficiency where single-cell specific algorithms 
show significant improvements over bulk counterparts. DE analysis returns a 
list of genes that are specific to a particular cell cluster – population. Simple 
statistical tests (Wilcoxon rank-sum or t-test) are sufficient to determine the 
most robust genes in the list [72]. These genes are called the maker genes and 
are used to determine cell identity. The process is typically performed by 
manually referencing genes and gene sets in the literature to assign a particular 
cell type. Alternatively, cell ontology analysis [188] can be performed to 
identify ontology terms associated with a particular cluster [189-191]. Such 
approaches are labor-intensive yet appear to yield consistent results [81]. As 
more atlas-type data is becoming available, it is becoming easier to annotate 
the clusters manually. Furthermore, recently automated annotation tools have 
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been developed. Scmap [192] and Garnett [193] algorithms use a reference 
source to annotate a dataset under investigation. However, cell identities and 
clustering can differ between experiments due to batch effects [182]. 
Therefore, using automated solutions may not always be appropriate.  

 

1.3. Epithelial to mesenchymal transition 

1.3.1.  EMT in biological processes 

Epithelial-Mesenchymal Transition (EMT) is a biological process that 
enables epithelial cells to assume a mesenchymal cell phenotype. During the 
transition, polarized epithelial cells progressively lose their attachment to each 
other and the basal membrane, and assume a spindle-like morphology while 
becoming motile (Figure 1.5) [9, 194]. The concept of EMT was first 
described after the surprising observation that cultured epithelial cells under 
the influence of microenvironment stimulus could change their morphology 
and become migratory [195]. The first evidence of EMT in vivo came when 
studying developmental processes in the chicken embryo [196]. It is now 
known that EMT occurs under a wide range of circumstances and is critical 
for development and tissue homeostasis as well as in various pathological 
processes – fibrosis and cancer [9, 11, 194]. It is important to note that 
initially, EMT was considered as a "transformation" [197]. However, today it 
is viewed as a "transition" because the process is gradual, and cells undergo 
many intermediate states often not reaching the final fully mesenchymal 
phenotype (termed partial EMT) [11, 194]. Furthermore, the reverse process 
Mesenchymal-Epithelial Transition (MET) has also been well documented 
[198]. The many intermediate states and reversibility underscore the 
complexity of EMT.  

Based on the biological context EMT is classified into three types [9, 10]. 
Type 1 EMT is associated with development processes – implantation, 
embryo formation, and organ development. EMT in the context of wound 
healing and tissue regeneration in a fully developed organism is assigned to 
Type 2. In this setting, EMT is driven by inflammation, and if it persists, EMT 
can lead to organ fibrosis. Finally, Type 3 EMT is observed in cancer. 
Together with genetic and epigenetic changes, EMT circuitry promotes 
tumors formation, survival, and is critical for metastasis formation.  

While EMT in different contexts produces different results, the molecular 
biology machinery is common to all three types. A core set of transcription 
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factors (TFs) controls the EMT process: SNAIL, SLUG, TWIST1, ZEB1, and 
ZEB2 [199, 200]. These TFs are called master regulators of the EMT process 
(EMT-TFs). They are non-redundant and can interact in a complex temporal 
manner and different combinations. Together they regulate the expression of 
hundreds of genes associated with the EMT process. A set of widely accepted 
markers also exists to track EMT. The epithelial state is described by the 
expression of E-cadherin, occludins, and cytokeratins, while the mesenchymal 
state is characterized by vimentin, fibronectin, and N-cadherin expression 
(Figure 1.5) [10, 201]. 

EMT has been studied for over 30 years [11]. Many insights have been 
gained about the EMT process and its significance in different biological 
processes. Initially, research focused on understanding the role of EMT in 
development. However, over the last two decades, increasingly more focus 
has been devoted to studying EMT in the context of cancer [202, 203]. Given 
its significance in pathology, EMT is an attractive target for therapy. However, 
many open questions remain, and to date, it has been hard to capitalize on the 
extensive knowledge accumulated due to the complexity of the underlying 
biochemical circuitry. [11, 194, 200]. 

 

 
Figure 1.5. EMT transition. Grey tables indicate important molecular markers of 
EMT process and core transcription factors. 
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1.3.2. EMT gene regulatory networks 

In all tissue contexts, EMT is characterized by a few key events: the 
dissolution of the epithelial cell-cell junctions, loss of apical-basal polarity, 
reorganization of the cytoskeletal architecture, increased cell motility, and, in 
many cases, the ability to remodel the extracellular matrix (ECM) [199]. The 
radical change in cell phenotype means that significant changes in gene 
expression occur throughout EMT. Initially, cells downregulate the 
expression of epithelial proteins, especially those included in cell-cell junction 
complexes [204]. The hallmark of EMT is the downregulation of E-cadherin, 
which leads to the dissolution of adherens junctions. Additionally, tight-
junctions and desmosomes are also destabilized by repression of associated 
genes. These changes lead to the loss of epithelial barrier function and change 
in cell morphology [205]. Furthermore, it results in the loss of cell polarity, 
which is further supported by the repression of polarity complex genes [206].  

E-cadherin is essential for epithelial phenotype, and its downregulation 
during EMT is balanced out by increased expression of mesenchymal cell 
adhesion molecule – N-cadherin. This change is called the ‘cadherin switch’ 
[207]. N-cadherin is essential for cell-cell interactions between mesenchymal 
cells and is utilized in various signaling pathways to facilitate cell migration 
[208]. Changes in cytoskeleton fiber composition, together with the repression 
of polarity complexes, is essential for enabling cell motility [199]. During the 
remodeling of internal cell structure, the composition of the intermediate 
filament changes: cytokeratin is repressed, and vimentin is activated. As this 
is an essential part of the process, vimentin is considered a marker for EMT 
progression [209]. The remodeling of ECM also plays a role in cell motility 
and is required for EMT progression. During EMT, the expression profile of 
integrin complexes that are responsible for cell interactions to the ECM 
changes to reflect changes in cell phenotype [210]. Epithelial integrins that 
mediate contact with basal membrane are downregulated [211], and integrins 
that promote cell migration are upregulated [212]. ECM remodeling and cell 
invasion are further enabled by increased expression of extracellular proteases 
[213]. These, together with integrins, act not only on the ECM but also on the 
EMT signaling pathways enabling cellular changes [199]. Finally, ECM 
remodeling is enhanced by the expression of ECM proteins, such as collagens 
and fibronectin, which is also an important marker of EMT [11]. 

Changes in gene expression are orchestrated by the core EMT transcription 
factors – SNAIL, SLUG, TWIST1, ZEB1, and ZEB2 [194, 200]. Their 
expression is activated through various signaling pathways, and often these 
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TFs function together [205]. Often targets of these TFs overlap, however they 
are not redundant and it has been demonstrated that each transcription factor 
has a distinct effector profile, and they all act both as activators and repressors 
(Table 1.3) [200]. SNAIL and SLUG belong to the same family of Snail 
transcription factors and repress epithelial genes by binding to the E-box 
sequences (CANNTG) through their C terminal zinc-finger domains [205]. 
The mechanism of the SNAIL TF effect on the E-cadherin promoter is well 
studied and provides an insight into how EMT is regulated [199, 200]. Upon 
binding the proximal promoter region, SNAIL recruits PRC2 and coordinates 
histone modifications. Interestingly, chromatin is marked by both active and 
repressive marks, which creates a poised state of the promoter. In the absence 
of activation signals, repression is maintained. However, upon appropriate 
signaling, gene activation can be rapidly achieved. Such control is common in 
many promoters in embryonic cells, and they are termed 'bivalent domains' 
[214]. Furthermore, other genes activated by SNAIL also exhibit similar 
poised promoter control [215]. Such a model of gene expression regulation 
contributes to the reversibility of EMT [199]. Besides acting directly on DNA, 
SNAIL and SLUG also cooperate with other transcription regulators. For 
example, SNAIL cooperates with ETS1 to activate protease expression [216]. 
Control over localization and degradation of Snail TFs is achieved through 
phosphorylation, which is tightly controlled by different signaling pathways 
active in EMT [199]. For example, p53 directly recruits SLUG for 
degradation, consequently preserving the epithelial phenotype in healthy adult 
tissue [217]. Furthermore, at translational level SNAIL and SLUG are 
repressed by a number of different miRNA [199, 218].  

The next core EMT transcription factor TWIST1 belongs to the family of 
basic helix–loop–helix (bHLH) transcription factors. Similarly to Snail TFs, 
it downregulates epithelial and activates mesenchymal gene expression [219]. 
Functions of EMT-TFs are not redundant. For example, in cancer cells, 
TWIST1 can be induced under hypoxic conditions [220] and can repress E-
cadherin independently from SNAIL [221]. Importantly, in the case of 
TWIST1 repression, the chromatin modification profile is different, and the 
E-cadherin promoter is fully repressed [222]. The precise mechanism of action 
of TWIST1 depends significantly on its dimer composition. It can form 
homodimers as well as heterodimers with other bHLH proteins [199]. The 
stability of TWIST1 is regulated by phosphorylation, albeit in a less 
complicated manner than SNAIL and SLUG [223].  

Finally, ZEB1 and ZEB2 also bind E-boxes to repress or activate 
transcription through zinc finger domains [205]. Repression often involves the 
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recruitment of a co-repressor - C-terminal-binding protein [224]. In the case 
of transcription activation, ZEB factors interact with transcriptional co-
activators (p300 and PCAF) [225]. In different contexts, ZEB1 and ZEB2 
have different effects [200], which could be explained by the structural 
differences between the two factors leading to a differential binding of co-
activators and co-repressors [226]. Usually, ZEB TFs become active later in 
the EMT process. Research shows that SNAIL alone or in cooperation with 
TWIST directly activates ZEB1 expression [227]. Furthermore, ZEB1 
promoter is controlled in bivalent manner described above, yet again 
underscoring the plasticity of EMT [228]. Little is yet known about ZEB TFs 
phosphorylation [229]. However, similar to Snail family proteins the 
translation of ZEB TFs is extensively controlled a network of miRNAs [199].  
All five EMT master regulators have seemingly similar functions and can both 
repress epithelial genes and activate mesenchymal genes [199, 200]. 
However, they are not interchangeable, and the exact EMT molecular circuitry 
depends on the particular tissue type and signaling pathway involved [199]. 
Furthermore, a lot of additional transcription factors are involved in the 
regulation of EMT process in development and disease [199]. These 
transcription factors are often specific to a particular tissue or biological 
process and are not considered master regulators of the EMT process. Many 
separate studies on EMT-TFs have been performed, resulting in no small body 
of literature. However, there is only a limited amount of cases where EMT-
TFs have been studied under the same conditions (Table 1.3). Therefore the 
full picture of the gene expression circuitry of the EMT remains far from fully 
understood [200]. 
 
Table 1.3. EMT core transcription factors and their effector profiles. Adapted with 
permission from Nature Cell Biology [200]. 

Target Cell type SNAIL SLUG TWIST1 ZEB1 ZEB2 

∆Np63 Mouse lung 
cancer cells No effect N/A No effect Represses N/A 

AXL Breast cancer cells N/A No effect N/A Activates N/A 

CTGF Breast cancer cells N/A No effect N/A Activates N/A 

CCL2 Human mammary 
epithelial cells No effect N/A Activates N/A N/A 

GRHL2 Human mammary 
epithelial cells No effect N/A No effect Represses N/A 

PTEN 
Lung 

adenocarcinoma 
cells 

N/A N/A N/A Represses No effect 

VDR Colorectal cancer 
cells Represses Represses No effect No effect No effect 
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L1CAM Endometrial 
carcinoma cells Represses Activates N/A N/A N/A 

SOD2 
Transformed 
oesophageal 

epithelial cells 
N/A N/A N/A No effect Activates 

 

1.3.3. EMT signaling networks  

Various signaling pathways can induce EMT (Figure 1.6). Usually, these 
pathways are activated by epithelial cell receptors binding ligands of stromal 
origin. Once EMT begins, cells can also be activated in an autocrine manner 
[11]. The main pathway of EMT activation is TGFb signaling [11, 199]. TGFb 
is a family of ligands, all of which activate specific transmembrane receptors 
(TGFb receptors). These receptors have kinase activity, and once activated, 
they phosphorylate SMAD complexes. Depending on the particular ligand, 
either SMAD2 and SMAD3 or SMAD1 and SMAD5 are phosphorylated. 
Upon phosphorylation, in both cases, a trimetric complex with SMAD4 is 
formed (SMAD2–SMAD3–SMAD4 or SMAD1–SMAD5–SMAD4). Such 
complexes then migrate to the nucleus where they function as transcription 
factors and regulate a large number of genes. During EMT, SMAD complexes 
activate some mesenchymal genes directly (for example, vimentin and 
fibronectin) and also activate EMT master regulator TFs [219]. Interestingly, 
EMT-TFs can upregulate the expression of TGFb ligands and form a positive 
feedback loop that helps to maintain EMT once it is induced [230]. TGFb 
ligands can also directly regulate EMT by regulating EMT-TFs. For example, 
TGFb can activate SNAIL by inducing the sumoylation of the protein, which 
is critical for its function in the EMT process [231, 232]. Additionally, TGFb 
can induce EMT by regulating miRNAs and lncRNAs [233]. A prominent 
example is the miR-200 miRNA family, which inhibits the synthesis of ZEB1 
protein [234]. By reducing the bioavailability of miR-200, TGFb can promote 
EMT [235]. SMAD activation is considered the canonical TGFb signaling 
pathway. However, depending on the particular ligand, TGFb can also induce 
several other signaling pathways: ERK, p38 MAPK, PI3K–AKT, and 
RHOlike GTPases [199]. All of these pathways in different tissue contexts 
and under different circumstances can contribute to the EMT process.  

EMT can also be activated through several other pathways – WNT, 
NOTCH, and through tyrosine kinase receptor (RTK) signaling [199]. The 
canonical WNT signaling pathway has long been studied in the context of 
EMT [236]. The WNT signaling pathway is critical during development - the 
deletion of WNT3A ligand disrupts embryogenesis [237]. The pathway begins 
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by WNT ligands binding to Frizzled receptors, which triggers a series of 
events that lead to the nuclear translocation of β-catenin. It can act as a 
transcriptional cofactor and induces gene expression programs involved in 
differentiation, proliferation, and cell fate determination [238]. In adult 
tissues, the WNT pathway is active during wound healing related EMT [239]. 
Furthermore, the WNT pathway has been implicated in EMT related cancer 
progression and cancer stem cell (CSCs) formation [240-242].  

The NOTCH pathway is another important EMT signaling circuit. 
NOTCH receptors bind the Delta-like or Jagged family ligands, and through 
proteolytic cleavage events, an intracellular fragment (NOTCH-ICD) is 
produced. This fragment translocates into the nucleus, where it promotes the 
expression of various gene programs related to differentiation and 
proliferation [243, 244]. Research shows that the NOTCH pathway is 
involved in EMT in the context of development [245]. Additionally, like the 
WNT pathway, the NOTCH signaling has been implicated in a number of 
different cancer contexts [246, 247].  

Finally, a number of different signaling pathways activated by various 
growth factors through the tyrosine kinase receptors can also induce EMT. For 
example, the epidermal growth factor (EGF) can activate the MEK-ERK 
signaling pathway, which results in the reduction of E-cadherin expression 
[248]. Furthermore, EGF also activates JAK2 pathways, which leads to EMT 
through STAT3 activation in several cancer types [249, 250]. Similarly, 
fibroblast growth factor (FGF) and hepatocyte growth factor (HGF) have been 
implicated in EMT induction in the context of cancer [11].  

 

 
Figure 1.6. Signaling pathways active in EMT. Reproduced with permission from 
Nature Reviews Molecular Cell Biology [11]. 
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The signaling pathways of EMT are diverse. Thus, it is important to note 
that often there is significant cross-talk and cooperation between these 
pathways. For example, during embryogenesis, EMT is regulated through 
WNT, TGFb, and FGF signaling [251]. In the context of cancer, TGFb, and 
RTK signaling pathway cooperation if often reported [252, 253]. The variety 
of EMT signaling and the cross-talk between the pathways can, in part, explain 
the plasticity of EMT. Signaling pathways have been extensively studied both 
in the context of development as well as cancer. However, it remains hard to 
link everything into a single framework due to the differences in tissues and 
biological processes.  

1.3.4. EMT in development 

EMT is an essential process in development and has been studied in great 
depth. Interestingly, both EMT and MET are extensively utilized during 
various stages of development. Four waves of EMT and MET occur 
throughout development resulting in the final differentiation of cell types and 
formation of organs [254]. Primary EMT occurs during mammalian 
implantation, gastrulation of metazoans , and neural crest formation in 
vertebrates [255]. The process of gastrulation has been extensively studied in 
several different model organisms. It is clear that in all cases, EMT is vital for 
gastrulation. Furthermore, the most important elements of the molecular 
machinery are conserved throughout different species [205, 255]. In 
particular, SNAIL and TWIST transcription factors take center stage in the 
process in sea urchin and fly, while for vertebrate embryogenesis, SNAIL and 
SLUG are most important [255]. A few different signaling pathways tightly 
control vertebrate gastrulation. Initially, WNT signaling confers competence 
to the cells, and EMT is then induced through TGFb and maintained by FGF 
signaling. [251]. After gastrulation in vertebrates, the epidermal and neural 
regions are separated. Neural crest structure forms at the boundary of the 
region and cells in this structure undergo EMT. This allows the individual 
cells to migrate and, in turn, gives rise to different tissue types: craniofacial 
structures, most of the peripheral nervous system, some endocrine cells, and 
melanocytes [255]. The signaling pathways during neural crest EMT are 
analogous to the ones observed during gastrulation. The SNAIL TF is vital for 
all metazoans during gastrulation. However, in the context of EMT in the 
neural crest, SNAIL and SLUG are dispensable. Mice embryos can survive 
the deletion of these TFs during the neural crest EMT, albeit with some 
resulting defects [256]. Such results underscore the high spatiotemporal 
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complexity of EMT regulation and the high degree of cooperation between 
different factors that drive EMT. 

Primary EMT is followed by MET, which enables cells to differentiate into 
transient epithelial structures. These secondary epithelia then undergo the next 
round of EMT to generate mesenchymal cells with a more restricted 
differentiation potential [255]. A well-studied system that reveals differences 
between different rounds of EMT-MET process is heart development in 
vertebrates [194]. During gastrulation, two cardiogenic mesodermal layers 
form. The second cycle of EMT-MET creates the endothelial cell lining of the 
heart, and the third round forms the endocardial cushion and cardiac valves. 
Finally, the fourth wave of EMT-MET gives rise to various distinct cell 
populations in the heart [254]. Similarly, as discussed above, the second round 
of EMT is induced by TGFb signaling and is not well studied [254]. The third 
round of EMT depends on the combination of TGFβ, Notch, and Erbb3 
signaling. It is important to note that different TGFb ligands are activating the 
pathways in the first and third rounds of EMT, resulting in different gene 
expression programs [257]. Finally, the fourth round of EMT relies on yet 
again, different pathways to control the EMT [258]. Neurofibromatosis type 
1 (NF1) [259] and Wilms tumor gene 1 (Wt1) [260] genes are essential during 
this round of EMT. Interestingly, while the signaling is different, it still 
converges on the same EMT-TFs. In the case of Wt1, it can directly activate 
SNAIL and promotes EMT [261]. On the other hand, Wt1 has been shown to 
also activate the WNT pathway in the context of heart EMT [262].  

Heart development is a perfect example of the complexity of the EMT 
process. It emphasizes how differences in signaling pathways result in 
different developmental outcomes. However, it is widely accepted that all 
pathways converge on the activation of different combinations of EMT-TFs 
[194]. While EMT in development has been studied extensively, further 
studies are needed to unravel the full picture of EMT mechanisms. 
Unsurprisingly, EMT studies in development have inspired cancer researchers 
to identify similar mechanisms in the development and progression of tumors. 
To some extent, pathological EMT can be considered as reactivation of 
developmental programs in the adult [255]. On the other and, it is clear that 
developmental EMT mechanisms are expanded on in the context of cancer.  

1.3.5. EMT in tissue regeneration and fibrosis 

Under normal circumstances in healthy adult tissues, the epithelial 
phenotype is protected by various mechanisms [194]. Such control is essential 
for maintaining tissue integrity and function. Some of the best-studied 
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examples involve control by gene regulation. For example, transcription factor 
OVOL2 has been shown to repress mesenchymal genes and activate epithelial 
genes in two separate tissues [263, 264]. Similarly, the Elf5 transcription 
factor can inhibit EMT by repressing SLUG - a key TF in the EMT process 
[265]. Interestingly, p53 has been implicated in maintaining epithelial 
homeostasis. The loss of p53 leads to a decrease in miR-200c, which in turn 
increases ZEB1 protein [266]. Specific splicing [267] and epigenetic 
modification [268] mechanisms are also involved in maintaining the epithelial 
phenotype. Such evidence shows that epithelial phenotype is protected on 
many different levels. On the other hand, EMT can be induced by a variety of 
signaling molecules through many different pathways [11, 199]. Cell response 
ultimately depends on the balance of EMT promoting and suppressing 
mechanisms, and in healthy tissues, the epithelial phenotype will be generally 
preserved [194]. 

During wound healing, epithelial cells at the edge of the wound need to 
move into a damaged area and rebuild healthy tissue. This process is known 
as re-epithelialization, and it involves epithelial cells undergoing EMT to 
become migratory and increase their plasticity [269, 270]. Generally, EMT is 
thought to be induced by inflammation signaling associated with the wound, 
and once it ceases, so does EMT [9, 271]. It is important to note that in this 
scenario, cells undergo only partial EMT, which relies on the activation of the 
SLUG transcription factor under the tight control of the EGF receptor 
signaling pathway [272]. This notion is supported by the fact that the deletion 
of SLUG in mice impairs wound healing [273]. Similarly, lung wound repair 
has also been associated with the EMT process [274]. Basal cells in the 
airways undergo partial EMT that is characterized by a loss of cell-cell 
junctions, expression of vimentin, and a migratory phenotype. Wound healing 
is a beneficial process and demonstrates that EMT can be tightly controlled to 
achieve partial process activation. However, little is yet known about the 
regulatory circuits prevent cells from undergoing extensive EMT [270].  

Defective wound healing is associated with sustained inflammation and 
leads to increased scarring, which is the cause of fibrosis [275]. Fibrosis is the 
hallmark of many chronic diseases and is on the increase globally [276]. EMT 
is thought to play a significant role in the development of fibrosis and has been 
proposed as a target for therapeutic strategies [194]. EMT is best studied in 
the context of Renal Fibrosis. Early studies showed that mice lacking the 
Smad3 gene were protected against fibrosis [277], while activation of SNAIL 
TF leads to fibrosis [278]. Both Smad3 and SNAIL are part of EMT regulatory 
circuits, which proves a direct link to fibrosis. However, it was also shown 
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that renal epithelial cells do not undergo full EMT and never gain motility 
[279, 280]. Today it is thought that epithelial cells undergo only partial EMT 
and relay signals to promote fibrosis in a paracrine manner [194]. Cells in the 
state of partial EMT have been shown to secrete exosomes and cytokines, 
which promote activation of fibroblasts and recruit bone-marrow-derived 
mesenchymal cells that differentiate into myofibroblast [281]. The signaling 
also recruits macrophages that sustain inflammation in the tissue [282]. While 
less extensively studied, similar models can be proposed for liver [283] and 
lung [284] fibrosis processes. From a molecular viewpoint, the described 
fibrosis processes heavily rely on TGFb signaling [194, 281]. Therefore, it is 
a clear target for fighting fibrosis. Therapeutic agents that hinder TGFb 
signaling have been identified and show positive results in limiting fibrosis 
[285, 286]. Efforts to be more precise by targeting downstream effectors of 
EMT in fibrosis are also underway [287, 288]. 

1.3.6. EMT in cancer 

EMT is considered to be one of the hallmarks of cancer [289] and is 
important for the survival and dissemination of cancer cells [11, 194, 202]. It 
is now widely accepted that EMT plays a role in the development and 
progression of most carcinomas (cancers originating from the epithelial cells) 
(Table 1.4) [11]. However, EMT activation is not homogeneous through the 
tumor and exists as a gradient [290]. The bulk of the tumor remains epithelial 
with little to no EMT activation. In contrast, the leading edge of the tumor 
exhibits substantial EMT activation and can be characterized by a 
mesenchymal phenotype. This gradient is more or less steep, depending on 
the particular genetic profile of the mutations [194]. Historically it has been 
challenging to link EMT signature to clinical prognosis owing to the broad 
diversity in tissue types and heterogeneity of tumor genetic composition. A 
system for quantifying EMT states has been proposed, and results appear to 
link more active EMT signatures to a worse prognosis for the patient [291]. 
EMT is thought to be induced by the tumor microenvironment. Research 
shows that both stromal and immune cells can induce EMT in cancer cells in 
a paracrine manner. For example, cancer-associated fibroblasts secrete an 
array of signaling molecules TGFβ, IL-6, EGF, VEGF, and HGF that all play 
a role in EMT signaling pathways [292, 293]. Similarly, tumor-associated 
macrophages (TAMs) promote inflammation and secrete TGFβ, among other 
signaling molecules that contribute to EMT activation [294]. Importantly, 
extensive EMT activation might be a local rather than global tumor event due 
to the diverse nature of the signaling in the microenvironment [11, 194]. 
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EMT activation promotes tumor survival by conferring resistance to both 
chemotherapy and immunotherapy. EMT helps cells escape death in cancer 
and embryogenesis [255, 295]. Studies have established clear links between 
resistance to chemotherapy and EMT [203, 296]. For example, miR-200c can 
restore breast carcinoma susceptibility to chemotherapy by downregulating 
ZEB1 and ZEB2 expression [297]. In general, EMT-TFs promote 
chemoresistance by regulating genes involved in cell death and stem cell 
maintenance. EMT can give rise to cancer stem cell (CSCs) population. These 
cells form a minority subpopulation and have elevated tumor-initiating 
potential [298, 299]. They can self-renew and differentiate into non-CSC 
tumor cells in this way, helping the tumor to expand. The CSCs are thought to 
arise by cells undergoing partial EMT, although precise molecular circuits are 
not yet known [203, 300]. Furthermore, in some cases where tumor cells are 
destroyed by therapy, CSCs may survive, leading to relapse [203]. Cancer 
cells undergoing EMT are also less susceptible to immunotherapy [11, 194]. 
While no clear picture yet exists, it seems that EMT contributes to 
immunosuppression and immune evasion in several different ways. Firstly, 
cells undergoing EMT secrete large amounts of TGFβ, which is known to have 
immunosuppressive effects [301]. Similarly, cells during EMT can secrete 
other cytokines and chemokines that regulate immune cell activities. For 
example, melanoma cells under activation of SNAIL secrete CCL2 and LCN2 
chemokines, which then activate dendritic cells to express PD-L1, which leads 
to attenuation of cytotoxic T cells [302, 303]. Furthermore, EMT leads to a 
reduction in the surface display of MHC class I molecules on cancer cells, 
which allows then to evade cytotoxic T cells [304, 305]. Finally, EMT can 
induce the expression of PD-L1 in cancer cells leading to immunosuppression 
[306]. Most of these observations have been made to a particular carcinoma 
type and may not be directly transferable to other cancer contexts. However, 
enough evidence exists to show that the EMT process is an essential player in 
tumor resistance to different therapies.  

EMT has long been implicated in the process of metastasis formation in 
carcinomas [11, 202]. The cancer spread throughout the body is a multistep 
process that is termed 'invasion-metastasis cascade' [307]. It begins by tumor 
cells becoming motile and invasive enough to colonize the tumor surrounding 
tissue. Next comes the intravasation of tumor cells into blood vessels. At this 
point, circulating tumor cells (CTCs) are generated and can spread throughout 
the body by finally escaping into healthy tissue and colonizing it. Overall, the 
process is remarkably inefficient, and only a tiny number of carcinoma cells 
leaving the original tumor will be able to form macroscopic metastasis [307]. 
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However, the study of this process is critical, as about 90% of cancer-related 
deaths occur due to metastasis rather than primary tumors [307]. It has been 
shown that EMT-TFs are directly related to the process of metastasis 
formation. For example, ZEB1 is required for efficient invasion and metastasis 
in a mouse model of pancreatic cancer [308]. Similarly, SNAIL is essential 
for the dissemination of mouse carcinoma cells [309], while SLUG 
significantly increases the metastatic potential of previously non-metastatic 
cells [310]. Given that the EMT process, in general, increases the motility, 
invasiveness, and stemness of cells, it is easy to see similar properties being 
important in the 'invasion-metastasis cascade'. However, the EMT program 
fails to explain the last step - distant tissue colonization. This step is of critical 
importance to metastasis formation, as only very few metastatic cells can 
survive in the new niche [311]. While little is yet known about the 
establishment of the metastatic colony, the plasticity and reversibility of the 
EMT process can offer some insights [11, 194]. Interestingly, CTCs often 
travel in clusters rather than alone, and the composition of the cluster is not 
homogenous with cells existing along the EMT spectrum [312]. As metastatic 
cells enter a new niche, the extracellular signaling drastically changes, and this 
disrupts the EMT, potentially inducing MET and allowing cells to colonize 
the new environment [313-315]. Thus parallels can be drawn between rounds 
of EMT-MET in development and the establishment of metastasis. 

Given the importance of EMT in cancer biology, it is not surprising that it 
is an attractive target for cancer therapy [194]. A few different approaches 
have been proposed, and efforts are underway. TGFb inhibitors are the most 
intensively investigated anti-EMT compounds and are showing promising 
results [194, 316]. On the other hand, targeting EMT may be more effective 
in combination with established therapies [317]. However, due to the 
heterogeneity of the EMT process, it is hard to pinpoint the best approach. 
Reversing EMT may not be the best strategy as that can lead to the 
enhancement of metastasis formation [307]. Targeting cells that underwent 
EMT may be a better option. However, there is a lack of known markers to 
specially target these cells [11]. It can be confidently said, that even though 
EMT has been extensively studied in the context of cancer, many unanswered 
questions remain [11]. Thus research effort continues and, with advancement 
of novel single-cell analysis tools recently taking center stage, new insights 
will undoubtedly follow [318, 319]. 
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Table 1.4. EMT links to cancer. Adapted with permission from Nature Reviews 
Molecular Cell Biology [11]. 

Tumor type Observations that link EMT to cancer 

Breast 

SNAIL expression is observed in invasive ductal carcinomas and 
correlates with lymph node metastasis 
TWIST1 promotes metastasis of mouse mammary carcinomas 
HER2-induced mammary tumors spontaneously express SNAIL and 
express features of EMT 
SNAIL expression is observed during carcinoma progression in an 
autochthonous model of breast cancer 

Pancreatic 

A switch from E-cadherin to N-cadherin shows significant associations 
with prostate cancer progression in patients 
Invasive carcinoma cells exhibit features of EMT in an autochthonous 
mouse model of pancreatic cancer 
ZEB1 strongly impacts tumor progression, invasion and metastasis in a 
mouse model of pancreatic cancer 

Lung 

The expression of EMT markers is tightly associated with disease 
progression in SCLCs 
EMT markers are expressed at the peripheral leading edge of NSCLCs, 
and marker presence is correlated with tumor progression 

Colorectal 

SLUG expression is correlated with tumor progression and is a marker 
for poor prognosis in patients 
ZEB2 is expressed at the invasive front, which correlates with tumor 
progression and is a prognostic marker for colorectal cancer 
N-cadherin drives malignant progression of colorectal cancer 

Hepatocellular 

Overexpression of TWIST induces EMT and promotes invasion and 
metastasis of hepatocellular carcinomas 
SNAIL induces EMT and promotes metastasis and tumor-initiating 
properties in hepatocellular carcinomas 

Bladder 

EMT markers are associated with tumors of high grade and stage 
SNAIL-induced EMT promotes metastasis in a xenograft model of 
bladder cancer 
E-cadherin is negatively correlated with, and SOX2 and NANOG are 
positively correlated with, tumor grade and stage in patients with 
invasive bladder carcinoma 
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1.4. Breast cancer 

1.4.1. Overview 

Breast cancer is the most frequent cancer in women [12]. An estimated 2.1 
million women were diagnosed with it in 2018, with over 600,000 patients 
succumbing to the disease [13]. The prevalence of breast cancer is on the rise, 
with a 3.1% yearly increase in cases globally [14]. The increase can be 
partially attributed to widespread testing, as breast cancer surveillance has 
become a standard procedure over the years. This also, in part, explains why 
high-income regions report more cases than the low-income regions: 92 cases 
per 100,000 women in North America as compared to 27 cases per 100,000 
women in middle Africa and eastern Asia [320]. Therefore, the actual number 
of patients globally is likely even higher. On the other hand, the increase in 
breast cancer incidence and differences between regions can also be, in part, 
traced back to the later age of first pregnancies in developed countries [321]. 
Furthermore, about 20% of the cases can be attributed to modifiable risk 
factors – obesity, alcohol use, and low physical activity [322]. Finally, 
hormonal contraceptives can also increase the risk of breast cancer occurrence 
[323].  

On a molecular level, breast cancer is a highly heterogeneous disease and 
can be categorized by several different classification systems. The standard 
classification in current clinical practice relies on histological and molecular 
characterization [12]. Important molecular characteristics are the expression 
of estrogen receptor (ER), progesterone receptor (PR), and enrichment of 
human epidermal growth factor receptor 2 (HER2) [324]. Based on these 
markers, each patient case is assigned to one of five distinct types (Table 1.5). 
Furthermore, these markers are crucial for guiding therapy decision-making. 
From a histological viewpoint, breast cancer can be classified into 19 
subtypes, according to WHO classification [325]. Based on which, the 
majority of tumors – 70-75% are ductal carcinomas (also referred to as 
carcinoma of no special type), while 10-15% of tumors are lobular carcinomas 
[12]. The remaining 17 types are rare and, in some cases, are associated with 
a very good or, on the contrary, a poor prognosis for the patient. 

Breast cancer is a well-studied disease, and systematic treatment guidelines 
are established. As a result, 70-80% of patients with the early-stage, non-
metastatic disease are cured [12]. By contrast, patients with the advanced 
(metastatic) disease are considered incurable, and their median survival is 2-3 
years, with the spread of metastases being the dominant cause of death [15]. 
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Furthermore, it is necessary to acknowledge that there are substantial 
differences in the quality of care globally, and typically in low-income 
countries, cancer patients have a worse prognosis and lower survival rates. 
Much of the focus recently has been devoted to studying advanced breast 
cancer cases, and a wide array of new drugs and therapies is under evaluation 
in clinical trials. Together with emerging better diagnostic tools, this gives 
hope to implement the precision medicine approach in breast cancer care in 
the not too distant future [12].  

 
Table 1.5. Types of breast cancer and defining molecular features. 

Breast cancer type Molecular description Prognosis 

Luminal A-like Strongly ER+ and/or PR+; HER2– Good 
Luminal B-like 
HER2- 

ER+ and/or PR+, but lower expression than 
in luminal A-like; HER2– Intermediate 

Luminal B-like 
HER2+ 

ER+ and/or PR+, but lower expression than 
in luminal A-like; HER2+ Intermediate 

HER2+ non-luminal ER–, PR–, HER2+; non-luminal Intermediate 
Triple-negative 
(TNBC) ER–, PR–, HER2–; non-luminal Poor 

 

1.4.2. Development of breast cancer  

There are two different models for cancer establishment. The first is called 
the clonal evolution model. It proposes that mutations accumulate, and 
epigenetic changes occur with each successive cell division, and the 'fittest' 
cells survive to establish the tumor [326]. The second model suggests that only 
precursor cancer stem cells can initiate and sustain tumor progression [327]. 
In reality, both models play some part in breast cancer development as cancer 
stem cells can evolve in a clonal fashion [328]. Upon establishment, breast 
tumors can further develop in two divergent pathways. The first pathway is 
termed low grade-like pathway and applies primarily to luminal A type 
tumors. It is characterized by the loss of 16q and gain of 1q chromosome, and 
a gene expression signature is associated with the ER phenotype. The second 
pathway is termed high grade-like pathway and is characterized by the loss of 
13q chromosome and amplification of 17q12 segment, which leads to 
amplification of HER2 expression. This type of progression is associated with 
lower genetic stability and increased tumor aggressiveness [328, 329]. All 
HER2+ and TNBC breast tumors develop according to the second pathway. 
Such divergence in development pathways further highlights the 
heterogeneity of breast cancer.  



50 
 
 

The exact mechanism by which breast cancer arises is unknown. However, 
hormone exposure is a major risk factor. The imbalance between estrogen and 
progesterone during menstrual cycles promotes cell proliferation [12]. Due to 
the repeated nature of the process, this can lead to DNA damage accumulation, 
which in turn results in cells becoming malignant. Extensive studies have 
revealed that most frequently mutated and/or amplified genes are TP53 (41% 
of tumors), PIK3CA (30%), MYC (20%), PTEN (16%), CCND1 (16%), 
ERBB2 (13%), FGFR1 (11%) and GATA3 (10%) [330]. All of these genes in 
one or another way are related to cell-cycle control and cell proliferation. For 
example, the ERBB2 gene encodes the HER2 protein. It is a receptor of human 
epidermal growth factor family and upon activation is involved in promoting 
cell proliferation, survival, metastasis, and adhesion. Different types of breast 
cancer have different genetic profiles, which can be determined with various 
diagnostic tests and have implications for treatment strategies. Luminal cancer 
types (ER+ and/or PR+) are frequently associated with PI3K-AKT pathway 
activation and inactivation of GATA3 and JUN kinase pathways. HER2+ 
tumors are associated with mutations in the ERBB2 gene, while TNBC 
frequently has TP53 mutations and extensive copy number variation [331]. 
Furthermore, to date, over 100 high-probability breast cancer driver genes 
have been identified [332]. However, the majority of the mutations affecting 
the driver genes are rare, and most cancers are caused by the accumulation of 
many low-penetrance mutations [12]. 

Family genetics is also a significant factor in breast cancer. About 10% of 
the cases are linked to family history. Out of those cases, about 30% can be 
explained due to mutations in particular genes - BRCA1, BRCA2, PTEN, 
TP53, CDH1, and STK11 [333]. Perhaps the best-studied is the case of 
BRCA1 and BRCA2. Protein products of these genes are involved in DNA 
damage repair and are considered tumor suppressor genes [334]. Mutations in 
BRCA genes are associated with an increased mutational load and a 
significant cumulative risk of developing breast cancer by the age of 80 - 69-
72% [335]. Moreover, the risk of ovarian cancer is also significantly increased 
in the case of mutated BRCA genes. Over 2000 different mutations have been 
identified for these genes. Remarkably, only a few of them have been found 
repeatedly in unrelated families [12, 336]. Finally, it must be noted that cancer 
risk differs depending on the exact mutation profile of BRCA genes [335]. 

Primary breast tumors are well studied, while metastasis formation and 
genetic evolution are less understood [12, 331]. Metastases develop through 
the dissemination of CTCs, which are likely generated through partial EMT, 
as discussed in the previous chapter [337]. In breast cancer patients, 
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metastases typically develop in bones, lungs, or liver [15]. Research shows 
that metastases disseminate late from the primary tumor, and up to 80% of 
driver mutations are preserved during dissemination [331]. However, new 
tumors often harbor 'private' mutations, resulting in subclonal diversification 
[338]. For example, 24% of tumors lose ER expression in the metastatic site, 
while 14% gain ER expression. Furthermore, some mutations may arise as a 
response to the treatment of the primary tumor [12]. Different metastatic sites 
in the same patient may also have divergent evolutionary pathways [331]. 
Such complexity of advanced breast cancer makes it challenging to treat it 
successfully. 

 

1.4.3. Immune infiltration of breast cancer  

The immune system plays an essential role in breast cancer development 
and progression (Figure 1.7). In a temporal sense, the interaction of the 
immune system and the tumor can be described by the "three Es" model: 
elimination, equilibrium, and escape [339]. Early in tumor development, the 
inflammatory environment and associated cytokines will promote tumor-
suppression. Inflammation signaling will activate the innate immune system, 
and early cancer cells can be eliminated by NK cells [340, 341]. Furthermore, 
recent studies show that innate lymphoid cells may also be implicated in the 
early stages of breast cancer development, although their involvement is not 
yet fully understood [342]. If the early tumor control fails, tumors will 
progress into the stage of equilibrium with the immune system. During this 
stage, tumor growth will be slowed down, but ultimately resistance 
mechanisms will develop, and tumor cells will escape immunosurveillance 
[339]. At this stage the inflammation becomes chronic and it actively 
promotes tumor expansion [343, 344]. Inflammation signaling shapes the 
breast tumor microenvironment (TME) and also affects tumor cells directly 
by promoting their survival and proliferation. Furthermore, inflammation 
signaling leads to the downregulation of MHC class I and upregulation PD-
L1 expression in tumor cells, which directly helps to escape killing by NK and 
cytotoxic T cells [340, 345] 

Myeloid cells are critical players in the breast tumor microenvironment, 
and their population has been shown to increase in tumor tissue as compared 
to healthy breast tissue [346]. Myeloid cells are typically recruited and 
activated by tumor cell signaling and primarily contribute to tumor survival 
and immunosuppression [341, 347]. In the context of breast cancer, myeloid-
derived suppressor cells (MDSCs) play an essential role in establishing the 
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immunosuppressive environment [348, 349]. These cells are recruited by 
tumor cell signaling and will deplete nutrients needed by lymphocytes, 
generate oxidative stress, and interfere with lymphocyte trafficking [341]. The 
overall effect inhibits the functions of T cells, NK cells, and dendritic cells 
while promoting Th2 T cells, regulatory T cells (Tregs), and tumor-associated 
macrophages (TAMs) [348, 350]. Furthermore, research suggests that the 
level of MDSCs in peripheral blood directly correlates with disease burden 
and duration [351]. Another relevant category of myeloid cells in breast cancer 
is tumor-associated macrophages (TAMs) [352]. They can have different roles 
in the TME, depending on their polarization. M1-like TAMs are stimulated by 
Th1 cell cytokines and have antitumor properties. On the opposite end of the 
polarization spectrum, M2-like TAMs are activated by Th2 cell cytokines and 
display pro-tumor characteristics [353]. Due to the immunosuppressive and 
inflammatory environment, M2-like TAMs are the dominant type in breast 
tumors [352]. They are involved in mediating tumor growth and progression 
and can contribute to therapy resistance mechanisms [354]. M2-like TAMs 
secrete cytokines, which then act to recruit Tregs and suppress antigen-
presenting cells (APCs) and CTLs. While not extensively studied in the 
context of breast cancer, high levels of TAMs in the tumor are associated with 
poor patient survival indicating their importance in breast tumor biology 
[352]. 

The adaptive immune system has a dual role in breast tumors. On the one 
hand, CD8+ T lymphocytes give rise to CTLs, which are the main effectors 
acting against tumor cells [355]. CTLs recognize specific antigens presented 
by tumor cells and can successfully destroy them. Harnessing this interaction 
has been the focus of immunotherapy and has been utilized in the treatment of 
various cancers [356]. In the context of breast cancer, tumor infiltration with 
CTLs is associated with a favorable prognosis [357]. On the other hand, the 
roles of CD4+ T cells in the TME are more diverse. Naïve CD4+ T cells can 
differentiate into a few different effector subtypes: mainly different T helper 
cells (Th1, Th2, and Th17) and T regulatory cells [358]. Th1 cells directly 
activate CTLs by secreting anti-tumor cytokines, thus playing an essential role 
in the anti-tumor response [345]. However, other CD4+ T cell subtypes have 
tumor-promoting properties. Th2 cells secrete a wide array of cytokines that 
contribute to the immunosuppressive environment in TME and, among other 
roles, have a direct effect on CTL suppression and activation of M2-like 
TAMs [359]. Treg cells can directly suppress CTL and Th1 cell functions and 
play a central role in immune suppression in breast cancer tumors [18, 360]. 
Accordingly, high breast tumor infiltration with Treg cells has been shown to 
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correlate with a poor prognosis [357, 361]. Finally, the B cells also need to be 
recognized in the context of breast cancer. Much like CD4+ T cells, B cells 
have been shown to have both anti-tumor as well as tumor-promoting effects 
[362]. For example, B cells can produce antibodies against tumor cell 
antigens. This can induce CTL [363] as well as NK cell response [362] and 
contribute to tumor suppression. On the other hand, B cells can secrete 
cytokines that promote the immunosuppressive environment in the TME 
[364]. Furthermore, B cells can also directly activate Tregs [365]. Research 
shows that B cells have different effector phenotypes, and their prognostic 
value remains controversial [362].Overall, when considering tumor and 
immune system interaction, it is important to recognize that no cell type acts 
in an isolated manner. Instead, the whole TME is a single interconnected 
network where each cell type contributes to and is regulated by the diverse 
signaling networks. 

Historically breast cancer tumors have been considered immunologically 
quiescent or ‘cold’. However, recent evidence shows that this is not true as a 
significant amount of immune cells is detected in most breast cancer tumors 
[16, 17]. Thus in the current view, most breast tumors are considered 
immunosuppressed rather than immunologically quiescent. Furthermore, it 
must be noted that in line with the heterogeneity of breast cancer, the immune 
cell subset will also heavily depend on the particular tumor type [18]. In 
particular, ER+ tumors display a broad diversity in TIL profiles. This may be 
partly explained by the effect of hormone signaling pathways on immune cells 
and their interactions [18]. Furthermore, differences between tumor types can, 
in part, be attributed to differences in genetic mutation profiles [366]. 
However, it must be noted that there is no consistent proof that the mutational 
load alone directly correlates to TIL levels in tumors [367]. 

Studying the role of the immune system in breast tumors is getting 
increasing attention in recent years as it is becoming clear that it is a potent 
therapeutic target [17, 341, 368]. Furthermore, the profile of tumor-infiltrating 
leukocytes (TILs) can potentially be a prognostic marker. While no definitive 
guidelines exist, literature meta-analysis has shown that for TNBC, overall 
high TIL infiltration correlates with a favorable prognosis. To a lesser extent, 
the same principles apply to HER2+ tumors. On the other hand, for tumors 
expressing hormone receptors (ER+ and/or PR+), immune infiltration does 
not correlate with patient prognosis [357]. It is important to note that the 
precise composition of TILs is also relevant for prognosis, as discussed above. 
However, most of the observations have been made independently of one 
another. Thus, it is likely that more prognostic power can come from analyzing 
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specific TIL infiltration profiles and uniting them with existing biomarkers. 
Overall, while a lot is now known about separate immune cell types and 
signaling pathways operating in the breast TME, the full picture is far from 
clear, making it hard to draw general conclusions. Understanding the intricate 
interplay between different cell types in different breast tumor types is the key 
to the successful application of immunotherapy, which has so far seen only 
limited success in breast cancer [12, 368]. 

 

 
Figure 1.7. Immune cell interactions in breast cancer. Reproduced with 

permission from Nature Reviews Disease Primers [12]. 
 

1.4.4. Breast cancer treatment strategies 

The first line of defense against breast cancer is population screening. This 
strategy aims to identify the disease at an early stage for which there is 
effective treatment available [12]. Mammography is the most widely used 
screening technique with exact guidelines differing between countries. 
Population screening reduces relative mortality risk by 20% and is most 
beneficial for women in the age group of 50-69 years old [369]. Diagnosis of 
breast cancer is based on three different tests – clinical examination, imaging, 
and a needle biopsy. According to internationally recognized guidelines, the 
determination of the ER, PR, and HER2 status is mandatory for all patients 
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with invasive breast cancer [370]. Based on the presence of metastases, breast 
cancer is classified as either early (without metastasis) or advanced (if 
metastases are detected). Treatment strategies and outcomes differ 
significantly between the two cases [12]. 

For most early breast cancer patients, the tumor will be surgically removed 
if the procedure is possible [12]. However, most patients will also need some 
form of systemic therapy. In some cases, it can be administered before the 
surgery (neoadjuvant) if the tumor burden is high and needs to be reduced 
before the operation. Furthermore, neoadjuvant chemotherapy is also applied 
to patients that have an aggressive form of HER2+ or TBNC, and response to 
it serves as a prognostic marker [371]. After surgery, based on the risk of 
recurrence (as determined by biomarkers or response to neoadjuvant therapy), 
additional rounds of adjuvant therapy may be applied. In all cases of ER+ 
breast cancers, endocrine therapy is applied to block the ER activity. 
Additional diagnostic tests can be performed to aid in decision-making for 
adjuvant systemic therapy. Postoperative radiation therapy may also be 
applied according to guidelines and has been proven to benefit patient survival 
[372]. Overall, modern-day systemic therapies are highly effective, and when 
applied in an adjuvant manner, reduce mortality by one-third [373].  

Advanced breast cancer is an incurable disease [12]. Several different 
treatment strategies exist that all aim to relieve patient symptoms and to 
prolong quality-adjusted life expectancy. Radiation therapy is often prescribed 
and has been proven to provide substantial benefit in the case of bone, brain, 
and soft tissue metastases [374]. Furthermore, radiation therapy might also 
induce a systemic immune response and has the potential to increase the 
efficacy of immunotherapy, as discussed below [375]. A large number of 
systemic therapies are available, and a lot of novel drugs are under 
investigation [12]. While general treatment guidelines exist, most cases are 
approached in an individualized manner, and treatment is adjusted based on 
the progression of the disease. Furthermore, due to the substantial 
heterogeneity and complexity of advanced breast cancer, the optimal 
treatment sequences are unknown in most cases and, in particular, in the case 
of TNBC. 
Immunotherapy has shown great promise for cancer treatment over the last 
decade. However, in the case of breast cancer, clinical developments have 
been slow as compared to other tumor types [12]. The first treatment - immune 
checkpoint blockade (ICB) for metastatic TNBC was only approved in 2019 
[368]. Historically breast cancers have been considered 'cold'. While this 
viewpoint is changing, it is also becoming apparent that different breast cancer 
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types have different immune infiltration rates and profiles [376]. Furthermore, 
the breast tumor environment is often highly immunosuppressive [341]. A 
successful immune response to tumor cells consists of several steps. First, 
tumors cells need to release antigens upon their death, which must then be 
presented by antigen-presenting cells to prime and activate effector cells. 
Activated T cells must then infiltrate the tumor, recognize, and kill tumor cells 
[377]. For immunotherapy to be efficient, all these steps must function 
adequately, which does not seem to be the case in most breast cancer tumors. 
For example, the survival of the patients in the ICB clinical trials for advanced 
TNBC treatment was not longer than in chemotherapy control groups [368]. 
This means that only a fraction of patients benefited. Such results suggest that 
immune surveillance evasion by tumor cells is not the only problem in the 
immune response cascade. Similar observations have prompted an increased 
interest in combination approaches where immunotherapy is administered 
together with chemotherapy or radiotherapy [17, 368]. Conventional therapies 
can potentially prime the tumor by activating the initial stage of the immune 
response cascade and lead to more effective immunotherapy. Some 
preliminary results are available that support this approach [368]. As of April 
2020, there are at least 230 active clinical trials involving immunotherapy in 
breast cancer treatment (clinicaltrials.gov database). This highlights increased 
interest in immunotherapy approaches for breast cancer treatment. 
Furthermore, it gives hope to see improvements in breast cancer care in the 
near future. 
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2 MATERIALS AND METHODS 

2.1. Single-cell analysis  

2.1.1. Single-cell transcriptome barcoding 

Transcriptomes of single cells were barcoded using droplet microfluidic 
platform [35]. This procedure involves three distinct parts: (i) microfluidic 
chip manufacturing, (ii) barcoding hydrogel bead (BHB) synthesis, and (iii) 
single-cell transcriptome barcoding in microfluidic droplets. Microfluidic 
chip and BHB preparations were carried out in advance of single-cell 
transcriptome barcoding. Both the microfluidic chips and BHBs were 
prepared in larger batches and used in multiple experiments to minimize 
technical errors. 

The microfluidic chips were fabricated using a previously described 
procedure [378]. Briefly, this multistep process involves using computer-
assisted design software to draw the microfluidic device design, which is then 
printed on a transparent film to produce a mask. Such a mask is then used to 
fabricate a silicon master using soft photolithography. The finished master 
serves as a reusable mold to transfer the microfluidic chip pattern onto 
poly(dimethylsiloxane) (PDMS) slabs, which are then bonded to a glass slide 
to create the microfluidic chip. Microfluidic channels are treated with a 
hydrophobic coating to complete the microfluidic chip manufacturing. In this 
work, two different chip designs were used (Figure 2.1).  

Barcoding hydrogel beads were synthesized using a microfluidic chip 
(Figure 2.1, panel A). Monodisperse droplets were generated using 
acrylamide:bis-acrylamide solution supplemented with an acrydite-modified 
DNA primer (Table 2.1, HBH-Stub) to a final concentration of 50µM. The 
acrydite-modified DNA primer also contained a photo-liable linker that can 
be cleaved by a >350nm UV light. The photo-liable linker enables the DNA 
primer release from the hydrogel beads. All barcoding hydrogel beads 
synthesis steps were carried out in a red light environment to minimize the 
photo-liable linker's cleaving. Using a microfluidic chip (Figure 2.1, panel A, 
channel height 50 µm) monodisperse emulsion of 60 µm diameter droplets 
were generated. The flow rates used to operate the microfluidic chip are 
indicated in Table 2.2. Commercially available microfluidic oil was used for 
all experiments (RAN Biotechnologies, cat. no. 008-FluoroSurfactant-2wtH-
50G). The emulsion was then transferred to 65°C for 4 hours. The acrylamide, 
bis-acrylamide solution polymerizes, and acrydite-modified DNA primers are 
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covalently incorporated into the hydrogel mesh during the incubation. After 
polymerization, the hydrogel beads were washed using hexane (Sigma-
Aldrich, cat. no. 208752) and buffer solution (Table 2.3, TBSET) to remove 
microfluidic oil and surfactants. Next, the hydrogel beads with attached DNA 
primers were barcoded in a combinatorial split-and-pool manner to generate a 
barcoding hydrogel bead library. Two successive barcoding rounds were 
performed, and each round contained 384-unique oligonucleotide sequences 
(Table 2.1, barcoding oligo 1 and barcoding oligo 2) resulting in 147 456 
unique barcodes. During each barcoding round, hydrogel beads were barcoded 
by splitting the whole hydrogel pool between four 96-well plates (a total of 
384 individual wells). Each well contained a unique primer that had a 
complementary region to the ssDNA attached to the hydrogels. After 
hybridization, the primers attached to the hydrogel beads were extended using 
isothermal primer extension with BST 2.0 polymerase (NEB, cat. no. 
M0537L). After each barcoding step, all hydrogels were pooled, and the 
double-stranded DNA (dsDNA) produced during primer extension was 
converted into a single-stranded form by alkaline denaturation (Table 2.3, 
Denaturation buffer). After two barcoding rounds, the remaining unextended 
primers attached to hydrogel beads were removed. This procedure involved 
protecting the fully extended primers by hybridization with a complementary 
probe (Table 2.1, Protection oligo) and digesting the barcoded hydrogel bead 
pool with Exo I exonuclease (Thermo Scientific, cat. no. EN0581). After 
completing the synthesis, the quality of BHBs was evaluated by fluorescence 
in situ hybridization (FISH) using a set of probes complementary to regions 
common to all the primers attached to the hydrogel beads (Table 2.1, FAM-
PE1, FAM-W1, FAM-BA19). BHBs prepared in such a way were stored at 
+4°C (Table 2.3, Storage buffer) until used. Before being used in a single cell 
transcriptome barcoding experiment, the BHBs were washed in a buffer 
solution that contained RT reaction components (Table 2.3, barcoding buffer). 
This was done in order not to dilute the RT components in droplets.  

Single cell transcriptomes were barcoded using microfluidic chip (Figure 
2.1, panel B, channel height 80 µm). In this step, single cells are captured in 
droplets with RT–lysis reagents and BHBs. Accordingly, the microfluidic chip 
consists of two junctions: the first for bringing the RT–lysis reagents, cells, 
and barcoded beads together, and the second for cell and bead co-
encapsulation, where droplet generation occurs. Due to laminar flow, the 
mixing of cells and reagents occurs only after encapsulation, preventing 
premature cell lysis. The flow rates used to operate the microfluidic chip are 
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detailed in Table 2.2. Commercially available microfluidic oil was used for all 
experiments (RAN Biotechnologies, cat. no. 008-FluoroSurfactant-2wtH-
50G). Using the described flow rates allows to barcode ∼30000 cells per hour. 
The droplet volume can be precisely tuned by adjusting the flow rate of 
microfluidic oil. In this work, either 1.5nl or 3nl droplets were used to barcode 
single cell transcriptomes. The droplet size for each barcoding experiment is 
indicated in the sections below. cells were diluted and injected into the device 
at a concentration corresponding to one cell in every ∼10 droplets to minimize 
cases in which two or more cells enter the same droplet. Using such dilute cell 
samples corresponds to Poisson l=0.1, and under such condition, over 99% 
of droplets will contain one cell or no cells. Cell sample preparation is detailed 
in the relevant sections below. Monitoring the cell and bead co-encapsulation 
with the high-speed camera and adjusting the BHBs flow rate allowed to 
achieve a highly efficient BHBs loading into droplets. In this work, all single-
cell transcriptome barcoding experiments were performed with 75–90% BHB 
loading efficiency. During encapsulation, the emulsion was collected on ice, 
and after encapsulation was completed, the emulsion was exposed to 350 nm 
UV-light for 5 min to release DNA barcoding primers attached to the hydrogel 
beads. Finally, the emulsion was transferred to a dry heat block, and the RT 
reaction was performed using conditions indicated in sections below.  

 

 
Figure 2.1. Microfluidic chip designs used in this work. Panel A – microfluidic chip 
used for barcoded hydrogel bead manufacturing. Panel B – microfluidic chip used for 
single-cell transcriptome barcoding. 
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Table 2.1. DNA oligo sequences used in single-cell transcriptome barcoding 
experiments. DNR modifications are highlighted in bold. 

Name Sequence 

DNA-Stub 5’-/acrydite/photocleavable spacer/CGATGACGTAATACGACTCAC 
TATAGGGATACCACCATGGCTCTTTCCCTACACGACGCTCTTC-3′ 

Barcoding 
oligo 1 

5′-GGCGTCACAAGCAATCACTC[Cellindex1]AGATCGGAAGAGC 
GTCGTGTAGGGAAAG-3′, where Cell-index1 is 384 unique sequences 
8-11nt length. 

Barcoding 
oligo 2 

5’-BAAAAAAAAAAAAAAAAAAANNNNNNNN[Cellindex2]TTGG 
CGTCACAAGCAATCACTC-3′, where Cell-index2 is 384 unique 
sequences 8nt length. 

Protection 
oligo 5′-BAAAAAAAAAAAAAAAAAAA-3′ 

FAM-PE1 5′-/6-FAM/AGATCGGAAGAGCGTCGTGTAGG GAAAGAG-3′ 

FAM-W1 5′-/6-FAM/AAGGCGTCACAAGCAATCACTC-3′ 

FAM-BA19 5′-/6-FAM/BAAAAAAAAAAAAAAAAAAA-3′ 

2nd RT oligo 5’- GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN-3’ 

Final PCR 
oligo 1 

5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA 
CGA-3’ 

Final PCR 
oligo 2 

5′-CAAGCAGAAGACGGCATACGAGAT[index]GTGACTGGAGTT 
CAGACGTGTGCTCTTCCGATCT-3’, where the index is: CGTGAT, 
ACATCG,GCCTAA, TGGTCA, CACTGT or ATTGGC. 

 
Table 2.2. Flow rates used to operate microfluidic chips. 

Component Flow rate 
Hydrogel bead synthesis 

Acrylamide–primer mix 900µl/hr 
Microfluidic Oil 1800µl/hr 

Single cell transcriptome barcoding 
Single-cell suspension 250µl/hr 
RT–lysis reagents 250µl/hr 
BHBs 80±10 µl/hr 
Microfluidic Oil 700µl/hr - 900µl/hr 
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Table 2.3. Compositions of solutions used during barcoded hydrogel bead synthesis. 

Name Composition 

TBSET 
10mM Tris-HCl (pH 8.0), 137mM NaCl, 2.7mM KCl, 10mM EDTA, 
0.1% (vol/vol) Triton X-100. Solution prepared in ddH2O and filtered 
through a 0.2-μm membrane. 

Denaturation 
buffer 

150mM NaOH, 0.5% (wt/wt) Brij-35. The solution prepared in ddH2O 
and filtered through a 0.2-μm membrane. 

Storage buffer 
10mM Tris-HCl (pH 8.0), 10 mM EDTA, 0.1% (vol/vol) Tween-20. 
The solution prepared in ddH2O and filtered through a 0.2-μm 
membrane. 

Barcoding 
buffer 

50 mM Tris-HCl (pH 8.3 at 25°C), 75 mM KCl, 3 mM MgCl2, 1% 
(vol/vol) Igepal-CA630. The solution prepared in ddH2O, 

 

2.1.2. Single-cell sequencing library preparation 

Sequencing library preparation refers to a number for steps that need to be 
carried out to amplify the barcoded cDNA from single cells and prepare it for 
sequencing. This procedure was described in detail as part of this work [35]. 
First, the emulsion was aliquoted in such a way that each aliquot contained 
around 3000 cells based on observed actual cell concentration in a particular 
run. This was done to minimize cases in which two cells acquire the same 
barcode. Next, the droplets were broken by the addition of perfluoroctanol 
(Sigma-Aldrich, cat. no. 370533), and cDNA was cleaned to remove hydrogel 
beads, unextended primers and primer dimers generated during RT reaction 
(for a detailed protocol see section 2.2.3). After cDNA was purified, it was 
subjected to second strand synthesis reaction (for a detailed protocol see 
section 2.2.4) and then amplified by in vitro transcription (IVT) using T7 
RNA polymerase (for a detailed protocol see section 2.2.5). The amplified 
antisense RNA was fragmented using zinc-ion-mediated cleavage (Ambion, 
cat. no AM8740), purified with AMPure reagent (Beckman Coulter, cat. no. 
A63881) using 1.2x volume ratio, and converted into a DNA library by a 
second RT reaction (Takara Clontec, cat. no. 2680A) using a random priming 
sequence (Table 2.1, 2nd RT oligo). Next, the reaction product was purified 
with AMPure reagent (Beckman Coulter, cat. no. A63881) using a 1x volume 
ratio. Finally, the library was PCR amplified (Kapa Biosystems, cat. no. 
KK2601) using primers compatible with Illumina sequencing machines 
(Table 2.1, Final PCR oligo 1 and Final PCR oligo 2) and purified with 
AMPure reagent (Beckman Coulter, cat. no. A63881) using 0.8x volume ratio. 
A library index added during the final PCR allowed to pool multiple libraries 
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in a single sequencing run. The described sequencing library preparation also 
contained two quality control steps were the fragment size distribution of the 
library was analyzed: i) after library amplification by IVT (Agilent, cat. no. 
5067-1513) and ii) after final PCR amplification (Agilent, cat. no. 50674626). 
Only those libraries that passed the quality control were subjected to 
sequencing. 

2.1.3. Single-cell library sequencing 

Single-cell library sequencing was carried out on Illumina MiSeq, NextSeq 
550, and HiSeq2500 sequencing instruments using Illumina sequencing 
reagent kits appropriate for each instrument. In all cases, sequencing was 
carried out in paired-end (PE) mode where Read1 contained cell barcode and 
UMI information, and Read2 contained transcript information. Because of 
differences between sequencing platforms, the read lengths varied between 
different experiments. In all cases, Read1 length was ³51bp, and Read2 length 
was ³35bp. Data that was used to investigate the EMT process and to create 
the breast cancer immune atlas was gathered on a HiSeq2500 machine using 
PE sequencing mode were Read1 length was 54bp and Read2 length was 
66bp. All sequencing runs were set to “FastQ generation" mode, and no 
further preprocessing was done. 

2.1.4. Single-cell data analysis 

Single-cell data analysis performed in this work consisted of a few separate 
stages. First, the raw sequencing data was processed to produce a cell x gene 
matrix. Next, the matrix was manually thresholded to remove low-quality cells 
and noisy barcodes. After the matrix was prepared, it was subjected to 
downstream analysis by various algorithms.  

All raw sequencing data in this work was processed using the SEQC 
pipeline [86]. The workflow is presented in Figure 2.2. Briefly, the pipeline 
begins by extracting the cell barcode and UMI from the forward read (Read1) 
and storing these data in the header of the reverse read (Read2). This produces 
a single FastQ file that contains alignable sequences and all relevant metadata. 
The merged file is then filtered for cell barcode substitution errors, broken 
barcodes, and low-complexity sequences (homopolymers) to eliminate errors 
early in the pipeline. Next, the filtered reads are aligned against the human 
genome using the STAR aligner [90]. After alignment, minimal 
representations of sequencing reads are translated into an hdf5 read store 
object, where cell barcodes are represented in reduced 3-bit coding. Reads are 
then annotated with a reduced set of exon and gene ids representing gene 



63 
 
 

features — only the ones that are possible to detect with poly-A capture-based 
droplet RNA sequencing. The pipeline then attempts to resolve reads with 
multiple equal-scoring alignments. In cases where both genomic and 
transcriptomic alignments are present, only the transcriptomic alignments are 
retained. Unique alignments from the previous step are corrected for errors 
using an enhancement of a previously described method [34] - with an 
additional probability model to constrain the false positive rate. The error-
reduced, uniquely-aligned data are grouped by cell, molecule, and gene 
annotation, and compressed into a final cell x gene matrix. The pipeline was 
run using virtual instances provided by Amazon Web Services (c4.4xlarge 
instance type).  

The matrix produced by the pipeline was manually thresholded to remove 
dead cells (mtRNA >20%), low complexity cells (based on the low number of 
detected unique genes given the number of total molecules assigned to the 
cell) and barcodes that captured ambient RNA (barcodes were separated by 
finding the saddle point in the distribution of total molecule counts per barcode 
and excluding the mode with lower mean). Data processed in such a way was 
used to compare the effects of different sequencing library preparation 
optimizations or was subjected to further analysis using different 
computational algorithms. The summary of algorithms used for downstream 
analysis is presented in Table 2.4. 

 

 
Figure 2.2. SEQC pipeline workflow. 
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Table 2.4. Summary of computational algorithms used in this work. 

Algorithm Brief description Reference 
EMT data analysis 

MAGIC Data imputation using data diffusion  [138] 
Principal Convex 
Hull Analysis  Archetype identification using imputed data [379] 

kNN-DREMI Gene-gene correlation quantification [138] 

DREVI Gene set clustering and pseudotime ordering based 
on kNN-DREMI scores. [138] 

Breast cancer data analysis 
Biscuit Data imputation and clustering [86] 
Phenograph Data clustering [179] 
t-SNE Dimensionality reduction and data visualization [161] 

Diffusion maps Dimensionality reduction and diffusion component 
identification [167] 

2.2. scRNA-Seq protocol optimization 

2.2.1. qPCR 

Transcript capture efficiency was evaluated using qPCR (Thermo 
Scientific, cat. no. K0222). Reaction was performed according to 
manufacturer’s recommendations. Eight different genes were measured for 
each inhibitor (Table 2.5). Further comparison of two RNA-Seq inhibitors 
(Superase IN and RiboLock) was done in scRNA-Seq assay using K562 cells 
and comparing the transcript capture rates. 
 
 
Table 2.5. Sequences of qPCR primers used to compare the performance of RNAse 
inhibitors. RNA levels specific for K562 cells. RNA levels data from Human Protein 
Atlas database. 

Name of 
target gene Forward primer sequence Reverse primer sequence RNA levels, 

FPKM 
ActB CGCCGCCAGCTCACC TCTCCATGTCGTCCCAGTTG 1137 

VIM CGGGAGAAATTGCAGGAGGA TCTTGGCAGCCACACTTTCA 508 

B2M CTCACGTCATCCAGCAGAGAA TGCTTACATGTCTCGATCCCAC 185 

TGFb1 TACCTGAACCCGTGTTGCTC CCGGTAGTGAACCCGTTGAT 58 

STAT3 GGAGAAACAGGATGGCCCAA ACCTGCTCTGAAGAAACTGCT 52 

AKT1 AAGTCATCGTGGCCAAGGAC GTTCTCCAGCTTGAGGTCCC 42 

SMAD2 GTTCCTTTCCTCCTCCGCTC CTTGTATCGAACCTCCCGGC 30 

EGFR CGAATGGGCCTAAGATCCCG CCCTTATACACCGTGCCGAA 0 
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2.2.2. Comparison of RT enzymes 

In this work performance of three different RT enzymes for single cell 
transcriptome barcoding was evaluated: SuperScript III (Invitrogen, cat. no. 
18080044), SuperScript IV (Invitrogen, cat. no. 8090010) and Maxima H 
minus (Thermo Scientific, cat. no. EP0751). RT reaction compositions and 
conditions are detailed in Table 2.6. Efficiency of RT enzymes was evaluated 
by performing scRNA-Seq assay using K562 cells and comparing the 
transcript capture rates. 

 
Table 2.6. Summary of different RT reaction conditions used to barcode single-cell 
transcriptomes. 

RT enzyme Reaction composition in droplets Thermal 
protocol 

SuperScript III 
(Invitrogen, 
cat. no. 
18080044)  

37.6 mM KCl, 45 mM NaCl, 5.8 mM MgCl2, 54 mM 
Tris-HCl [pH 8.0], 0.3 mM KH2PO4, 0.87 mM 
Na2HPO4, 0.4% (v/v) Igepal-CA630, 0.017% (v/v) 
BSA, 3.9% (v/v) Optiprep, 2.17 mM DTT, 0.44 mM 
dNTPs, 1.16 U/ml RiboLock RNAse inhibitor, and 
10.4 U/ml SuperScript-III RT enzyme 

Initiation:1 
min at 60°C  
RT reaction: 2 
hours at 50°C  
Inactivation: 
15 min at 
70°C 

SuperScript IV 
(Invitrogen, 
cat. no. 
8090010) 

9.8 mM KCl, 45 mM NaCl, 0.4 mM MgCl2, 6.5 mM 
Tris-HCl [pH 8.0], 0.3 mM KH2PO4, 0.87 mM 
Na2HPO4, 0.4% (v/v) Igepal-CA630, 0.017% (v/v) 
BSA, 3.9% (v/v) Optiprep, 0.435 SSIV RT buffer, 
2.17 mM DTT, 0.44 mM dNTPs, 1.16 U/ml 
RiboLock RNase Inhibitor, and 10.4 U/ml Maxima H 
minus RT enzyme 

RT reaction: 
60 min at 
50°C 
Inactivation: 
10 min at 
80°C 

Maxima H 
minus 
(Thermo 
Scientific, cat. 
no. EP0751) 

43 mM KCl, 45 mM NaCl, 1.7 mM MgCl2, 28 mM 
Tris-HCl [pH 8.0], 0.3 mM KH2PO4, 0.87 mM 
Na2HPO4, 0.4% (v/v) Igepal-CA630, 0.017% (v/v) 
BSA, 3.9% (v/v) Optiprep, 4.4 mM DTT, 0.44 mM 
dNTPs, 1.16 U/ml RiboLock RNase Inhibitor, and 
10.4 U/ml Maxima H minus RT enzyme 

RT reaction: 
60 min at 
50°C 
Inactivation: 
10 min at 
80°C 

2.2.3. Comparison of cDNA cleanup strategies 

After single-cell transcriptome barcoding, cDNA was cleaned up using two 
different approaches. The first step was the same for both protocols – hydrogel 
beads were removed by spinning down the post-RT reaction mix through a 
spin column (Zymo, cat. no. C1004-50) for 1 min at 1000 g. Next, the unused 
barcoding primers and primer dimers were removed by enzymatic digestion. 
The reaction was carried out in 80µl volume using 1µl of ExoI (Thermo 
Scientific, cat. no. EN0581), 2µl of HinFI (Thermo Scientific, cat. no. 
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FD0804) and 0.5µl of FastAP (Thermo Scientific, cat. no. EF0654) enzymes, 
and 0.5x FD buffer (Thermo Scientific, cat. no. B64). The digestion product 
was then purified with AMPure reagent (Beckman Coulter, cat. no. A63881) 
using a 1.2x volume ratio. Alternatively, no enzymatic digestion was carried 
out, and the post-RT reaction mix after hydrogel removal was diluted to 100µl 
with nuclease-free water and purified with AMPure reagent (Beckman 
Coulter, cat. no. A63881) using different volume ratios. Performance of 
cDNA cleanup strategies was evaluated by performing scRNA-Seq assay 
using K562 cells and comparing the transcript capture rates 

2.2.4. Comparison of second strand synthesis reaction protocols 

The second strand synthesis reaction was performed using two different 
protocols. One protocol relied on a commercially available reagent kit (NEB, 
cat. no. E6111S), and the reaction was performed in 20µl volume using 1µl of 
provided enzyme mix and 1x provided buffer solution. The other protocol 
relied on combining separate reaction components: the reaction was also 
performed in 20µl volume using 1x Second Strand Buffer solution (Thermo 
Scientific, cat. no. 10812014), 0.133µl of DNA Polymerase I enzyme (Thermo 
Scientific, cat. no. EP0041), 0.133µl of T4 DNA ligase enzyme (Thermo 
Scientific, cat. no. EL0012), 0.533µl of RNaseH enzyme (Thermo Scientific, 
cat. no. EN0202) and 200µM dNTP. Performance of SSS protocols was 
evaluated by performing scRNA-Seq assay using K562 cells and comparing 
the transcript capture rates. 

2.2.5. Comparison of IVT reaction kits 

Two different commercially available kits were used to perform IVT 
reaction: HiScribe T7 High Yield RNA Synthesis Kit (NEB, cat. no. E2040S) 
and TranscriptAid T7 kit (Thermo Scientific, cat. no. K0441. In both cases, 
the reaction was carried out in 80µl volume using 20µl of second strand 
synthesis reaction product. IVT reaction was performed at 37°C for 14 hours 
in a heated air thermostat. Afterward, the reaction product was purified with 
AMPure reagent (Beckman Coulter, cat. no. A63881) using a 1x volume ratio 
and eluted into 20µl of nuclease-free water. Performance of IVT kits was 
evaluated by performing scRNA-Seq assay using K562 cells and comparing 
the transcript capture rates. 
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2.3. Cell Samples 

2.3.1. K562 cell culturing 

A commercially available K562 cell line was used in this work (ATCC, 
cat. no. CCL-243). Cells were cultured using IMDM culturing media (Gibco, 
cat. no. 12440053) supplemented with 10% FBS (Gibco, cat. no. 10270-106) 
and 1x Pen-Strep (Gibco, cat. no. 15140122). Cells were cultured in 25cm2 
tissue culture flasks (Corning, cat. no. 430639) and split to a ratio of 1:6 every 
2 to 3 days or once they reached 80% confluence. 

2.3.2. HMLE cell culturing 

HMLE Cell Lines used in this work were shared by the Robert Weinberg 
Lab (MIT). HMLE and all derived cell lines were cultured in MEGM 
(Mammary Epithelial Cell Growth Medium) media (Lonza, cat. no. CC-
3051). Cells were cultured in round tissue culture dishes 10cm in diameter 
(Corning, cat. no. 430167) and split to a ratio of 1:7 every 2 to 3 days or once 
they reached 80% confluence on a plate. All cell dissociations were performed 
using 1X TrypLE Express reagent (Gibco, cat. no. 12604013). 

EMT was induced in HMLE cells by the addition of Recombinant Human 
TGF-β1 (HEK293 cell-derived) (PeproTech, cat. no. 100-21) to the culture 
media to a final concentration of 5ng/ml. EMT was also induced by 
overexpression of the ZEB1 transcription factor. HMLE cells transfected with 
FUW plasmid, a tetracycline operator, and minimal CMV promoter were 
used, and the ZEB1 gene overexpression was induced by the addition of 
doxycycline (Sigma, cat. no. D3447) to the culture media to a final 
concentration of 1 μg/ml. All cells under induction were passaged once they 
reached 80% confluence. 

2.3.3. K562 cell barcoding 

To prepare the cells for scRNA-Seq experiments, they were cultured to 
70% confluence, harvested, and kept at +4°C at all times. Three 1x PBS 
(Gibco, cat. no. 20012027) washes were performed on the cells, and cell 
viability was evaluated using trypan blue staining prior to scRNA-Seq. All 
single-cell transcriptome barcoding experiments were performed with cell 
viability exceeding 95%. The resulting suspension of single-cells was diluted 
to 140000 cells/ml and supplemented with 16% (v/v) Optiprep (Sigma-
Aldrich, cat. no. D1556) and 0.05% (w/v) BSA (Carl Roth, cat. no. 8076.2) 
and encapsulated into 3 nL droplets. The cell encapsulation was set at ∼30000 
cells per hour, and over 75% of cells entering microfluidics chips were co-
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encapsulated with one DNA barcoding hydrogel bead. cDNA synthesis in 
droplets was performed under different reaction conditions, as described in 
section 2.2.2. The sequencing library was prepared using different reaction 
conditions outlined in section 2.2.2. 

2.3.4. HMLE cell barcoding 

To prepare the cells for scRNA-Seq experiments, they were cultured to 
70% confluence and dissociated from the plate with the addition of 3ml of 
trypsin for 5 mins at 37°C. After dissociation, the cell samples were kept at 
+4°C at all times in MEGM-complete media. Three 1x PBS (Gibco, cat. no. 
20012027) washes were performed on the dissociated cells, and cell viability 
was evaluated using trypan blue staining prior to scRNA-Seq. All single-cell 
transcriptome barcoding experiments were performed with cell viability 
exceeding 90%. The resulting suspension of single-cells was diluted to 140 
000 cells/ml and supplemented with 16% (v/v) Optiprep (Sigma-Aldrich, cat. 
no. D1556) and 0.05% (w/v) BSA (Carl Roth, cat. no. 8076.2) and 
encapsulated into 3 nL droplets. The cell encapsulation was set at ∼30000 
cells per hour using, and over 75% of cells entering microfluidics chips were 
co-encapsulated with one DNA barcoding hydrogel bead. SuperScript III RT 
enzyme and RNAseOUT inhibitor were used for cDNA synthesis (Table 2.6, 
SuperScript III). The RT reaction was initiated by transferring the emulsion to 
50°C for 1-hour and terminated by incubating for 15 min at 75°C. After the 
transcriptome barcoding reaction, the barcoded cDNA was subjected to 
enzymatic digestion and cleanup with magnetic beads (see section 2.2.3). 
Next, the second strand synthesis reaction was performed (NEB, cat. no. 
E6111S), and cDNA was amplified using IVT reaction (NEB, cat. no. 
E2040S). The library was then completed using the procedure described in 
section 2.1.2 and sequenced.  

2.3.5. Breast tumor cell barcoding 

Tissues were collected from women undergoing surgery for primary breast 
cancer. Healthy tissue was obtained from contralateral prophylactic 
mastectomies of the same cancer patients, and peripheral blood mononuclear 
cells (PBMCs) were obtained from patients prior to their surgical procedures. 
All samples were obtained after informed consent and approval from the 
Institutional Review Board (IRB) at Memorial Sloan Kettering Cancer Center. 
After tissue collection single-cell suspensions were prepared and isolated, 
FACS-sorted CD45+ cells were suspended in ice-cold 1X PBS (Gibco, cat. 
no. 20012027), diluted to 140000 cells/ml and supplemented with 16% (v/v) 
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Optiprep (Sigma-Aldrich, cat. no. D1556) and 0.05% (w/v) BSA (Carl Roth, 
cat. no. 8076.2), and encapsulated into 1.5 nL droplets together with custom-
made BHBs and RT/lysis reagents. The microfluidics chip was operated at a 
throughput of ∼30000 cells per hour, and over 75% of cells entering 
microfluidics chips were co-encapsulated with one DNA barcoding hydrogel 
bead. SuperScript III RT enzyme and RNAseOUT inhibitor were used for 
cDNA synthesis (Table 2.6, SuperScript III). The RT reaction was initiated by 
transferring the emulsion to 65°C for 1 min, followed by a 1-hour incubation 
at 50°C and 15 min at 75°C. After the transcriptome barcoding reaction, the 
barcoded cDNA was subjected to enzymatic digestion and cleanup with 
magnetic beads (see section 2.2.3). Next, the second strand synthesis reaction 
was performed (NEB, cat. no. E6111S), and cDNA was amplified using IVT 
reaction (NEB, cat. no. E2040S). The library was then completed using the 
procedure described in section 2.1.2 and sequenced. 
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3 RESULTS AND DISCUSSION 

This dissertation consists of three major parts. In the first part the results 
of the optimization of the inDrops scRNA-Seq technology are presented. The 
second part describes the characterization of the epithelial to mesenchymal 
transition using HMLE cell model system. Finally, in the last part, the study 
of tumor infiltering immune cells is presented including the construction of 
the immune cell atlas infiltrating breast tumor. At the end of each section the 
results are discussed in a broader context. 

3.1. Single-cell RNA-Seq protocol optimizations 

3.1.1. Experimental approach of this study 

Single-cell transcriptome analysis is a multistep process. Generally, the 
scRNA-Seq workflow consists of four distinct elements: 1) cell sample 
preparation, 2) single-cell transcriptome barcoding, 3) sequencing library 
preparation, and 4) next-gen sequencing and data analysis. Each of these 
elements also has a varying degree of technicalities. The overall performance 
of the assay will depend on the efficiency of each technical step. In the first 
part of this work the single-cell transcriptome barcoding and library 
preparation for sequencing were investigated. These two elements consist of 
seven separate molecular biology reactions that are performed in succession. 
The efficiency of these reactions determines the amount of information 
recovered from each cell as well as the level of noise in the data. The 
transcriptome barcoding and sequencing library preparation steps together 
form a single functional unit that remains unchanged between different 
biological samples and projects. Therefore, these two parts can be investigated 
independently of the sample type. 

At the time of the start of PhD studies, high-throughput single-cell RNA-
Seq was a novel technique, and robust protocols were lacking. Thus, the first 
part of this work was to validate and document the protocol for high-
throughput single-cell RNA-Seq using a droplet microfluidics platform 
(inDrops). The result of this effort was protocol guidelines detailing single-
cell transcriptome barcoding and next-generation sequencing [1]. These 
guidelines served as the basis for further optimizations and developments 
presented in this work. 

After describing the detailed inDrops protocol efforts were focused on 
investigating different commercially available reagents for separate protocol 
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steps and determining the optimal overall combination that would enable 
improved recovery of the unique transcripts of individual cells. 

To prepare the barcoded transcriptomes for sequencing the single cells are 
first compartmentalized into droplets using a microfluidic chip, including the 
reagents needed for cell lysis, cDNA synthesis and barcoding (see section 
2.1.1). Once encapsulated, the cells are lysed, and their mRNA is converted 
to barcoded-cDNA during the RT reaction (Figure 3.2). The barcoded-cDNA 
molecules from all cells are then pooled by breaking microfluidic droplets, 
purified, and amplified enzymatically. Finally, the DNA library is prepared 
for sequencing by fragmenting to the required size and adding sequencing 
adapters.  

One could predict that inefficiencies in any of the steps between the 
transcriptome barcoding and cDNA amplification will lead to the loss of 
unique transcript molecules. Contrary, any losses of DNA material after 
library amplification will not lead to transcript loss as multiple copies of the 
same molecule already exist in the mix. Therefore, main efforts were focused 
on the workflow steps that may directly impact the transcript loss. These steps 
include: i) RT reaction, ii) cDNA cleanup, iii) second-strand synthesis, and iv) 
library amplification (Figure 3.2 and Figure 3.4 marked in red). The 
optimization strategy and results for each of these steps are discussed below 
individually. 

Readout strategies also need to be considered. Three different analysis 
techniques were used throughout this work. Firstly, the transcript amount 
before library amplification was quantified by qPCR assay of eight different 
genes having different expression profiles (Table 2.5). Secondly, the yield and 
fragment size distribution of the amplified library after IVT reaction was 
analyzed. Finally, to directly compare tested conditions, barcoded single-cell 
RNA-Seq libraries were prepared and sequenced. After sequencing, the cell 
barcodes were deconvoluted and assigned to individual cells, the cDNA 
sequences were aligned to the genome to identify the active genes, and the 
relative number of transcripts of each active gene were then quantified by 
counting the abundance of molecular barcodes (known as unique molecular 
identifiers). After sequencing data processing, the median number of captured 
transcripts per cell was determined and used as a major metric for 
comparisons. A commercially available cultured cell line – K562 (human 
immortalized myelogenous leukemia cells) was used in the analysis, to keep 
the external factors as constant as possible. 
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Figure 3.1. Histogram indicating transcript capture at different sequencing depths. 
Original data (blue) was downsampled to simulate lower sequencing depths. 

 
Equation 3.1 Sequencing saturation metric. Unique molecules are considered unique 
combinations of cell barcode, UMI and transcripts. Productive reads are reads that 
have an identifiable combination of cell barcode, UMI and transcripts 

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑛𝑔	𝑠𝑡𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 100 ∗ (1 −
𝑢𝑛𝑖𝑞𝑢𝑒	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒	𝑟𝑒𝑎𝑑𝑠

) 

 
It is important to note that sequencing results are directly related to 

sequencing depth. Literature indicates that sequencing saturation is 
approached as 500000 to 1000000 reads per single cell is reached [30]. 
However, reaching such saturation is often prohibitively costly. Therefore, 
most of the sequencing is being conducted under so called shallow depth 
(20000 - 50000 reads per cell). Under shallow sequencing conditions (before 
reaching saturation) the recovery of unique transcripts is directly related to the 
sequencing depth, as shown in Figure 3.1. Therefore, the 'sequencing 
saturation' metric was used throughout the work to account for shallow 
sequencing. Sequencing saturation is based on the fraction of PCR duplicates 
in the sequencing data (Equation 3.1). For example, 75% sequencing 
saturation means that for every four sequencing reads, there will be one new 
unique molecule identified. Two samples can be directly compared with one 
another if they have the same sequencing saturation. Therefore, in the cases 
where sequencing saturation between the samples was different, the sample 
that had more reads associated with it was downsampled to match the 
saturation rates of the other sample(s). Downsampling was performed by 
randomly discarding reads from the read array associated with the particular 
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sample. Due to economic considerations low sequencing saturation (typically 
below 20%) was used throughout this work. As a result, small differences in 
reaction efficiency may have been missed. 

3.1.2. Single-cell transcriptome barcoding optimization 

To perform the transcriptome barcoding step a suspension of single cells 
is compartmentalized in microfluidic droplets with barcoding hydrogels 
carrying barcoding primers as well as lysis and RT reaction reagents (Figure 
3.2, panel A). Once encapsulated, cells are exposed to lysis reagent are lysed 
and the barcoding primers are released from the hydrogels by UV-light (365 
nm), and their mRNA is converted to barcoded cDNA by reverse transcriptase 
(Figure 3.2, panels A and B). In the original protocol (baseline conditions), 
the RT reaction is performed using the SuperScriptIII RT enzyme and 
RiboLock RNAse inhibitor. In this work, the performance of three different 
commercially available RT enzymes was investigated: SuperScriptIII, 
SuperScriptIV, and Maxima H-. First, the stability of the enzymes on ice (4°C) 
was evaluated. This property of the enzyme is important because RT reaction 
reagents may spend up to two hours on ice before the transcriptome barcoding 
reaction begins, a time that is needed to isolate ~1 million single-cells. The 
aforementioned enzymes were incubated in either their native or in scRNA-
Seq reaction buffer for two hours, and their residual activity was determined 
by performing RT-qPCR assay. All three enzymes retained 100% of their 
activity after being stored for two hours in supply as well as scRNA-Seq 
reaction buffers.  

 

 
Figure 3.2. Single-cell compartmentalization and transcriptome barcoding. Panel A: 
single cell lysis and barcoded cDNA synthesis in droplets. Panel B: structure of 
barcoding primers attached to hydrogel beads. 
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Next, the performance of the enzymes was evaluated in the scRNA-Seq 
assay. Summarized results presented in Table 3.1 show that Maxima H- RT 
enzyme performs the best in the scRNA-Seq assay. For example, we found 
that it increases the capture rate of transcripts per cell by 3.4-times as 
compared to the SuperScriptIII enzyme. Interestingly, the SuperScriptIV 
enzyme was not the top performer even though it is the most advanced reverse 
transcription enzyme based on properties reported by the manufacturer. 
Differences in enzyme properties and in their amino acid sequences may 
explain the observed significant differences in enzyme efficiency. Even 
though all three enzymes are based on the M-MuLV RT enzyme, they have 
been engineered to have improved processivity, thermostability, and 
efficiency. Moreover, it is important to point out that the Maxima H- enzyme 
was not only the most efficient but also the cheapest of three RT enzymes 
tested. 

 
Table 3.1. RT enzyme comparison in scRNA-Seq assay. Sequencing results. Workflow 
conditions: SS – cDNA cleanup by size selection, NN – NEBNext SSS kit, HS – 
HiScribe IVT kit. 

RT enzyme Median transcripts 
per cell 

Sequencing 
saturation 

Workflow 
conditions 

SuperScript III 952 11.79 % SS, NN, HS  

SuperScript IV 2220 11.84 % SS, NN, HS 

Maxima H-  3304 10.68 % SS, NN, HS 

3.1.3. Library preparation optimization 

After transcriptomes of single cells are barcoded in droplets, the material 
is pooled, and the remaining steps are performed in a single solution. Because 
each cDNA molecule has an associated cell barcode, it can be assigned to a 
particular single cell, and the UMI tags allow to count all unique molecules 
for any given cell. As discussed above, before the barcoded cDNA is 
amplified, every loss of material will result in information loss making the 
initial library preparation steps critical (Figure 3.3). The unoptimized protocol 
(baseline conditions) relied on enzymatic digestion to cleanup barcoded 
cDNA, second-strand synthesis (SSS) was performed using the NEBNext kit, 
and the library was amplified using HiScribe kit.  
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Figure 3.3. Sequencing library preparation steps that flow the RT reaction in 

droplets. Red marks the separate protocol steps that were optimized in this work. II – 
primer dimer removal; III – second strand synthesis reaction; IV – library 
amplification by IVT. 

 
Firstly, the purification of barcoded cDNA was investigated. The cleanup 

of post-RT reaction mix is needed to remove primer dimers and the remaining 
unused barcoding primers. Primer dimers are dsDNA molecules that are 
generated during RT reaction if primers tend to form heteroduplex. Excess 
amount of barcoding primers can facilitate primer dimer formation. As a 
result, after the RT reaction is completed the reaction mix typically contains 
not only barcoded cDNA but also primer dimers and a significant amount of 
unused ssDNA primers. On capillary electrophoresis gel the unused primers 
and primer dimers form a distinct peak(s) in the 25-200nt region (Figure 3.4, 
red arrows). These relatively short DNA fragments can contribute to the noise 
in the sequencing data and reduce the fraction of useful reads, effectively 
increasing the sequencing cost. Two strategies for primer cleanup were 
investigated. The first strategy was dubbed “enzymatic digestion”. Due to the 
specific sequence, the primer dimers (dsDNA) carries HinFI restriction 
endonuclease recognition site and thus can be hydrolyzed enzymatically. On 
another hand, unused ssDNA barcoding primers can be removed by single-
stranded DNA exonuclease Exo I. Each of the enzymes was evaluated 
separately as presented in Figure 3.4, panel A. Successful cDNA cleanup 
should lead to the reduction of the 25-200nt fragments in the library. This can 
be evaluated by analyzing the fragment size distribution of the amplified 
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library (Figure 3.4, red arrows). Ideally the amount larger size fragments 
should remain unchanged as they are the barcoded and amplified transcripts. 
Results show that using the enzymatic digestion cDNA cleanup strategy leads 
to the loss of material across the whole library (Figure 3.4, red trace). 
Furthermore, investigating the effect of each enzyme separately revealed that 
digestion with ExoI is the main cause of the library loss. Digesting the cDNA 
with HinFI alone does not significantly reduce the amount of the library but it 
also does not affect the 25-200nt fragments region. 

An alternative strategy for barcoded cDNA cleanup is dubbed “size 
selection”, where different size fragments are purified from solution using 
magnetic beads. Using different volume ratios of the reaction mixture to 
AMPure reagent leads to different fragments being bound to magnetic beads. 
The bound fragment can then be recovered, while unbound fragments will be 
left in solution. In this way the primer dimers and unused primers (25-200nt 
fragments) can be removed from reaction mix. Different ratios of AMPure 
reagent were investigated, to investigate the size selection cDNA cleanup 
approach (Figure 3.4, panel B). In accordance with the manufacturers' manual, 
results show that using lower AMPure reagent to reaction mixture volume 
ratios will lead to a more efficient removal of small fragments. Furthermore, 
as compared to enzymatic digestion approach, the size selection strategy 
preserves more of the large fragments (Figure 3.4) . Next, qPCR was 
performed to determine the optimal AMPure ratio for the size selection 
protocol. Results (not presented) revealed that no transcript loss occurs if the 
ratio of AMPure reagent to reaction mixture is equal or higher than 0.8x. 
Finally, to compare the two different strategies for the barcoded cDNA 
cleanup scRNA-Seq experiment was performed (Table 3.2). Sequencing data 
confirm that enzymatic digestion leads to a significant loss in library diversity. 
Using the size selection based barcoded cDNA cleanup strategy on average 
allows to recover three times more unique transcripts from each single cell. It 
is important to point out that chronologically this was the first step to be 
optimized. As a result, all subsequent optimizations of different protocol steps 
presented in this study used size selection strategy for barcoded cDNA 
cleanup.  
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Figure 3.4. Total library amount and fragment size distribution for different cDNA 
cleanup strategies. Red arrows mark the primer dimers. Panel A: results of primer 
dimer removal by enzymatic digestion. Panel B: results of primer dimer removal by 
size selection. 

 
Table 3.2. Barcoded cDNA cleanup strategy comparison in scRNA-Seq assay. 
Sequencing results. Workflow conditions: SSIII – SuperScript III RT enzyme, NN – 
NEBNext SSS kit, HS – HiScribe IVT kit.  

Cleanup strategy Median transcripts 
per cell 

Sequencing 
saturation 

Workflow 
conditions 

Enzymatic digestion 312 11.46 % SSIII, NN, HS 

Size selection 
(0.8x volume ratio) 952 11.79 % SSIII, NN, HS 

 
After finding that the size selection protocol can be used to effectively 

clean up the barcoded cDNA , the second-strand synthesis (SSS) reaction was 
investigated. The SSS reaction consists of three separate enzymatic reactions 
and can be summarized in the following. First, RNAse H fragments the RNA 
strand in the RNA:cDNA duplex. The resulting single-strand breaks serve as 
priming sites for the second-strand DNA molecule synthesis by DNA 
polymerase I. Once the second DNA strand is synthesized, T4 ligase repairs 
any remaining single-strand breaks in the dsDNA molecule.  

In this work, two commercially available reagent kits for second-strand 
synthesis were compared: NEBNext and SuperScript. The barcoded cDNA 
from single-cells was purified and then treated with the SSS reagents provided 
in each kit. As shown in Table 3.3, at 11% sequencing saturation, both kits 
produce very similar results with SuperScript showing a marginal increase in 
recovered transcript amount. The libraries were sequenced to a higher 
saturation to determine if the observed difference is significant. At 22% 
sequencing saturation the difference between SuperScript and NEBNext kit 
became even more pronounced. The recovery of barcoded transcripts was 1.2-
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times higher when using SuperScript kit. Furthermore, it is likely that the 
barcoded transcript recovery efficiency may be further optimized by changing 
the amount of each enzyme in the reaction. Yet this possibility was not 
explored in this work because all the reagent kits were used according to the 
manufacturer's recommendations.  

 
Table 3.3. Second strand synthesis kit comparison in scRNA-Seq assay. Sequencing 
results. Data from two separate comparison experiments. Workflow conditions: SSIII 
– SuperScript III RT enzyme, SS – cDNA cleanup by size selection, HS – HiScribe IVT 
kit. 

SSS reagent kit Median transcripts 
per cell 

Sequencing 
saturation 

Workflow 
conditions 

Comparison experiment 1 

NEBNext 952 11.79 % SSIII, SS, HS 

SuperScript 1022 11.41 % SSIII, SS, HS 

Comparison experiment 2 

NEBNext 1392 22.77 % SSIII, SS, HS 

SuperScript 1689 22.91 % SSIII, SS, HS 

 
Finally, the library amplification reaction was investigated. After all 

previous steps are completed, the library is amplified during the IVT reaction. 
This amplification strategy is possible because the barcoded primers have a 
T7 promotor site, which becomes double-stranded after SSS reaction and can 
bind T7 RNA polymerase (Figure 3.2, panel B). Two different commercially 
available IVT kits were compared: HiScribe, TranscriptAid. Firstly, 
amplification efficiency was evaluated by analyzing the total library amount 
and fragment distribution (Figure 3.5). Results show that the HiScribe IVT kit 
performs better in terms of overall material yield. However, the amount of 
amplified library may not directly correlate to library diversity (captured 
transcript amount). To further compare library amplification kits scRNA-Seq 
assay was performed. Sequencing data agree with previous results indicating 
that the HiScribe kit is better than the TranscriptAid kit (Table 3.4). Due to 
low sequencing saturation, the exact difference in median transcript recovery 
between the two tested kits cannot be confidently determined. However, 
because the HiScribe kit was already included in the baseline protocol, further 
sequencing experiments were not performed.  
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Table 3.4. Library amplification kit comparison in scRNA-Seq assay. Sequencing 
results. Workflow conditions: SSIII – SuperScript III RT enzyme, SS – cDNA cleanup 
by size selection, NN – NEBNext SSS kit. 

IVT reagent kit Median transcripts 
per cell 

Sequencing 
saturation 

Reaction 
conditions 

HiScribe 434 4.13 % SSIII, SS, NN 

TranscriptAid 388 4.58 % SSIII, SS, NN 

 

 
Figure 3.5. Total library amount and fragment size distribution for different IVT kits. 

3.1.4. Discussion 

In the first part of this thesis, a method for high-throughput single-cell 
transcriptome barcoding using droplet microfluidics termed inDrops was 
described in full detail in a publication [35]. Next, individual steps of the 
scRNA-Seq protocol were optimized to increase the overall capture of single-
cell transcriptome. The overall increase in efficiency can be evaluated by 
comparing “Enzymatic digestion“ sample in Table 3.2 to the “Maxima H-“ 
sample in Table 3.1. This comparison reveals that improving the RT, cDNA 
cleanup, SSS and IVT reactions allowed to achieve up to ten times higher 
transcript detection as compared to the original inDrops protocol. However, it 
is important to point out that no sample in this study was sequenced to 
saturation. Therefore, the numbers presented in this study should not be used 
for direct comparison to other single-cell transcriptome analysis methods 
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without accounting for sequencing saturation. In the context of existing 
literature, low sequencing saturation used in this work will, in most cases, 
prevent a direct comparison. It is also important to note that in this work, a 
cultured cell line (K562 cells) was used for the experiments. This allowed 
minimizing variations coming from differences in cell sample between the 
different experiments. However, the cell line used in this work is a 
homogenous cell population. Therefore it was not possible to evaluate if the 
increase in transcript recovery also improves the detection of cell types in the 
sample. 

Independent protocol benchmarking studies have repeatedly shown the 
inDrops method to capture lower number of transcripts as compared to other 
scRNA-Seq platforms [380, 381]. However, in these and other studies, the 
original (unoptimized) version of the inDrops protocol was used. 
Interestingly, even though the comparison studies show the inDrops platform 
to have a low transcript recovery rate, it is as sensitive as other high-
throughput methods in identifying cell types in a heterogeneous population 
[380]. Such observation raises the question of the importance of the transcript 
recovery metric. Overall, the low-throughput methods recover significantly 
more unique transcripts from single cells than the high-throughput platforms. 
However, rare cell types are typically not detected due to the limited number 
of cells being analyzed. For example, if a particular cell type makes up 1% of 
the total population, the probability of observing at least one cell of that type 
in a sample of 100 cells is only 0.63. Hence if a total of only a few hundred of 
cells were sampled at random from a large pool of cells the likelihood to miss 
these rare cell types is high. On the other hand, high-throughput scRNA-Seq 
platforms capture a sufficient number of transcripts to assign cell types and 
can leverage the large cell numbers to detect rare cell populations. Although 
transcript capture rate is important for studying genes that have low 
expression, however, not all studies require this, and in many cases, the ability 
to profile tens of thousands of individual cells outweighs the benefits of deep 
transcriptome profiling of just a handful individual cells. As a result, high-
throughput platforms become more attractive when studying complex 
biological systems with many different cell types and states. ScRNA-Seq 
protocol and improvements presented in this work significantly increase the 
efficiency of the inDrops platform and make it an attractive method for single-
cell transcriptome barcoding studies.  

The two most critical steps for overall protocol efficiency, as determined 
by this study, are RT reaction and barcoded cDNA cleanup. However, some 
technical limitations of this work need to be taken into consideration. Firstly, 
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not all commercially available reagents were investigated. For example, 
several available reverse transcription enzymes were not included in the study 
due to economic considerations. Therefore, it is possible that the protocol may 
further be optimized by testing other commercially available enzymes. 
Furthermore, the enzymes and reagents were used as detailed by the 
manufacturer's protocols. This means that potentially a further increase in 
transcript detection may be achieved by adjusting reaction conditions. For 
example, cell lysis reagents, barcoding primer structure and concentration in 
the reaction mix, are clear targets for further investigation. Similar to the work 
presented in this thesis, others have also shown that second-strand synthesis 
reaction optimization can improve single-cell transcriptomics protocol [60]. 
Interestingly, the study found that diluting the enzyme mix of NEBNext kit 
can significantly increase transcript recovery – an option that can be explored 
in the future.  

It is important to separate two different scRNA-Seq workflow steps – 
transcriptome barcoding and sequencing library preparation. The 
transcriptome barcoding is directly related to cell compartmentalization as 
material from different cells can only be pooled after cDNA barcoding step. 
Although the components of the RT reaction were investigated in this work, 
the droplet size could be also important as it directly defines the reaction 
volume and system throughput. Smaller droplets would allow to increase the 
droplet generation rate and the experiments could be performed faster. It is 
also important to note, open systems such as presented in this work, are less 
user-friendly and require more hands-on time than commercial alternatives. 
However, the former offer significant cost savings and additional flexibility. 

Two different strategies for barcoded cDNA amplification and sequencing 
library preparation exist, as discussed in the literature review section 1.1.2. 
The approach investigated in this study relies on in vitro transcription. The 
alternative strategy for library amplification utilizes the so called template 
switching property of the RT enzymes when three GGG nucleotides are 
introduced at the end of the transcripts. These triplets can then be used to 
introduce a DNA sequence that will be common to all 3‘ ends of barcoded 
cDNA molecules. The resulting library will have common sequences on both 
cDNA molecule ends and can be amplified via PCR. Therefore, scRNA-Seq 
protocols that use template switching approach do not require the SSS reaction 
and a lengthy IVT reaction reducing required hands-on time as well as overall 
library preparation time. Using the PCR based amplification, libraries can be 
typically prepared in the course of a single day while IVT based amplification 
requires two days. This is not very important when only a few samples are 
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processed, yet for routine applications, the use of PCR-based amplification 
may lead to significant savings in time. Noteworthy, at this point no 
observations about protocol efficiency can be made as no direct comparison 
between two library amplification methods has been published. 

Overall, the results of this section reveal improvements of the inDrops 
platform after careful optimization of individual steps in the scRNA-Seq 
library preparation protocol. Commercially available enzymes were 
investigated, and the combined effect of separate optimizations allowed to 
achieve a ten times higher transcript capture rate. This increase in the 
efficiency of the inDrops method is important because independent 
benchmarking studies have revealed that the original protocol suffered from 
poor performance. The presented results ask for a separate benchmarking 
study in order to evaluate the improved inDrops in the context of other 
available high throughput single-cell transcriptomics methods. 

3.2. Studying EMT at the single-cell level 

3.2.1. Characterizing the EMT process 

The second part of this thesis investigated whether or not the data generated 
with scRNA-Seq inDrops platform can be used to uncover transcriptional 
networks that control a complex biological process. For this purpose, the EMT 
is particularly well suited. This process is a gradual cell state transition that is 
controlled by multiple signaling networks. During the EMT, cells lose 
epithelial markers (including E-cadherin, Epcam, and Epithelial 
Cytokeratins), and gain mesenchymal markers (including Vimentin, 
Fibronectin, and N-cadherin). Furthermore, it is known that the transcriptional 
changes are orchestrated by the core transcription factors: SNAIL, SLUG, 
TWIST1, ZEB1, and ZEB2. However, to date, the EMT process has been 
mainly studied by comparing the extreme states of EMT: the beginning 
(epithelial state) and the endpoint (mesenchymal state). Moreover, most 
studies to date have used bulk measurements that cannot reveal the subtle 
changes of individual cells. Therefore, while the initial and the final states of 
EMT are well characterized, little is still known about intermediate states and 
the temporal dynamics of the process. 

Like most scRNA-Seq methods, the inDrops platform does not capture the 
full transcriptome of each single cell and as a result the data matrix that 
summarizes gene expression of each single cell is sparse. Most transcript 
count values in such data matrix are 0, as no information for that particular 
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transcripts is recorded. This means that gene-gene correlation analysis could 
not be performed using the raw data and the missing values had to be inferred 
to reveal the EMT process. In particular, gene-gene correlation analysis was 
extensively used throughout this part of the thesis. To enable this an 
imputation algorithm had to be applied (Figure 3.6, panel A and B). The 
algorithm used in this study is called MAGIC (Markov Affinity-based Graph 
Imputation of Cells) and relies on data diffusion to impute the missing data 
(see literature review section 1.2.4). All analyses presented in this work have 
been carried out on imputed data unless specified otherwise. The importance 
and limitations of imputation are discussed below.  

 

 
Figure 3.6. 3D scatterplots between canonical EMT genes E-cadherin, Vimentin, and 
Fibronectin. Each dot represents a single cell in transcriptional space. Pane A: before 
imputation. Panel B: after imputation with cells colored by the level of ZEB1. Panel 
C: after imputation with cells colored by the level of MT-ND1 
 

In this work, the EMT process was studied by stimulating transformed 
mammary epithelial cells (HMLE) with the TGF-b factor. Such treatment 
activates a canonical EMT pathway and provides a relevant model of the 
process. To thoroughly investigate cell transition, HMLE cells were 
continuously stimulated for 12 days. Throughout stimulation, samples were 
taken every two days, and single-cell transcriptomes were barcoded using the 
inDrops platform. The scRNA-Seq data analysis has revealed that the 
induction of EMT is asynchronous process, and each cell progresses through 
the transition at a different rate. As a result on days 8 and 10, cells occupy all 
states along the continuum of the EMT (Figure 3.6, B and C). The process is 
characterized by the decrease in E-cadherin (Epithelial state marker) and a 
simultaneous increase in Vimentin and Fibronectin (Mesenchymal state 
markers). Furthermore, expression of ZEB1, a key transcription factor for the 
EMT process responsible for the mesenchymal phenotype, progressively 
increases as expression of Vimentin and Fibronectin increase (Figure 3.6, 
panel B). The initial characterization fully agrees with the EMT model that is 
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described in the literature. However, another progression was also revealed by 
scRNA-Seq analysis. It involves two branches that deviate from the main 
structure (Figure 3.6, C). These side branches display an increase in 
mitochondrial RNA, reflecting a progression into apoptosis (Figure 3.6, panel 
C, colored by mitochondrial gene expression). The apoptotic transition 
hypothesis is also supported by the expression of apoptotic markers in these 
cells (Figure 3.8). This observation also agrees with the reports in the literature 
as the role of TGF-b signaling in promoting apoptosis has been demonstrated 
to be important in the context of EMT [382].  

Next, a more detailed characterization of cell states was performed. The 
transcriptome analysis revealed that most of the cells (79%) reside in an 
intermediate state that is neither epithelial nor mesenchymal. In the literature, 
this state is termed partial EMT and has been shown to be important in various 
biological processes, in particular, in the context of cancer. The intermediate 
cells are highly heterogeneous, and as a result, in the high-dimensional gene 
expression space, the data forms a multi-dimensional manifold that does not 
follow a simple one-dimensional progression. The archetypal analysis was 
used to characterize this structure and determine the main cell states of the 
EMT progression. The algorithm has identified 10 archetypes (AT) in the data, 
where each archetype corresponds to a particular cell state (Figure 3.7). 
Notably, not all cells can be confidently assigned to a particular cell state 
(Figure 3.7, panel B, grey color). It is likely that these cells were undergoing 
active transcriptional changes at the time of sampling and thus could not be 
assigned to a particular state.  

 

 
Figure 3.7. EMT transition visualized by gene expression (A) and principal 
components (B). Red dots (A) and black numbers (B) represent each of the 10 
archetypes in the data. Panel A: plotted by E-caherin, Vimentin, and Fibronectin. 
Panel B: plotted by PCA, colored by archetype. Grey cells are not associated with 
any archetype. 
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Next, differential gene expression analysis was performed to characterize 
each of the identified cell states. The archetypes - states fall into the following 
categories: AT6, AT7 - ‘epithelial,’ AT1 to AT5 - ‘intermediary,’ AT9 - 
‘mesenchymal,’ and AT8, AT10 - ‘apoptotic’. Each archetype is characterized 
by the expression of particular genes, transcription factors, and chromatin 
modifiers (Figure 3.8). The epithelial cells (AT6 and AT7) are defined by 
strong epithelial marker expression, including CDH1, CDH3, MUC1, and 
CD24. Oppositely, mesenchymal state (AT9) is characterized by high 
expression of core EMT TFs – SNAIL, ZEB1, and TWIST1. The 
transcriptional profile of AT7 cells includes higher expression of ESR2 and 
GATA3 genes, commonly associated with the luminal mammary epithelial 
cells, and higher CD24 and CDH1 expression, suggesting a more 
differentiated epithelial phenotype than AT6 cells. Interestingly, both AT6 
and AT7 cells express high levels of SOX4, which is an early master regulator 
of the TGFb induced EMT [383]. This show that no cells in this study were 
fully epithelial at the time of sampling. Which is to be expected as cells were 
sampled after extended TGF-b stimulation (day 8 and day 10).  

 

 
Figure 3.8. Gene expression differences between different cell states. Each column 
represents the distinct cell state as defined by archetype analysis. To quantify gene 
expression differences between archetypes the earth mover distance (EMD) was used 
as defined previously [179] . 
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Figure 3.9. A subset of differentially genes associated with embryonic development 
[384] for each cell state. Each column represents the distinct cell state as defined by 
archetype analysis.  

 
The analysis also identified five intermediate cell states (AT1–AT5), 

which fill the middle of EMT continuum. These cells vary between each other 
as they have undergone different extents of partial EMT. The fact that five 
distinct states can be identified supports the hypothesis that metastable cell 
states exist [194]. AT2 shows a similar gene expression profile as AT7, 
including the upregulation of SOX4 and is closest to the epithelial state. 
However, AT2 already expresses the KLF5 transcription factor, which, 
together with SOX4, acts to promote cell transition along the EMT [385]. 
Interestingly, if the cells do not express KLF5, they can undergo a SOX4 
mediated apoptosis. This can also be observed in Figure 3.7 panel A where 
the AT8 apoptotic cells are branching out from AT2 cell population. Next, the 
AT3 is closest to the mesenchymal state. This archetype is characterized by 
increased expression of SMAD3 and an early mesenchymal phenotype 
regulator MSX1. It is also interesting to note that AT1, AT3, and AT4 cell 
states all express a large number of chromatin modifiers (Figure 3.8). This 
suggests that substantial chromatin remodeling takes place during cell 
reprogramming. Unsurprisingly, mesenchymal, and apoptotic cell states also 
have a distinct profile of chromatin-modifying gene expression. Notably, the 
intermediate state cells (AT1, AT3, AT4, and AT5) all show the increased 
expression of genes that are known to be active in embryonic stem cells 
(Figure 3.9) . It has been previously suggested that epithelial cells undergoing 
EMT may revert to a more primitive state before acquiring the ability to 
differentiate into a mesenchymal cell state [386]. This observation is 
supported by the results of this study. 
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The first part of the analysis highlights how single-cell transcriptomics can 
be used to study a complex biological process like EMT. The expected signals 
of the EMT process were observed, giving confidence that it was adequately 
sampled. Most strikingly, five distinct intermediate states were uncovered, 
suggesting the gradual nature of the EMT process that can be characterized by 
meta-stable states as suggested by others. The next part of the work focused 
on studying the temporal dynamics of gene expression during the EMT. 

3.2.2. Regulatory networks and dynamics of the EMT process 

The core gene regulatory circuitry of EMT is well defined. For example, it 
is known that ZEB1 and SNAIL are potent repressors of the epithelial 
phenotype and act both as transcriptional activators and repressors. However, 
the breadth of targets regulated by these EMT-TFs remains mostly unknown. 
Defining the EMT circuitry and the timing of different regulatory factors is 
vital for understanding how this cell state transition occurs. Data collected in 
this study spans the whole EMT continuum and is suitable to explore the 
temporal trends as cells progress from the epithelial to the mesenchymal state.  

A pseudo-time of the cell state transition had to be established in order to 
analyze the gene expression dynamics. In this study the expression of VIM 
gene was used as a proxy for the EMT state as it gradually increases other the 
course of the transition. Thus, ordering cells based on their VIM gene 
expression allows to track position in the EMT continuum. The expression of 
each gene in the analysis can then be correlated to the expression of VIM to 
observe their individual temporal trends (Figure 3.10). As could be expected, 
several different gene expression dynamics were found. For example, the 
expression of genes can decrease or increase as EMT progresses (Figure 3.10, 
CDH1 and ZEB1). A considerable number of genes peak or are repressed at 
intermediate levels of VIM (Figure 3.10, SLUG, and ZMAT3). Such 
dynamics suggest that some genes are essential to the intermediate cell states 
– partial EMT. Furthermore, because their expression is similarly low/high in 
both the epithelial and mesenchymal states, these genes would be missed by 
studies that focus only on the end states.  
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Figure 3.10. 2D scatterplots showing gene-gene relationships. Each dot represents a 
single cell. Cells are plotted based on their gene expression. Conditional probability 
score as calculated by DREMI algorithm is indicated in each case. 

 
Next, to systematically explore gene-gene interactions, a quantitative 

metric was used to score the statistical relationship between genes. An 
adaption of the DREMI algorithm was used [387]. The algorithm captures the 
functional relationship between two genes across all cells in the progression 
and calculates a score (conditional probability) (Figure 3.10). Using this 
metric, a genome-wide view of expression dynamics during the course of 
EMT could be constructed to uncover the transcriptional networks that govern 
the cell state transition. Firstly, apoptotic cells were filtered out (based on MT-
ND1 expression). This was done in order to focus the analysis only on the 
EMT process. Next, the remaining cells were used to compute the DREMI 
score between VIM and each gene captured in the analysis. Interestingly, the 
majority of the genes demonstrated a temporal trend that follows VIM. Such 
a result reveals the vast extent of the cellular changes during EMT. For the 
subsequent analysis, 13,487 genes that have DREMI >0.5 with VIM were 
selected. Next, the genes were grouped based on the pattern and timing of their 
relationship with VIM. The grouping filters noise by averaging over trends 
with roughly similar shape and timing. The final output was 22 groups of 
genes with distinct temporal trends. Finally, gene groups were ordered based 
on their expression profile in the EMT pseudo-time. The result is a global map 
of the pseudo-temporal gene dynamics leading to the mesenchymal state 
(Figure 3.11). The same genome-wide analysis was also repeated with three 
other canonical markers of the mesenchymal state - CDH2, ITGB4, and CD44, 
to ensure the reliability of the analysis. The observed gene dynamics were both 
visually and quantitatively similar for all four markers of EMT progression, 
confirming that the output analysis are robust. 
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Figure 3.11. Expression of genes (y axis) ordered by peak expression along VIM (x 
axis). ZEB1 is highlighted with dashed line. Representative DREMI plots with VIM 
shown to the right. 

 
Remarkably, the majority of the genes (2/3 of the genome) participate in 

EMT. Data shows that clusters of genes change expression in waves as EMT 
progresses (VIM expression rises). The expression of the first set of genes 
decreases with EMT progression. Examples of this dynamics are genes SDC1 
and LAMA3, which are both involved in cell adhesion. These genes are 
mostly associated with the epithelial state, and their expression is gradually 
reduced as cell transition towards the mesenchymal state. Next set of genes 
shows an initial increase followed by a subsequent decrease in expression 
before cells enter the mesenchymal state. Examples of such genes include 
MYC and EZH2. As discussed above, these genes are likely related to the 
metastable cell states associated with partial EMT. Finally, as cells transition 
into the mesenchymal state, the expression of a large number of genes 
monotonically increases to define the mesenchymal state. The prime examples 
are the canonical EMT-TFs ZEB1, TWIST, and SNAIL.  

The pseudo-temporal analysis presented in this section of the thesis was 
enabled by the asynchronous nature of the EMT progression. Because the cells 
transition through EMT at different rates sampling of only a few time points 
(day 8 and day 10) was enough to reveal the full cell state continuum. It is 
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important to acknowledge that this may not be the case for other biological 
processes and sampling more time points would be needed to perform similar 
analysis. In the next part of study the EMT gene expression dynamics map 
was employed to predict activation targets of ZEB1 transcription factor. 

3.2.3. Predicting and validating targets of ZEB1 TF 

The core EMT transcription factors have some level of redundancy 
between them as their gene targets and the effects on them overlap. However, 
the core TFs are not interchangeable, and each plays a particular role in 
orchestrating EMT under different circumstances [200]. For example, one of 
the main transcription factors that is important for the establishment of the 
mesenchymal phenotype the ZEB1 transcription factor. However, even 
though this TF is a crucial regulator of EMT, its transcriptional targets remain 
poorly defined. We sought to address this issue by employing the gene 
expression dynamics map to study the transcriptional targets of ZEB1. The 
pseudo-time may be used to infer a causal relationship between gene 
expression. For example, the expression of the activation targets of a particular 
transcription factor should only peak after the expression of the TF. Following 
this logic a set of 4509 genes that peak along with or after ZEB1 was identified 
using the pseudo-time map described above. However, the fact that the 
expression of a particular gene peaks after the expression of ZEB1 is not 
enough to confirm their relationship. The expression of the regulator should 
also be related to the expression of its targets. This interaction can be 
quantified using the DREMI algorithm in the same fashion as described above. 
Therefore, out of the initial set of 4509 genes a subset of genes that had 
DREMI ≥ 1 with ZEB1 was determined. Using this strategy, a total of 1,085 
potential target genes were identified that are likely to be either directly or 
indirectly activated by ZEB1. 

To validate this prediction, an engineered HMLE cell line that had ZEB1 
under a DOX-inducible promoter was used. Directly overexpressing ZEB1 TF 
should induce only some of the signaling pathways and transcriptional 
networks that are active in the TFGb induced EMT. As a result, cell 
transformation will be different. However, due to the direct initiation of the 
ZEB1 transcriptional program, the target genes (both direct and indirect 
targets) will have a higher gene expression relative to the genes that are not 
targeted by ZEB1. Therefore, such a system should be suitable for validating 
the predicted ZEB1 targets. 

After two days of continuous ZEB1 overexpression, cells were harvested, 
and approximately 3500 transcriptomes of individual cells were barcoded with 
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the inDrops platform. Analysis revealed that ZEB1 induction strongly induced 
EMT as a significant number of the mesenchymal cells was observed (10% of 
the cells). Given this outcome, it can be expected that the expression of ZEB1 
targets will be upregulated relative to other genes. To test for this hypothesis, 
an ‘impact score’ was used (Equation 3.2). This metric compares the relative 
ranking of gene expression between the two conditions – ZEB1 and TGF-b 
induced EMT. Briefly, genes are ranked from highest to lowest (based on 
mean expression) for each of condition. The impact score is then the average 
difference between the summed ranks of the two conditions, in N=1000 
subsamples of gene set G (predicted ZEB1 activation targets) of fixed size 
S=200. This subsampling procedure controls for the size of G, as p values will 
be biased toward 0 given larger. The resulting impact score is the average 
difference between the summed ranks of the two conditions. A large impact 
score corresponds to an increase in the relative expression of the predicted 
targets under ZEB1 induction as compared to TFGb induced EMT. Next, to 
compute the significance of the difference in gene expression, the impact score 
for a gene set of all genes involved in EMT (DREMI with VIM > 0.5) was 
computed in the same way. The p-value then is the fraction of subsamples that 
have equal or greater impact score than the predicted gene set G.  

 
Equation 3.2. Formula for the impact score calculation. 𝒓𝒛(𝒈) is the rank of gene g 
in ZEB1 induction. . 𝒓𝒕(𝒈) is the rank of gene g in TGFb induction. N is the number 
of subsamples. S is the size of subsample from G set. 
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The predicted ZEB1 targets were confirmed to be upregulated under the 

ZEB1 overexpression conditions with a significance of p = 3.1e-73, against all 
genes involved in EMT. Next, all genes that peak in the EMT pseudo-time 
with or after ZEB1 (4509 genes) were analyzed in the same way. These genes 
are involved in establishing the mesenchymal phenotype as they are expressed 
after ZEB1 transcription factor. Results show that upregulation of these genes 
under ZEB1 overexpression can still be observed yet at a substantially lower 
significance of p=0.004. The observed reduction in p-value reveals that there 
are additional regulatory networks besides ZEB1 transcriptional program that 
are at play in establishing the mesenchymal phenotype. Surprisingly, 
performing this analysis on a gene set where genes are selected only based on 
their relationship with ZEB1 and not taking in to account their pseudo-time 
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ordering (DREMI with ZEB1 > 1, 1667 genes) leads to an impact score that 
is not significantly different between the two tested conditions (p=0.13). This 
outcome can be explained by the fact that ZEB1 is not only an activator but 
also a potent transcription repressor. Out of all genes related to ZEB1, 
approximately 1/3 are negatively correlated with it. However, the ZEB1 
overexpression in HMLE cells experiment only allows to test for the genes 
that are directly or indirectly transcriptionally activated by ZEB1.  

Unsurprisingly, the top predicted activation targets of ZEB1 transcription 
factor include many genes that are known to be involved in EMT. For 
example, SNAI1, ZEB2, BMP (bone morphogenic) antagonist family 
proteins, and MMP (matrix metalloproteinase) family proteins such as MMP3 
can all be found in the list of top hits. Overall, various genes involved in the 
cell cycle, remodeling of the cell cytoskeleton, extracellular matrix 
remodeling, and cell migration were identified. This result agrees with the 
known mechanism of EMT, as discussed in the literature review section 1.3.2. 
Some of the identified targets are less known for their involvement in EMT. 
However, the phenotypic annotations of those genes match with known 
phenotypic changes involved in EMT. For example, RHOA is involved in the 
reorganization of the actin cytoskeleton and regulates cell shape, attachment, 
and motility, and CCBE1 is involved in extracellular matrix remodeling and 
migration. Some of the predicted targets were unexpected. For example, 
NTN4 is typically involved in neural migration, yet it seems to become active 
under ZEB1 induction in the context of EMT. In general, the accurate 
transcription factor activation target prediction demonstrated in this thesis 
reveals that single-cell transcriptomics can be used to analyze transcriptional 
networks in an unbiased global manner. 

3.2.4. Discussion 

Results presented in this work show how scRNA-Seq inDrops platform, in 
combination with computational biology methods, can be improve our 
understanding of the complex biological transformations. In this work, single-
cell transcriptomics was used to reveal the underlying transcriptional changes 
that define the EMT process. It is a complex continuous shift of cell state 
involving extensive transcriptional and epigenetic changes as well as 
chromatin remodeling. The single-cell resolution of the analysis allowed to 
determine the intermediate cell states (as defined by archetypes) of the EMT 
process and reveal the temporal changes in transcriptional programs. 
Furthermore, the pseudo-time analysis allowed to accurately infer the 
regulatory relationships in gene expression. Alternatively, gene regulatory 
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interactions can be studied in a high-throughput manner by combining 
scRNA-Seq with CRISPR technology [388, 389]. However, gene knockouts 
can disrupt the system in unintended ways that may not be representative of 
in vivo circumstances. Furthermore, such methods require considerable 
experimental efforts that are not always applicable. The approach described 
in this study does not require additional experimental manipulations and can 
be applied to primary tissue and clinical samples. This offers the possibility of 
discovering changes in gene regulatory pathways in disease (for example, 
cancer). 

The gene expression analysis presented above relied on data imputation. 
While the development of the imputation algorithm (MAGIC) was outside of 
the scope of this study, it is important to discuss the impact of imputation and 
the limitations of the analysis. As discussed in the literature review section 
1.2.4, scRNA-Seq data suffers from the significant dropouts. This means that 
for any given cell, the determined expression value for most genes will be 0. 
This data property does not significantly hinder many downstream analysis 
applications - cell type determination (clustering), visualization, and 
differential expression analysis. Typically, a large number of sampled cells 
provide enough information for transcriptome-wide analysis. However, 
dropout becomes a major limitation for gene-gene relationship analysis as 
most connections are lost due to the sparsity of the data (Figure 3.6, panel A). 
In the context of this work, the scoring of gene-gene interaction would not be 
possible without prior imputation. Consequently, the pseudo-time ordering, as 
well as TF target prediction, also would not be possible. The MAGIC 
algorithm relies on the diffusion of values between similar cells along an 
affinity-based graph structure. Such an approach averages over small gene 
expression differences between cells and will remove intrinsic noise (for 
example, transcriptional bursting) together with technical noise in the data. 
This means that fine structure in the data may be lost due to imputation, as 
intrinsic noise can be a meaningful biological signal. One way to account for 
this is to use more cells in the analysis. In essence the MAGIC algorithm tries 
to learn the manifold structure that is observed in the high-dimensional gene 
expression space (see literature review section 1.2.5). Thus, the more cells are 
sampled, the more accurately can the structure of the manifold can be 
reconstructed. However, the precise number of single-cells needed for this 
analysis cannot be determined a priori as the biological signals present in the 
biological system may not be known. On the other hand, results presented in 
this work show that less than ten thousand single-cells were enough to 
characterize the EMT process and determine transcriptional networks of the 
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ZEB1 TF. Furthermore, with the cost of the scRNA-Seq rapidly decreasing, 
the cell sample size is likely not to be a major limitation in future studies. In 
general, after applying the MAGIC algorithm, most cells no longer have zeros 
in their gene expression data. Instead, they may have very small values that 
should be interpreted as the probability that a cell is expressing the transcript. 
It is also important to keep in mind that imputation may introduce bias in the 
data. For example, algorithms for determining the differentially expressed 
genes (DEGs) assume sparsity and would likely over-estimate DEGs after 
imputation. When used appropriately, data diffusion based imputation can be 
a very useful tool for single-cell transcriptomics data analysis as presented in 
this work. Similarly, there are cases where imputation is not appropriate, as it 
would not benefit the analysis (for example, imputation will not benefit DEG 
analysis and clustering in most cases). Finally, regardless of the analysis goal, 
the hypothesis made using computational algorithms should be verified by 
follow up experiments.  

In this work, EMT was studied using epithelial breast cancer cells. On the 
one hand, the use of a model system is convenient as it allowed to perform 
subsequent perturbations (ZEB1 TF overexpression) to verify the initial 
hypothesis. On the other hand, because a model system was used, insights 
produced from this study may not be directly translatable to in vivo biology. 
For example, while TFGb has been shown to be important for breast tumor 
development, numerous other signaling pathways are active in the TME that 
contribute to EMT and overall tumor development. Furthermore, the EMT 
process is context-dependent and is controlled by many external and internal 
signaling factors. As a result, not all transcription factors or gene relationships 
identified in this study will be relevant in all biological contexts. However, the 
general observations produced by this study are relevant for understanding 
EMT biology. Perhaps the most important is the confirmation of many 
intermediate states of the EMT process. It is interesting to speculate what role 
do these partial states play in vivo. For example, partial EMT has been 
documented to be important in wound-healing (see literature review, section 
1.3.5). Overall, the prevalent view is that in vivo cells rarely if ever reach the 
full mesenchymal state. The observations presented in this study support this 
a view. Even after extensive stimulation, the vast majority of the cells did not 
reach the mesenchymal states as defined by the transcriptome. Another 
interesting avenue for studies is the reverse process, MET, which may explain 
the plasticity during embryogenesis as well as metastasis establishment. 
Indeed, the MET could not be studied in this work as the cells were under the 
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constant pressure of the EMT process. Nonetheless, the results presented in 
this work unequivocally prove that single-cell transcriptomics provide a 
valuable window to intricate and delicate mechanisms of biology. While work 
above used cell culture to characterize the intracellular biological programs 
driving cell response to stimuli the final part of this thesis will showcase an 
example of the single-cell transcriptomics study in clinical settings. 

3.3. Immune cells of breast cancer patients 

3.3.1. Constructing an immune cell atlas of breast cancer patients 

Immunotherapy is a promising new strategy for cancer treatment. 
Recently, it was successfully employed to treat certain cancer types 
(melanoma, lung cancer, and kidney cancer), yet has been of limited benefit 
in treating others. Understanding the diversity and interplay of immune cells 
in tumors is critical for the successful application and continuous 
improvement of immunotherapy approaches. Breast cancer, in particular, 
displays significant heterogeneity in immune cell composition across tumor 
subtypes and patients. While a lot is now known about separate immune cell 
types and signaling pathways operating in the breast TME, the full picture is 
far from clear, making it hard to draw general conclusions. For example, 
literature meta-analysis has shown that for TNBC, overall high immune cell 
infiltration of tumor correlates with a favorable prognosis. Yet for tumors 
expressing hormone receptors (ER+ and/or PR+), immune infiltration does 
not correlate with patient prognosis. Furthermore, to date, immunotherapy 
approaches had a limited impact on breast cancer care. A successful immune 
response to tumor cells consists of several steps. First, tumors cells need to 
release antigens upon their death, which must then be presented by antigen-
presenting cells to prime and activate effector T cells. For immunotherapy to 
be efficient, all these steps must function adequately, which does not seem to 
be the case in most breast cancer tumors. Yet the lack of unifiying knowledge 
about the interplay of immune cells and the tumor prevents us from making 
rapid progress in the advancment of breast cancer care. Thus, to further the 
understanding of the immune infiltration of breast cancer tumors, an immune 
cell atlas of breast cancer patients was constructed in this work. Results 
presented in this part of the thesis provide a high-resolution view of 
differences in immune cell populations between different breast cancer 
patients and reveal a previously unappreciated diversity of immune cell states 
within the tumor microenvironment. 
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In this study, samples from 8 treatment-naive patients were analyzed. 
Different subtypes of breast cancer as defined by canonical markers were 
included in the study to provide a broader picture. Furthermore, when 
possible, patient-matched immune cells from healthy breast tissue, peripheral 
blood, and lymph nodes were also analyzed (Table 3.5). Briefly, fresh surgical 
samples were enzymatically dissociated to single-cell suspensions and cells of 
hematopoietic origin were enriched by FACS (sorted by CD45+ staining). 
Next, the immune cell samples were subjected to scRNA-Seq using the 
inDrops platform and sequenced on Illumina HiSeq 2500 platform. In total 
62024 transcriptomes obtained from single cells were analyzed. To control for 
technical errors, each sample had a minimum of 2 replicates. Furthermore, 
samples were sequenced to an average saturation of 91% to recover as much 
transcript diversity as experimentally possible. It is important to point out, that 
the inDrops platform allows to barcode the transcriptomes of up to 90% of the 
input cells. This efficiency enabled the deep sampling of immune cells even 
in cases where immune infiltration was relatively low. As a result, it was 
possible to compare Her2+ and ER+ tumors with TNBC samples, which in 
some cases had as few as 50000 tumor-infiltrating immune cells. 

 
Table 3.5. Summary of breast cancer patient samples analyzed in this work. For ER 
and PR markers the numbers in the table reflect the fraction of marker positive 
tumor cells as determined by established clinical practices. 

Patient Tissue Marker 
Tumor Healthy Blood Lymph node ER PR Her2 

BC1 + + + - 0.95 0.95 - 
BC2 + + - + 0.9 0.1 - 
BC3 + + - - 0 0 - 
BC4 + - + - 0.95 0.95 - 
BC5 + - - - 0.05 0.01 - 
BC6 + - - - 0.99 0.01 - 
BC7 + - - - 0 0 + 
BC8 + - - - 0.2 0.05 - 

 
First, each patient was analyzed separately to confirm whether the majority 

of expected immune cell types could be detected. Single cells from each 
patient were clustered separately and annotated using genome-wide 
correlations between cluster mean expression and previously characterized 
transcriptional profiles of sorted immune cell subset. Major immune cell types 
were detected in all patients (Figure 3.12, panel A). However, as expected, the 
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distribution of cells varied significantly between patients. For example, the 
myeloid cell fraction varied in the range of 4%–55%, and T cell fraction varied 
in the range of 21%–96%. Such a result confirms the intertumoral 
heterogeneity of immune infiltration of breast cancer tumors. Next, metabolic 
signals relevant to cancer biology (hypoxia, fatty acid metabolism, glycolysis, 
and phosphorylation) were analyzed for each patient. For this purpose, the 
expression of genes associated with each signal (as defined by GSEA 
databases) was profiled. Interestingly, the expression of groups of genes 
contributing to signal was significantly different between different patients 
(Figure 3.12, panel B and C). This observation suggests that signaling in the 
tumor microenvironment (TME) was different between patients, and that may, 
at least in part, explain to differences in immune cell subsets. 

 

 
Figure 3.12. Panel A: Pie charts of cell-type fractions for each patient’s tumor-
infiltrating immune cells, colored by cell type. Panel B: Left: Boxplots of expression 
of hallmark hypoxia signature (defined as the mean normalized expression of genes 
in the signature) across immune cells from each patient. Right: Heatmap of Z-scored 
mean expression of genes in signature. Top: Barplot of total expression of each gene, 
across all patients. Panel C: Left: Boxplots of expression of oxidative phosphorylation 
signature (defined as the mean normalized expression of genes in the signature) 
across immune cells from each patient. Right: Heatmap of Z-scored mean expression 
of genes in signature. Top: Barplot of total expression of each gene, across all patients 
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Next, data from all cells had to be merged to enable a systematic 
comparison. However, initially, cells from the same patient appeared to be 
more similar than cells of the same lineage across patients indicating the batch 
effects that introduce technical variations due to different sample processing 
conditions (for example, differences in surgery conditions or sample handling 
time). Standard data normalization procedures do not account for this as they 
tend to conflate biological signals and technical differences. To correct for 
this, the combined data was normalized and imputed using the Biscuit 
algorithm [390]. Using this algorithm intrinsic biological variation is retained 
(for example, immune cell activation signal) while correcting for the technical 
noise in the library.  

In total 62024 single-cells collected from all samples were used to 
construct the global atlas of immune cells in breast cancer patients. After 
normalization, imputation, and clustering, the initial atlas contained 95 cell 
clusters. Removing poor quality (low library size) cells from further analysis 
resulted in 57143 cells that had statistically significant cluster assignments. 
Next, each cluster was assigned to a known cell type by comparing mean gene 
expression of the cluster to sorted bulk datasets. In this process some of the 
clusters were identified as probable carcinoma or stromal cells. While these 
non-immune types may be of significant interest, they were out of the scope 
of this work and were excluded from the analysis. Thus, the final atlas 
contained 47,016 cells spanning four tissues from eight patients and was 
separated into 83 distinct transcriptionally-similar clusters (Figure 3.13, panel 
A). Overall, 38 T cell, 27 myeloid lineage cell, 9 B cell, and 9 NK cell clusters 
were identified.  

Cluster annotations were further detailed using the expression of canonical 
markers. Based on them the T cell clusters were further separated into 15 
CD8+ and 21 CD4+ clusters. Alternatively, T cells can be split into 9 naive, 7 
central memory, 15 effector memory, and 5 Treg clusters. The myeloid cells 
were divided into 3 macrophage, 3 mast cell, 4 neutrophil, 3 dendritic cell, 1 
plasmacytoid dendritic cell, and 13 monocytic clusters. Finally, 3 CD56– NK 
cell and 6 CD56+ NK cell clusters (2 of which are likely NK T cells) were 
identified. The set of well-established markers was enough to define the broad 
cell types. To rule out misidentification of the cell types it is important to point 
out that genome-wide profiles of each phenotypic state were used to confirm 
its identity. The biscuit algorithm identifies cell clusters based on both the 
mean expression and gene co-expression patterns (covariance patterns). The 
covariance was very important metric in defining the myriad of T cell clusters. 
Furthermore, significant differences between most clusters remained even 
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after the mean gene expression is equalized giving confidence that the 
identified distinct cell types and states are indeed robust and are representative 
of the in vivo diversity. In the constructed atlas, T and myeloid cells 
represented the most abundant cell subsets. In the context of cancer treatment 
these two cell subsets are typically considered the most critical and therefore 
the subsequent analyses presented in this work focused on these two major 
cell types. 
 

 
Figure 3.13. Panel A: Breast immune cell atlas constructed from combining all 
patient samples (BC1-8) projected with t-SNE. Each dot represents a cell, colored by 
cluster. Panel B: Subsets of immune cells from Panel A represented on a t-SNE plot. 
Cells derived from different tissues are plotted on the same coordinates as Panel A to 
highlight the differences between tissue compartments. Panel C: Proportions of cell 
types across tissue types. 

 

3.3.2. Factors that shape the immune cell diversity 

The first part of the analysis was focused on investigating the phenotypic 
overlap between different tissues. Apparent differences between tissue types 
can be observed in the atlas (Figure 3.13, panel B and C). Several definite 
conclusions could be drawn. For example, Naive T cells were strongly 
enriched in the blood (c2, p = 3x10-80), while B cells were more prevalent in 
the lymph node (c2, p = 0.0). As can be seen from t-SNE plots, cells state 
diversity (clusters of the same color) exhibits significant overlap between 
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tumor and healthy tissue (Figure 3.13, panel B). However, a substantial 
increase in phenotypic heterogeneity and expansion of cell populations in the 
tumor must also be acknowledged. Importantly, cytotoxic T cell clusters were 
more abundant in the tumor (c2, p = 3x10-25), as were Treg clusters (c2, p = 
5x10-91) indicting a complex balance between immunosurveillance and 
immunosuppression. Moreover, while some myeloid clusters were shared 
between normal and tumor tissue, macrophages were specific to tumor likely 
indicating presence tumor-associated macrophages (c2, p = 0.0). A large 
number of tissue-resident immune cell states associated with healthy breast 
tissue (13 myeloid and 19 T cell clusters) were not observed in the blood or 
the lymph node tissue. Interestingly, the set of clusters found in healthy breast 
tissue cells represented a subset of those observed in the tumors. Furthermore, 
14 myeloid and 17 T cell clusters were only found in the tumor while there 
were no clusters specific to healthy tissue. Overall, such results underscore the 
significance of tissue residence as a determinant of immune phenotype.  

 
Table 3.6. Most significant hallmark GSEA enrichment results on genes with the 
highest difference in variance in tumor T cells versus normal tissue T cells. 

Pathway GSEA set size Enrichment score 
Oxidative phosphorylation 196 6.007957 
INFg Response 196 5.730341 
Apoptosis 154 5.425722 
INFa response 94 4.657201 
TGFb signaling 53 3.071116 
Hypoxia 178 2.959150 
Il2, Stat5 signaling 192 2.663728 
Il6, Jak, Stat3 signaling 81 2.651983 

 
Tumor tissue displays the largest phenotypic diversity and warrants further 

investigation. The increase in cell-type diversity is related to a significant 
overall increase in the variance of gene expression as compared to healthy 
tissue. In particular, specific signaling pathways were found to be activated in 
the tumor environment (Table 3.6) and coincidentally all of the identified 
pathways are known to be involved in tumor signaling. Thus, to further 
confirm the effect of these signaling pathways on immune cell type diversity 
increase, a specific metric was introduced - ‘‘phenotypic volume’’. It uses the 
covariance in gene expression to measure the relation of the distinct detected 
phenotypes. For example, if the covariance values between a geneA and other 
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genes are very similar to that of another geneB and other genes, such that they 
are dependent, the geneB does not add to the volume metric. Assessment of 
the change in volume showed a significant increase in the phenotypic volume 
of all major cell types detected in the tumor compared to healthy breast tissue 
(U test, p = 0). Such results suggest that increased heterogeneity of cell states 
found within the tumor is indeed related to various signaling pathways active 
in the TME. Furthermore, an increase in phenotypic volume implies that 
diverse local niches within a single tumor most likely contribute to the 
expansions of the cell states. 

 

 
Figure 3.14. 3D plot visualization of all T cells using 3 diffusion components. The 
main trajectories are indicated with arrows and annotated with the signature most 
correlated with each component. Each dot represents a cell. Panel A: top 3 diffusion 
component, colored by cluster Panel B: top 3 diffusion component colored by tissue 
type. Panel C: 1,2 and 4 diffusion component, colored by cluster Panel D: 1,2 and 4 
diffusion component colored by tissue type 

 
Next, the most significant sources of the observed phenotypic variation 

were determined. For this purpose, dimensionality reduction algorithm was 
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applied. The first few components of the lower dimensional space reflect the 
most important sources of variation in the data. It is important to note that due 
to the non-linear nature of the data, a non-linear dimensionality reduction 
technique, diffusion maps, was used (see literature review section 1.2.5). The 
analysis was performed separately for T and myeloid cells as these cell types 
are intrinsically different. For T cells, the three most informative components 
as defined by the gene expression signatures correlated to the component 
where: activation, terminal differentiation, and hypoxia (Figure 3.14, panel A 
and B). The fourth diffusion component separated cells by their tissue 
specificity confirming the importance of tissue residence factor (Figure 3.14, 
panel C and D). The first component of variation (activation) was highly 
correlated with gene signatures of T cell activation and progressive 
differentiation, along with IFNg signaling. Accordingly, tumor T cell 
populations (in particular, Treg and effector memory T cells) are enriched at 
the activated end of the component. In contrast, naive T cells from blood tissue 
can be found at the least activated terminus. It is important to note that while 
the mean expression levels of clusters gradually vary along the component, 
there is a wide range of activation states within each cluster. The next most 
informative component of variation was terminal differentiation. The genes 
correlated with it include co-stimulatory molecules as well as co-inhibitory 
receptors (CTLA-4 and TIGIT). Furthermore, genes characteristic of Treg 
cells (FOXP3, IL2RA, and ENTPD1 [391]) are also included in this 
component. There is also a moderate degree of overlap in the genes most 
correlated with the activation and terminal differentiation components, as 
observed in similar single-cell studies [392]. More importantly, visualizing 
the T cell activation and terminal differentiation components together revealed 
a single continuous trajectory (Figure 3.14). This indicates that T cells reside 
along a broad continuum of activation. Such a result suggests that 
conventional classification of T cells into relatively few discrete activation or 
differentiation subtypes may be an oversimplification of the phenotypic 
complexity present in tumor tissue. 

The top components of variation do not fully explain cluster distinctness. 
Despite the continuum as visualized by the top components, each cluster 
appeared distinct when accounting for a combination of signatures associated 
with responses to diverse environmental stimuli (Figure 3.15, panel A). For 
example, CD4 effector and central memory clusters exhibit variable levels of 
gene expression involved in different pathways. Such results imply that he 
local microenvironment in the TME will have varying degrees of 
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inflammation, hypoxia, and nutrient deprivation, thus creating many niches 
that in turn lead to the many observed phenotypic states. 

 
 

 
Figure 3.15. Panel A: Heatmap of mean expression for a curated set of transcriptomic 
signatures for CD4 memory T cell. Only signatures with high expression in at least 
one T cell cluster are shown. Expression values are Z scored relative to all T cell 
clusters. Panel B: Heatmap of mean expression for a curated set of transcriptomic 
signatures for Treg cell. Only signatures with high expression in at least one T cell 
cluster are shown. Expression values are Z scored relative to all T cell clusters. Panel 
C: Proportion of Treg clusters in each patient, indicating that differences in 
covariance patterns between clusters translate to patients. 

 
It is important to note that TME signaling alone does not account for the 

observed cell state diversity in all cases. In particular, the majority of Treg 
clusters showed similar patterns for anti-inflammatory, exhaustion, hypoxia, 
and metabolism gene sets (Figure 3.15, panel B). Further analysis revealed 
that Treg clusters were differentiated by gene covariance. For example, two 
marker genes can exhibit similar mean expression in 2 different clusters, while 
the clusters show opposite signs in covariance between these genes. This can 
occur if the genes are being co-expressed in the same cells in one cluster, but 
expressed in a mutually exclusive manner in the other cluster. It is important 
to note that this is an oversimplified example as clustering is done based on 
the expression and covariance patterns of all detected genes. Interestingly, 
different proportions of Treg clusters were observed in individual patient 
samples, and the differences in gene co-expression were also present at the 
patient level (Figure 3.15, panel C). This result shows that the factors driving 
the differences in gene co-expression vary between as well as within 
individual tumors. One possible explanation is the large degree of interaction 
and cross-regulation displayed by immune cells in the TME. Thus different 
covariance patterns may be a result of complex signaling environments. 
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Figure 3.16. 3D plot visualization of all myeloid cells using 3 diffusion components 
(1, 2 and 4). The main trajectories are indicated with arrows and annotated with the 
signature most correlated with each component. Each dot represents a cell. Panel A: 
colored by cell type. Panel B: colored by tissue type (B). Panel C: colored by cluster. 

 
A similar analysis was also performed on the myeloid cell clusters. The top 

four diffusion components revealed variation along four major branches 
(Figure 3.16). Generally, myeloid cells displayed more distinct cell states, as 
explained by the diffusion components (Figure 3.16, panel A). The first 
component explains the activation of tumor-associated macrophages. The next 
two components together capture a more gradual trajectory from blood 
monocytes to tumor monocytes. Finally, the fourth component distinguishes 
plasmacytoid DCs (pDC) from the other monocytic cells. As described above, 
the components were characterized by the associated genes. For example, the 
first component (TAM activation) is characterized by APOE, CD68, TREM2, 
and CHIT1. These genes are related to the activation of either recruited or 
tissue-resident macrophages. Interestingly, the expression of genes associated 
with “alternatively activated” (M2) macrophages increased together with the 
genes associated with “classically activated” (M1) macrophages along the first 
component. All 3 of the TAM clusters had a high expression of the canonical 
M2 signature and were likewise high in the M1 signature. Furthermore, M1 
and M2 gene signatures were positively correlated in the myeloid populations. 
This is a surprising result, yet it has been described before in the context of 
melanoma [393]. Thus, the observations presented in this study lend further 
support the idea that the prevalent alternative polarization model does not fully 
explain macrophage activation in the TME.  

Collectively, analysis of both T cells and myeloid cells reveals that many 
diverse factors influence immune cell phenotypic states. Firstly, tissue of 
residence is a major determinant of immune cell state. Immune cells found in 
the blood and lymph node tissue differ significantly from the ones found in 
healthy breast and tumor tissues. Furthermore, a significant expansion of cell 
states is observed within the tumor. Diverse environmental signaling as well 
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as immune cell interactions in the TME contributes to phenotypic cell state 
expansion. Results reveal that local niches within individual tumors are 
important for creating the observed diversity. 

3.3.3. Discussion 

In this part of thesis, an immune cell atlas of breast cancer patients is 
presented. ScRNA-Seq results revealed a remarkable diversity of immune 
cells across eight patients and four different tissues. One limitation of the 
study is that not all patient tumor tissue samples had matched peripheral tissue 
samples. In particular, only a single patient had a matched lymph node sample, 
and no patient had samples from all four tissues. Therefore, only limited 
conclusions can be drawn about the differences in immune cell composition 
between different tissues. However, it can still be confidently stated that little 
overlap exists between tissues in terms of cell states. Both the blood and lymph 
node tissue have distinctly different cell populations that the ones found in 
healthy and tumor breast tissue. Such observation suggests that biomarkers 
based on blood immune cells may not necessarily reflect immune cell 
composition in the tumor. However further studies are needed to explore this 
question. Interestingly, the immune cells found in the healthy tissue are a 
subset of cells that can be found in the tumor tissue, and no healthy tissue-
specific cells were observed in this study. While caution must be taken due to 
a limited sample size (only three out of eight patients had a match healthy 
tissue sample), the results suggest that upon the establishment of a tumor, the 
immune cells experience a phenotypic expansion that is driven by diverse 
signaling in the TME. 

The breadth of the cell phenotypic diversity in the tumor tissue is perhaps 
the most striking observation of this study. Defining cells based on 
conventional cell types appears to be too coarse as almost in all cases at least 
a few clusters could be assigned to the same cell type. Thus, the term “cell 
state” has been used throughout this part of the thesis. It is possible that some 
of the observed states may be transient and could potentially rapidly change 
upon changes in the TME signaling. However, this study does not have a 
temporal dimension to provide further insights. Analysis presented in this 
work has revealed that the diversity of cell states is shaped by multiple 
different signaling pathways present in the TME. In particular, the presence 
of local niches in the TME can, in part, account for the observed diversity. 
Moreover, gene co-expression patterns are also critical in defining the cell 
states as well as their effector phenotypes. Particularly noteworthy was co-
expression of checkpoint receptor genes (CTLA-4, TIGIT, and GITR and 
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other co-receptors) in some Treg subpopulations as compared to mutually 
exclusive expression of the same genes in other Treg clusters, suggesting that 
these populations may occupy different functional niches. For example, cells 
co-expressing CTLA-4 and TIGIT have been shown to inhibit pro-
inflammatory Th1 and Th17 responses selectively but not Th2 responses, 
promoting tissue remodeling [394]. On the other hand, it is possible that in 
some cases, similar cell states may have similar effector phenotypes. Thus, 
every hypothesis needs to be considered and tested separately. 

The diversity of T cells and myeloid cells was analyzed separately and 
revealed surprising observations in each case. Firstly, the phenotypic 
expansion of T cell states was determined to be mainly driven by three 
separate factors - T cell activation, terminal differentiation, and hypoxic 
response. The activation component contributes the most to the expansion (it 
is the first component after dimensionality reduction). Furthermore, cells 
appear to span the continuum of this component gradually. In particular, cells 
from the same cluster (same cell state) can be observed throughout the 
continuum of T cell activation and terminal differentiation signals. Such 
observation challenges the view of activated T cells rapidly traversing through 
sparse transitional cell states toward a few predominant, discrete, and stable 
states (for example, Treg, effector, memory, and exhausted T cells). On the 
other hand, myeloid cells exhibited a more clearly defined cell state separation 
as revealed by the top components. This difference between T cells and 
myeloid cells can be explained in part by the establishment of cell 
heterogeneity during myeloid cell development [395]. Surprisingly, in TAMs, 
both M1 and M2 associated genes were frequently expressed in the same cells 
and positively correlated with one another along the same activation 
trajectory. Such results challenge the customary model of macrophage 
polarization wherein M1 and M2 activation states exist as mutually 
independent discrete states. Similar findings have also been previously 
reported in lung and kidney cancers [396, 397]. Unexpected observations in 
both the T cell and the myeloid cell case underscore the importance of single-
cell transcriptomics as a tool for unraveling the complex biology of the tumor 
environment. However, caution must be taken before drawing general 
conclusions, and findings should be further validated in independent studies. 

The immune cell atlas of breast cancer patients presented in this work 
should also serve as a resource for the breast cancer research community. 
While the results of this study confirm the known high variation of immune 
cell subsets between patients, it goes further to detail the considerable 
phenotypic cell state expansion within each patient. The observed high 
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diversity may, in part, explain why only a limited response to immunotherapy 
treatments has been observed in breast cancer patients. For example, the 
considerably different proportions of Treg clusters across patients, and 
potential differences in their effector phenotypes suggest that multi-
dimensional profiling might be necessary to personalize future therapies. It is 
well established that immune cells in the tumor environment play an essential 
role in promoting as well as opposing tumor progression. However, the precise 
balance of these effects remains to be understood. While data presented in this 
study can shed some light on the complex interactions in the TME, it falls 
short from providing a full picture. An exciting avenue for future research will 
be analyzing multiple samples from patients throughout treatment. 
Furthermore, investigating the interaction of immune cells with tumor cells is 
another important direction that warrants further exploration. 
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CONCLUSIONS 

• The transcript capture of the inDrops scRNA-Seq method was 
increased approximately 10-times by optimizing the library 
preparation steps before cDNA amplification. 

• Diffusion map based imputation algorithm (MAGIC) recapitulates 
biologically meaningful gene-gene interactions that otherwise remain 
obscured due to dropouts. 

• It was found that in TGFb induced EMT process, the transcription 
factor ZEB1 activates 1085 genes in both direct and indirect manner. 

• A high degree of heterogeneity of immune cell subsets infiltrating 
breast cancer tumors is observed between different patients: myeloid 
cell fraction varies in the range of 4%–55%, and T cell fraction varies 
in the range of 21%–96%. This heterogeneity can be, in part, explained 
by differences in TME signaling. 

• The phenotypic diversity of T cell states is significantly expanded in 
breast tumors as compared to normal breast tissue. The three top 
components contributing to this phenotypic expansion are T cell 
activation, terminal differentiation, and hypoxic response. 
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