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Abstract: In this paper, we find the upper bound for the tail probability P
(

supn>0 ∑n
i=1 ξi > x

)
with

random summands ξ1, ξ2, . . . having light-tailed distributions. We find conditions under which the
tail probability of supremum of sums can be estimated by quantity $1 exp{−$2x} with some positive
constants $1 and $2. For the proof we use the martingale approach together with the fundamental
Wald’s identity. As the application we derive a few Lundberg-type inequalities for the ultimate ruin
probability of the inhomogeneous renewal risk model.
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1. Introduction

Let {ξ1, ξ2, . . .} be a sequence of independent and real-valued random variables (r.v.s). Let S0 = 0,
Sn = ξ1 + ξ2 + . . . + ξn for all n ∈ N andM∞ = sup{S0,S1,S2, . . .}. In 1997, Sgibnev generalized
results of Kiefer and Wolfowitz [1] by obtaining the upper bound for submultiplicative moment
E ϕ(M∞) in the case of independent and identically distributed (i.i.d.) r.v.s. In Theorem 2 of [2] the
following assertion is presented.

Theorem 1. Let {ξ1, ξ2, . . .} be a sequence of i.i.d. r.v.s with a common distribution function (d.f.) F. Let ϕ be a
non-decreasing function defined on [0, ∞) such that ϕ(0) = 1 and ϕ(x + y) 6 ϕ(x)ϕ(y) for all x, y ∈ [0, ∞).
Then E ϕ(M∞) < ∞ under the following three conditions:

(i) Eξ1 < 0,

(ii)
∫ ∞

0
ϕ(x)F(x)dx < ∞,

(iii) if r = r(ϕ) := lim
x→∞

log ϕ(x)
x

> 0, then E
(
erξ1

)
< 1.

In the case of exponential function ϕ, Theorem 1 implies the following upper estimation for the
tail probability of r.v.M∞.

Corollary 1. Let {ξ1, ξ2, . . .} be a sequence of i.i.d. r.v.s. If Eξ1 < 0 and E ehξ1 < ∞ for some positive h then
there exist positive constants $1 and $2 such that

P
(
M∞ > x

)
6 $1e−$2x (1)
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for all nonnegative x.

If a sequence {ξ1, ξ2, . . .} consists of independent but possibly differently distributed r.v.s, then the
similar estimate to that in (1) also holds. The following assertion is proved in [3] (see Lemma 1).

Theorem 2. Let {ξ1, ξ2, . . .} be a sequence of independent r.v.s such that

(i) sup
k∈N

E
(
ehξk

)
< ∞ for some h > 0,

(ii) lim
u→∞

sup
k∈N

E
(
|ξk|1I{ξk6−u}

)
= 0,

(iii) lim sup
n→∞

1
n

n

∑
k=1

E ξk < 0.

Then the estimate (1) holds for all positive x and some positive constants $1 and $2.

In Theorem 3 of [4] the following more general assertion was proved using classical ideas of
Chernoff [5] and Hoeffding [6].

Theorem 3. Let {ξ1, ξ2, . . .} be a sequence of independent r.v.s such that:

(i)
1
n

n

∑
k=1

E ξk 6 −a if n > b,

(ii) sup
n>b

1
n

n

∑
k=1

E
(
|ξk|1I{ξk6−c}

)
6 ε,

(iii) sup
n>b

1
n

n

∑
k=1

(
P(ξk 6 0) +E

(
ehξk 1I{ξk>0}

))
6 d1,

(iv) max
16n6b−1

1
n

n

∑
k=1

(
P(ξk 6 0) +E

(
ehξk 1I{ξk>0}

))
6 d2,

for some a > 0, b ∈ N, c > 0, ε > 0, h > 0, d1 > 1 and d2 > 1.
If

− ∆ := ε + δhd1 max
{

c2

2
,

2
h2

}
− a < 0 (2)

with δ ∈ (0, 1/2), then
P
(
M∞ > x

)
6 c1e−δhx, x > 0,

where

c1 =

( b−1

∑
n=1

d n
2 +

exp{−δh∆b}
1− exp{−δh∆}

)
.

It should be noted that conditions of Theorem 3 are weaker than the conditions of Theorem 2.
In addition, the assertion of Theorem 3 provides an algorithm to calculate two positive constants
controlling the exponential upper bound. For this reason, conditions of the last theorem have more
explicit form.

In this paper we extend the above results by deriving the more precise upper bounds for
probability P

(
M∞ > x

)
under less restrictive requirements. In addition, from these upper bounds we

derive the so called Lundberg-type exponential estimates for ruin probabilities of the nonhomogeneous
renewal risk models. Results on upper bounds for P

(
M∞ > x

)
are presented in Section 2, and the

versions of the Lundberg-type inequalities are given in Section 3. Section 4 deals with proofs of the
main results, and finally, Section 5 addresses to several applications of the results obtained.



Mathematics 2020, 8, 1742 3 of 18

It should be noted that the problem under consideration and the method used are related with the
problem of upper bound for probability P(Sn > x), where Sn is a sum of independent or dependent
random variables. It is natural that for probability P(Sn > x) more sharp upper bounds can be
obtained comparing with the upper bound for P(max16k6n Sk > x). The pioneer exponential-type
inequalities for probability P(Sn > x) were derived by Bernstein [7,8] and later were improved and
generalized by many authors, see [6,9–15], for instance. The boundedness of summands in Sn is
a key requirement in these papers to get sharp exponential-type upper bounds. Upper bound for
probability P(max16k6n Sk > x) can be derived from the upper estimates of P(Sn > x, C) with a
suitable condition C. Such a way is described in detail by Fan et al. [12] and in references therein.
Unfortunately, the derived upper exponential-type estimates for P(Sn > x, C) “work” under quite
restrictive requirements for summands of sum Sn. The main object of our research is the ruin probability
of the renewal risk model. In order to obtain a good and general upper bound of this probability,
we use the estimate of probability P(max16k6n Sk > x) presented in Lemma 1. In this lemma the
requirements for summands of Sn are minimal.

2. Upper Bounds for Tail of Maximum of Sums

The first theorem of this section gives the upper estimate for probability P
(
M∞ > x

)
under less

requirements than in Theorems 2 and 3 by supposing that random variables ξ1, ξ2, . . . satisfy the net
profit condition, have a finite exponential moment and a negligible left tail on average.

Theorem 4. Let {ξ1, ξ2, . . .} be a sequence of independent and possibly differently distributed r.v.s. If the
following three conditions are satisfied

(i) lim sup
n→∞

1
n

n

∑
k=1

E
(
ehξk

)
< ∞ for some h > 0,

(ii) lim sup
n→∞

1
n

n

∑
k=1

E ξk < 0,

(iii) lim sup
u→∞
n→∞

1
n

n

∑
k=1

E
(
|ξk|1I{ξk6−u}

)
= 0,

then the estimate (1) holds for all positive x and some positive constants $1 and $2.

The second theorem provides an algorithm to obtain numerical expressions of constants $1 and
$2 in the estimate (1). The assertion of theorem below is similar to that in Theorem 3. However, we
derive more precise expressions of constants using the sharp initial inequality of Lemma 1 below.

Theorem 5. Let {ξ1, ξ2, . . .} be a sequence of independent r.v.s such that:

(i)
1
n

n

∑
k=1

E ξk 6 −a,

(ii)
1
n

n

∑
k=1

E
(
|ξk|1I{ξk6−c}

)
6 ε,

(iii)
1
n

n

∑
k=1

(
P(ξk 6 0) +E

((
ehξk − ehξk/2)1I{ξk>0}

))
6 d,

for n > b, a > 0, b ∈ N, c > 0, ε > 0, h > 0, d > 1. Let, in addition:

(iv) max
16n6b−1

n

∏
k=1

(
P(ξk 6 0) +E

(
ehξk 1I{ξk>0}

))
6 D
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for D > 1.
If

ε + δhd max
{

c2

2
,

2
h2

}
− a 6 0 (3)

with some δ ∈ (0, 1/2), then for all positive x

P
(
M∞ > x

)
6 D e−δhx. (4)

The last theorem shows what upper bound can be derived for tail of maximum of sums in the
case when the cumulant generating functions (see [16], for instance) can be successfully estimated for
all r.v.s {ξ1, ξ2, . . .}.

Theorem 6. Let {ξ1, ξ2, . . .} be a sequence of independent r.v.s. If for all h ∈ (0, h∗) and n ∈ N

n

∑
k=1

log
(
E
(
ehξk

))
6 ϕ(h) (5)

with some h∗ > 0 and function ϕ not depending on n, then

P
(
M∞ > x

)
6 exp {−hx + ϕ(h)} (6)

for all positive x and h ∈ (0, h∗).

Remark 1. The last estimation (6) implies the possibility to get more sharp estimate than the standard
exponential for P (M∞ > x). For example, if ϕ(x)/x < x/2 for large x, then (6) implies that

P
(
M∞ > x

)
6 exp{−x2/2}

for that x.

3. Exponential Estimates for Ruin Probabilities

In this section, we present three corollaries from Theorems 4–6 on the Lundberg-type inequalities
for the ultimate ruin probability of an inhomogeneous renewal risk model.

We say that the insurer’s surplus R(t) varies according to an inhomogeneous renewal risk model
(IRRM) if equation

R(t, x) = x + pt−
Θ(t)

∑
i=1

Zi (7)

holds for all t > 0 with the initial insurer’s surplus x > 0, a constant premium rate p > 0, a sequence
of independent, non negative and possibly differently distributed claim amounts {Z1, Z2, . . .} and
with the renewal counting process

Θ(t) =
∞

∑
n=1

1I{θ1+θ2+...+θn6 t},

generated by the inter occurrence times {θ1, θ2, . . .} which form a sequence of independent, non
negative, not degenerate at zero and possibly differently distributed r.v.s. In addition, sequences
{Z1, Z2, . . .} and {θ1, θ2, . . .} are supposed to be independent.

If sequences {Z1, Z2, . . .} and {θ1, θ2, . . .} consist of independent and identically distributed (i.i.d.)
r.v.s, then the inhomogeneous renewal risk model becomes the homogeneous one.
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The ultimate ruin probability (or simply ruin probability)

ψ(x) = P
(

inf
t>0

R(t, x) < 0
)

and the probability of ruin within time T

ψ(x, T) = P
(

inf
06t6T

R(t, x) < 0
)

are the main characteristics of the renewal risk model.
It is obvious that ψ(x, T) 6 ψ(x) for all T > 0, x > 0, and

ψ(x) = P
(

sup
n>1

n

∑
k=1

(Zk − pθk) > x

)
(8)

for all x > 0.
There exist a lot of different papers in which various problems related with ψ(x) and ψ(x, T)

were considered. We refer to only a few of them. For instance, in [17–21], different proofs of the
classical Ludberg’s inequality can be found. In [22–31], the methods are presented for calculation of
ruin probabilities and related quantities in the discrete time models. In [32–42], various problems of
inhomogeneous and homogeneous renewal risk models related with asymptotic behaviour of ruin
probabilities were considered.

The equality (8) shows that results of Theorems 4–6 can be directly applied to derive exponential
estimates for ψ(x) of IRRM which are traditionally called Lundberg-type inequalities. In this section,
we present three versions of the Lundberg-type inequality for IRRM.

Corollary 2. Let {Z1, Z2, . . .} and {θ1, θ2, . . .} be two independent sequences of independent and possibly
differently distributed r.v.s generating IRRM with premium income rate p. Then

ψ(x) 6 κ1e−κ2x

for all x > 0 and some positive constants κ1 and κ2 if the following conditions are satisfied

(i) lim sup
n→∞

1
n

n

∑
k=1

E
(
ehZk

)
< ∞ for some h > 0,

(ii) lim sup
n→∞

1
n

n

∑
k=1

E (Zk − pθk) < 0,

(iii) lim sup
u→∞
n→∞

1
n

n

∑
k=1

E
(

θk1I{θk>u}

)
= 0.

Corollary 3. Let {Z1, Z2, . . .} and {θ1, θ2, . . .} be two independent sequences of independent and possibly
differently distributed r.v.s generating IRRM with premium income rate p such that:

(i)
1
n

n

∑
k=1

E (Zk − pθk) 6 −A,

(ii)
1
n

n

∑
k=1

E
(

θk1I{θk>C/p}

)
6 ∆,

(iii)
1
n

n

∑
k=1

(
P(Zk − pθk 6 0) +E

((
eH(Zk−pθk)

)
1I{Zk−pθk>0}

))
6 d∗,
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for n > B, A > 0, B ∈ N, C > 0, ∆ > 0, H > 0, d∗ > 1. If

(iv) max
16n6B−1

n

∏
k=1

(
P(Zk − pθk 6 0) +E

(
eH(Zk−pθk)1I{Zk−pθk>0}

))
6 D∗

for some D∗ > 1, and

∆ + δHd∗max
{

C2

2
,

2
H2

}
− A 6 0

for some δ ∈ (0, 1/2), then for all positive x

ψ(x) 6 D∗ e−δHx.

Corollary 4. Let {Z1, Z2, . . .} and {θ1, θ2, . . .} be two independent sequences of independent and possibly
differently distributed r.v.s generating IRRM with premium income rate p. If for all h ∈ (0, h∗) and n ∈ N

n

∑
k=1

log
(
E
(
eh(Zk−pθk)

))
6 Λ(h)

with some positive h∗ and some function Λ not depending on n, then

ψ(x) 6 exp {−hx + Λ(h)}

for all positive x and h ∈ (0, h∗).

4. Proofs

In this section, we prove all main results presented in Sections 2 and 3. Statements of Section 2
can be derived from the following lemma.

Lemma 1. Let {ξ1, ξ2, . . .} be a sequence consisting of independent r.v.s. Then the upper estimate

P
(
M∞ > x

)
6 e−hx sup

n∈N
E
(
ehSn

)
= e−hx sup

n∈N

n

∏
k=1

E
(
ehξk

)
(9)

holds for all x > 0 and h > 0.

The assertion of this lemma can be proved using different ways. Here, we present two different
proofs of the lemma. The first proof is based on the martingale property of special transform of sum of
random variables and on the maximal inequality for submartingales, see, for instance, Exercise 7 on
page 110 and Theorem 1 on page 492 of [43]. We found such proof in the unpublished manuscript [44].
The second more direct proof is based on the fundamental Wald’s equality for not necessarily identically
distributed random variables. For various versions of the Wald’s equalities see [45–47], § 2 of Chapter
VII in [43,48–50] among others.

Proof. (I). For N ∈ N and h > 0 let us define

EN(h) := max
16n6N

E
(
ehSn

)
.

If EN(h) = ∞, then obviously that

P
(

max
16n6N

Sn > x
)
6 e−hxEN(h) (10)
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for all nonnegative x, h. If EN(h) is finite, then for each n ∈ {0, 1, . . . , N}, we define the following
nonnegative r.v.

Mn :=
ehSn

E
(
ehSn

) .

Since M0 = 1 and

E
(
Mn |M0,M1, . . . ,Mn−1

)
= E

(
eh(Sn−1+ξn)

E
(
eh(Sn−1+ξn)

) ∣∣ ξ0, ξ1, . . . , ξn−1

)

=
ehSn−1

E
(
ehSn−1

) E( ehξn

E
(
ehξn

)) = Mn−1,

for all n ∈ {1, . . . , N}, the sequence of nonnegative r.v.s {M0,M1, . . . ,MN} forms a martingale.
According to the maximal inequality for submartingales (see, for instance, Theorem 1 on page 492
of [43]) we have that

P
(

max
n6N

Mn > y
)
6

EMn

y
=

1
y

for all positive y.
If we choose y = ehx/EN(h) then we get that

P
(

max
n6N

ehSn

E
(
ehSn

) >
ehx

EN(h)

)
6 e−hxEN(h).

Consequently inequality (10) is satisfied again, because

P
(

max
n6N
Sn > x

)
= P

(
max
n6N

ehSn > ehx
)
= P

(
max
n6N

ehSn

EN(h)
>

ehx

EN(h)

)

6 P
(

max
n6N

ehSn

E
(
ehSn

) >
ehx

EN(h)

)
6 e−hxEN(h)

for arbitrary positive x and h.
The estimate (9) of Lemma 1 follows now immediately due to the following relations

P
(
M∞ > x

)
= P

(
sup
n∈N
Sn > x

)
= lim

N→∞
P
(

N⋃
n=1

{Sn > x}
)

= lim
N→∞

P
(

max
16n6N

Sn > x
)
6 e−hx lim

N→∞
EN(h)

6 e−hx sup
n∈N

E
(
ehSn

)
provided if x, h > 0.

Proof. (II). In this part we present another way to prove the inequality (10). It is enough to prove this
estimate to obtain the new proof way because of the standard derivation of (9) from (10) we presented
in the first part.

The inequality (10) is evident if N = 1. Let us suppose that N > 2 and for the sequence
{S1, S2, . . . , SN} define stopping time τN by the following equation

τN =

{
min{n : Sn > x},
N, if Sn 6 x for n ∈ {1, 2, . . . , N}.
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If EN(h) is finite, then we have

P
(

max
16n6N

Sn > x
)

= P(τN 6 N − 1) + P(τN = N, SN > x)

= E
(

1I{τN6N−1}

)
+E

(
1I{τN=N,SN>x}

)
6 e−hxE

(
ehSτN 1I{τN6N−1}

)
+ e−hxE

(
ehSN 1I{τN=N}

)

= e−hxE

 ehSτN

τN
∏
i=1

E
(
ehξi
) τN

∏
i=1

E
(
ehξi
)

6 e−hx max
16n6N

{
n

∏
i=1

E
(
ehξi
)}

E

 ehSτN

τN
∏
i=1

E
(
ehξi
)


= e−hxEN(h)

because of the Wald’s fundamental equality for collection of independent but not necessary identically
distributed r.v.s {ξ1, ξ2, . . . , ξN} and stopping time τN , see [46,47]. Hence the estimate (10) follows and
this ends another proof of the lemma.

Proof of Theorem 4. According to the estimate (9) of Lemma 1 we have

P
(
M∞ > x

)
6 e−yx max

{
max

16n6N

n

∏
k=1

E
(
eyξk

)
, sup

n>N

n

∏
k=1

E
(
eyξk

)}
(11)

for all x > 0, y ∈ [0, h] and N > 1.
Using the inequalities

ev − 1 6 0, v 6 0,

ev − v− 1 6
v2

2
ev, v > 0,

ev − v− 1 6
v2

2
, v 6 0,

for each k ∈ N, u > 0 and y ∈ [0, h] we get that

E
(
eyξk

)
= 1 + yEξk +E

((
eyξk − 1

)
1I{ξk6−u}

)
− yE

(
ξk1I{ξk6−u}

)
+E

((
eyξk − yξk − 1

)
1I{−u<ξk<0}

)
+E

(
big(eyξk − yξk − 1

)
1I{ξk>0}

)
6 1 + yEξk + yE

(
|ξk|1I{ξk6−u}

)
+

y2u2

2
P (−u < ξk < 0) +

y2

2
E
(

ξ2
k eyξk 1I{ξk>0}

)
. (12)

By choosing u = 1/ 4
√

y we get that

E
(
eyξk

)
6 1 + yEξk + yE

(
|ξk|1I{ξk6−1/ 4√y}

)
+

y3/2

2
+

y2

2
c1E
(
ehξk

)
(13)

for y ∈ [0, h/2], where k ∈ N and c1 = c1(h) is a positive constant from the estimate

v2 6 c1 ehv/2, v > 0.
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By substituting the estimate (13) into (11) and applying estimate 1 + v 6 ev provided for all real v,
we get that

P (M∞ > x) 6 e−yx max

{
max

16n6N

n

∏
k=1

E
(
eyξk

)
,

sup
n>N

exp

{
y
( n

∑
k=1

Eξk +
n

∑
k=1

E
(
|ξk|1I{ξk6−1/ 4√y}

)
+

n
√

y
2

+
y
2

c1

n

∑
k=1

E
(
ehξk

))}}
(14)

for all x > 0, y ∈ [0, h/2] and N > 1.
The first condition of Theorem 4 implies that there exists a natural M such that

1
n

n

∑
k=1

E
(
ehξk

)
6 c2, n > M,

with a positive constant c2 = c2(h).
If 1 6 n 6 M, then obviously

1
n

n

∑
k=1

E
(
ehξk

)
6 max

16k6M
E
(
ehξk

)
.

Consequently, for all n > 1,
1
n

n

∑
k=1

E
(
ehξk

)
6 c3 (15)

with the positive constant

c3 = c3(h, M) = max
{

c2, max
16k6M

E
(
ehξk

)}
.

Estimates (14) and (15) imply that

P (M∞ > x) 6 e−yx max

{
max

16n6N

n

∏
k=1

E
(
eyξk

)
,

sup
n>N

exp

{
y
( n

∑
k=1

Eξk +
n

∑
k=1

E
(
|ξk|1I{ξk6−1/ 4√y}

)
+

n
√

y
2

+ yc4n
)}}

, (16)

where c4 = c1c3/2, x > 0, y ∈ (0, h/2] and N > 1.
According to the second condition of Theorem 4

n

∑
k=1

Eξk 6 −c5n,

where c5 > 0 and n > N∗ with the sufficiently large N∗. From this and from the inequality (16) we
get that

P (M∞ > x) 6 e−yx max

{
max

16n6N

n

∏
k=1

E
(
eyξk

)
,

sup
n>N

exp

{
−yn

(
c5 −

1
n

n

∑
k=1

E
(
|ξk|1I{ξk6−1/ 4√y}

)
−
√

y
2
− yc4

)}}
(17)

for all x > 0, y ∈ (0, h/2] and N > N∗.
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The condition (iii) of Theorem 4 implies that

1
n

n

∑
k=1

E
(
|ξk|1I{ξk6−1/ 4√y}

)
6

c5

2
(18)

if y ∈ (0, y∗] and n > N̂ for some positive y∗ ∈ (0, h/2] and some natural N̂ > N∗.
Due to estimates (17) and (18), the inequality

P (M∞ > x) 6 e−yx max

{
max

16n6N

n

∏
k=1

E
(
eyξk

)
,

sup
n>N

exp
{
− yn

( c5

2
−
√

y
2
− yc4

)}}
. (19)

holds x > 0, y ∈ (0, y∗] and N > N̂.
If we choose ŷ under conditions

c5

2
−
√

y
2
− yc4 > 0, ŷ ∈ (0, y∗] ,

then we get the desired estimate (1) from (19) with constants

$1 = max
16n6N̂

n

∏
k=1

E
(
eŷξk

)
, $2 = ŷ.

Theorem 4 is proved. �

Proof of Theorem 5. Due to the Lemma 1 and condition (iv) of Theorem 5 we have

P (M∞ > x) 6 e−yx max
16n6b−1

n

∏
k=1

E
(
eyξk

)
max

{
1, sup

n>b

n

∏
k=b

E
(
eyξk

)}

6 D e−yx max

{
1, sup

n>b

n

∏
k=b

E
(
eyξk

)}
(20)

for all x > 0 and y ∈ (0, h].
According to the estimate (12) and the obvious inequality v2 6 ev − 1, v > 0, we have that

Eeyξk 6 1 + yEξk + yE
(
|ξk|1I{ξk6−c}

)
+

y2c2

2
P(ξk 6 0) +

2y2

h2 E
((

ehξk − ehξk/2
)

1I{ξk>0}

)
for all k ∈ N and y ∈ (0, h/2].

Consequently,

P (M∞ > x) 6 D e−yx max

{
1, sup

n>b
exp

{
yn
(

1
n

n

∑
k=1

Eξk +
1
n

n

∑
k=1

E
(
|ξk|1I{ξk6−c}

)
+ y max

{
c2

2
,

2
h2

}(
1
n

n

∑
k=1

P(ξk 6 0) +
1
n

n

∑
k=1

E
((

ehξk − ehξk/2
)

1I{ξk>0}

)))}}

6 D e−yx max

{
1, exp

{
ny
(
−a + ε + yd max

{
c2

2
,

2
h2

})}}
(21)

due to the conditions (i), (ii) and (iii) of Theorem 5.
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Let now y = δh with some δ ∈ (0, 1/2] satisfying condition (3). For this y we derive from (21) that
the estimate (4) holds. Theorem 5 is proved. �

Proof of Theorem 6. Exponential moments E
(
ehξk

)
are positive for all h > 0 and k ∈ N.

Hence condition (5) implies that

sup
n∈N

n

∏
k=1

E
(
ehξk

)
= sup

n∈N
exp

{
n

∑
k=1

log
(
E
(
ehξk

))}
6 exp{ϕ(h)}.

Now the estimate (6) of Theorem 6 follows from Lemma 1 immediately. �

Proof of Corollaries 2–4. All assertions follow from Theorems 4–6 immediately by supposing that
ξk = Zk − pθk for all k ∈ N. �

5. Numerical Examples

In this section we present three particular examples of IRRM. For all these models we obtain the
Lundberg-type estimates for ultimate ruin probabilities using Corollaries 3 and 4. We compare the
obtained bounds with the values of ψ(x) derived by the Monte Carlo method.

The first example is borrowed from the article [4]. We show that with the help of the
Corollaries 3 or 4 more accurate upper bounds for the ruin probability can be obtained.

Example 1. Let us consider IRRM which is generated by inter occurrence times {θ1, θ2, . . . } uniformly
distributed on interval [1, 3], constant premium rate p = 2 and a sequence of the claim amounts {Z1, Z2, . . .}
such that

Z1 = Z2 = 0, Z3 = Z4 = 4,

FZk (x) = 1I(−∞,0](x) + e−x
(

1 +
x
k

)
1I(0,∞)(x), k > 5.

In the case under consideration, we have:

Eθk = 2, k ∈ N;

EZ1 = EZ2 = 0, EZ3 = EZ4 = 4;

EZk = 1 +
1
k

, k > 5.

Consequently, for n > 1, we get

1
n

n

∑
k=1

(EZk − pEθk) 6 −2,

1
n

n

∑
k=1

E
(

θk1I{θk>3}

)
= 0.

In addition, if 1 6 n 6 4, then

1
n

n

∑
k=1

(
P(Zk − pθk 6 0) +E

((
e(Zk−pθk)/3)1I{Zk−pθk>0}

))
< 1.11.
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This implies that

1
n

n

∑
k=1

(
P(Zk − pθk 6 0) +E

((
e(Zk−pθk)/3)1I{Zk−pθk>0}

))
<

1
n

(
4.44 +

n

∑
k=5

1 +
n

∑
k=5

E
((

eZk/3)1I{Zk>2}

))

6 4.44/5 +
n− 5

n
+

3
4e4/3

n

∑
k=5

2k + 5
k

<
5
2

for all n > 5.
The obtained estimates imply conditions of Corollary 3 with

A = 2, B = 1, C = 6, ∆ = 0, H = 1/3, d∗ = 5/2, D∗ = 1.

Since

∆ + δHd∗max
{

C2

2
,

2
H2

}
− A = 6δ− 2,

it follows from Corollary 3 that
ψ(x) 6 ψ1(x) := exp{−x/9}

for all x > 0.

We observe that in example under consideration we can get sharper upper bound for the ruin
probability because distributions of the first two claims are conducive to an increase of the initial
surplus. Namely, for x > 0 we have

ψ(x) = P
(

sup
n>1

n

∑
k=1

(Zk − pθk) > x

)

= P
(

∞⋃
n=1

{ n

∑
k=1

(Zk − pθk) > x
})

6 P
(

∞⋃
n=5

{
− 8 +

n

∑
k=5

(Zk − pθk) > x
})

= P
(

sup
n>1

n

∑
k=1

(Ẑk − pθ̂k) > x + 8

)
= ψ̂(x + 8), (22)

where ψ̂ denotes the ruin probability of IRRM generated by random claims {Ẑ1, Ẑ2, . . .} and inter
occurrence times {θ̂1, θ̂2, . . .}. For all k ∈ N r.v. θ̂k is uniformly distributed on interval [1, 3] and

FẐk
(x) = 1I(−∞,0](x) + e−x

(
1 +

x
k + 4

)
1I(0,∞)(x).

The upper bound for the ultimate ruin probability ψ̂ can be derived using Corollary 3 as well
as Corollary 4. We choose the latter assertion. We should establish function Λ which bound sum of
cumulants of r.v.s Ẑk − pθ̂k.

For h ∈ [0, 1) and k ∈ N we have

E
(

eh(Ẑk−pθ̂k)
)
=

e−2h − e−6h

4h(1− h)

(
k + 3
k + 4

− 1
(k + 4)(1− h)

)
.
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Hence, for h ∈ [0, 7/10] and n ∈ N

n

∑
k=1

logE
(

eh(Ẑk−pθ̂k)
)
=

n

∑
k=1

log

(
e−2h − e−6h

4h(1− h)

(
k + 3
k + 4

− 1
(k + 4)(1− h)

))
6 0

because of negativity of each term in the sum.
Consequently, for the “shifted” model

ψ̂(x) 6 exp{−7x/10}, x > 0,

and by relation (22)

ψ(x) 6 ψ2(x) := exp
{
−28

5
− 7x

10

}
.

Below, in Figure 1, we compare upper bounds ψ1(x) and ψ2(x) of ruin probability with its values
obtained by the Monte Carlo method.
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Figure 1. Ruin probability for model of Example 1.

The second IRRM which we present here is generated by exponentially distributed claims and
inter occurrence times. We show that we can also derive the upper exponential bounds for ruin
probability using Corollaries 3 and 4 again.

Example 2. Let us consider IRRM generated by constant premium rate p = 1, a sequence of claims
{Z1, Z2, . . .} having exponential distributions

P(Zk 6 x) =
(
1− e−x) 1I[0,∞), k ∈ {1, 3, 5, . . .},

P(Zk 6 x) =
(

1− e−x/2
)

1I[0,∞), k ∈ {2, 4, 6, . . .},
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and a sequence of inter occurrence times {θ1, θ2, . . .} also having exponential distributions

P(θk 6 x) =
(
1− e−x) 1I[0,∞), k ∈ {1, 3, 5, . . .},

P(θk 6 x) =
(

1− e−x/3
)

1I[0,∞), k ∈ {2, 4, 6, . . .}.

It is obvious that EZk = Eθk = 1 for k ∈ {1, 3, 5, . . .} and EZk = 2,Eθk = 3 for k ∈ {2, 4, 6, . . .}.
Hence, for n > 2, we have

1
n

n

∑
k=1

(EZk − pEθk) 6 −
1
3

,

1
n

n

∑
k=1

E
(

θk1I{θk>u}

)
=

1
n

(⌊n + 1
2

⌋ ∫ ∞

u
ye−ydy +

⌊n
2

⌋ ∫ ∞

u

y
3

e−y/3dy
)

=
1
n

(⌊n
2

⌋
e−u(u + 1) +

⌊n
2

⌋
e−u/3(u + 3)

)
,

1
n

n

∑
k=1

(
P(Zk − pθk 6 0) +E

(
e(Zk−pθk)/61I{Zk−pθk>0}

))
=

1
n

⌊n + 1
2

⌋ (
P(Z1 − θ1 6 0) +E

(
e(Z1−θ1)/61I{Z1−θ1>0}

))
+

1
n

⌊n
2

⌋ (
P(Z2 − θ2 6 0) +E

(
e(Z2−θ2)/61I{Z2−θ2>0}

))
=

1
n

(⌊n + 1
2

⌋11
10

+
⌊n

2

⌋12
10

)
6

23
20

.

After some calculations, we obtain that conditions of Corollary 3 hold with the following collection
of constants.

A = 1/3, B = 2, C = 12, ∆ = 11/80, H = 1/6, d∗ = 23/20.

In addition,

D∗ = P(Z1 − pθ1 6 0) +E
((

e(Z1−pθ1)/6)1I{Z1−pθ1>0}

)
= P(Z1 − pθ1 6 0) +

∞∫
0

e−5y/6

 x∫
0

e−7z/6dz

dy =
11
10

,

and

∆ + δHd∗max
{

C2

2
,

2
H2

}
− A 6 0,

if δ 6 47/3312. Therefore, we can suppose that δ = 7/500.
In such a case, we get from Corollary 3 that

ψ(x) 6 ψ1(x) := min
{

1,
11
10

exp{−7x/3000}
}

, x > 0.

It is evident that the obtained estimate has the exponential form but it is quite conservative.
The reason for this is the generality of the Corollary 3. The last estimate holds for wide group of IRRMs.
In fact, the estimate presented in Corollary 3 is not sensitive to the structure of the model. Fortunately,
in the example under consideration, the cumulant generating functions of r.v.s {Zk − pθk}∞

k=1 have
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sufficiently simple analytic expressions. Hence we can derive more sharp estimate for the model ruin
probability using Corollary 4.

Namely, if k ∈ {1, 3, 5, . . .} and h ∈ [0, 1), then

E
(
eh(Zk−pθk)

)
=

1
1− h2 .

If k ∈ {2, 4, 6, . . .} and h ∈ [0, 1/2), then

E
(
eh(Zk−pθk)

)
=

1
(1− 2h)(1 + 3h)

.

Consequently,

n

∑
k=1

log
(
E
(
eh(Zk−pθk)

))
=

⌊n + 1
2

⌋
log

1
1− h2 +

⌊n
2

⌋
log

1
(1− 2h)(1 + 3h)

6
n + 1

2
log

1
(1− h2)(1− 2h)(1 + 3h)

6 0

for all n ∈ N if h ∈ [0, 0.1424).
By supposing h = 1/8 we obtain from Corollary 4 that

ψ(x) 6 ψ2(x) := exp{−x/8}

for all initial surplus values x > 0.
Below, in Figure 2, we illustrate the results obtained. In the figure, we can see the values of ruin

probability ψ(x) obtained by the Monte Carlo method, its conservative estimate ψ1(x) and its sharp
estimate ψ2(x).
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Figure 2. Ruin probability for model of Example 2.

The last our example shows that for particular IRRM a sharper upper bound compared to the
standard exponential estimate for ruin probability can be derived. For this we need to apply Corollary 4,
because using Corollary 3 we can get only the standard exponential upper estimate, and the model
should be generated by random claims {Zk}∞

k=1 having finite exponential moments {EehZk}∞
k=1 for all

positive h.
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Example 3. Suppose that IRRM is generated by a premium rate p = 1, a sequence of degenerated inter
occurrence times θk = k, k ∈ N, and a sequence of i.i.d. Poisson random claims {Z1, Z2, . . . } such that

P(Z1 = j) =
1

ej!
, j = 0, 1, 2, . . .

In the case under consideration, we have that

log
(
E
(
eh(Zk−pθk)

))
= eh − k− 1

for all k ∈ N and h > 0.
Therefore,

n

∑
k=1

log
(
E
(
eh(Zk−pθk)

))
= n(eh − 1)− 1 + n

2
n

6 n(eh − 1)− n2

2
6

(
eh − 1

)2/2

if h > 0 and n ∈ N.
Hence, according to Corollary 4 we get that

ψ(x) 6 exp
{
−hx + (eh − 1)2/2

}
6 exp

{
−hx +

h
2

e2h
}

for all positive x and h.
If we choose h = 1

2 log x, by supposing that x > 1, then the last estimate implies that

ψ(x) 6 exp{− x
4

log x} =
(

1
x

)x/4
, x > 1.

Below, in Figure 3, we illustrate the results obtained. In the figure, red line is the derived upper
bound for ruin probability, and green line is the values of ψ(x) obtained by the Monte Carlo method.
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Figure 3. Ruin probability for model of Example 3.
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