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ON BERNSTEIN–KANTOROVICH INVARIANCE PRINCIPLE IN

HÖLDER SPACES AND WEIGHTED SCAN STATISTICS∗

Alfredas Račkauskas1 and Charles Suquet2,∗∗

Abstract. Let ξn be the polygonal line partial sums process built on i.i.d. centered random vari-
ables Xi, i ≥ 1. The Bernstein-Kantorovich theorem states the equivalence between the finiteness of
E |X1|max(2,r) and the joint weak convergence in C[0, 1] of n−1/2ξn to a Brownian motion W with the
moments convergence of E ‖n−1/2ξn‖r∞ to E ‖W‖r∞. For 0 < α < 1/2 and p(α) = (1/2−α)−1, we prove
that the joint convergence in the separable Hölder space Hoα of n−1/2ξn to W jointly with the one of
E ‖n−1/2ξn‖rα to E ‖W‖rα holds if and only if P (|X1| > t) = o(t−p(α)) when r < p(α) or E |X1|r < ∞
when r ≥ p(α). As an application we show that for every α < 1/2, all the α-Hölderian moments of the
polygonal uniform quantile process converge to the corresponding ones of a Brownian bridge. We also
obtain the asymptotic behavior of the rth moments of some α-Hölderian weighted scan statistics where
the natural border for α is 1/2 − 1/p when E |X1|p < ∞. In the case where the Xi’s are p regularly
varying, we can complete these results for α > 1/2− 1/p with an appropriate normalization.
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1. Introduction

Let (Zn)n≥1 be a sequence of random elements in some separable metric space S endowed with its Borel
σ-field S . Let Z be a random element in S. Assume for notational simplicity that Z and the Zn’s are all defined
on the same probability space (Ω,F ,P). Then Zn converges in distribution to Z, denoted by

Zn
d−−−−→

n→∞
Z,

if its distribution µn = P ◦Z−1
n converges weakly to µ = P ◦Z−1. This means that for every continuous bounded

function f : S→ R, ∫
S
f dµn = E f(Zn) −−−−→

n→∞
E f(Z) =

∫
S
f dµ. (1.1)
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Relaxing the boundedness assumption on f in (1.1) leads to the classical question of convergence of moments.
When S is a separable Banach space with norm ‖ ‖, one is interested in extending the convergence in (1.1) to
the case of functions satisfying for some positive constants c1, c2, r,

|f(x)| ≤ c1‖x‖r + c2, x ∈ S. (1.2)

It is well known that this extension is valid if and only if (‖Zn‖r)n≥1 is uniformly integrable (see [3], Thm. 5.4)
that is

lim
a→∞

sup
n≥1

E ‖Zn‖r1{‖Zn‖>a} = 0. (1.3)

Let us note that if (‖Zn‖r)n≥1 is uniformly integrable, necessarily

sup
n≥1

E ‖Zn‖r <∞. (1.4)

In this paper we focus on the convergence of moments in the functional central limit theorem. Let (Xi)i≥1

be an i.i.d. sequence of real valued random variables with null expectation and variance one if they exist,
Sn := X1 + · · ·+Xn and ξn the random polygonal line with vertices (k/n, Sk), k = 0, 1, . . . , n :

ξn(t) = S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1]. (1.5)

From Bernstein theorem [2] it is known that for r > 0 the joint convergence

n−1/2Sn
d−−−−→

n→∞
G and lim

n→∞
E
∣∣∣n−1/2Sn

∣∣∣r = E |G|r,

where G is a Gaussian N(0, 1) random variable, is equivalent to the finiteness of E |X1|max{2,r}. Note also that
in the case where r = 2 the convergence of the corresponding moment is trivial and that for 0 < r < 2 the
convergence of E

∣∣n−1/2Sn
∣∣r follows immediately from EX2

1 <∞ by uniform integrability of
(
n−1S2

n, n ≥ 1
)
.

Let us denote byW a standard Brownian motion viewed as a random element in the space C[0, 1] of continuous
functions x : [0, 1] → R endowed with the uniform norm ‖x‖∞ = sup{|x(t)|, t ∈ [0, 1]}. The classical Donsker-
Prokhorov theorem provides the equivalence :

n−1/2ξn
d−−−−→

n→∞
W in C[0, 1] if and only if EX2

1 <∞.

For r > 0, the Bernstein–Kantorovich functional central limit theorem (see [11], Thm. 11.2.1, p. 219) provides
the equivalence between E |X1|max{2,r} <∞ and the joint convergence

n−1/2ξn
d−−−−→

n→∞
W in C[0, 1] with E ‖n−1/2ξn‖r∞ −−−−→

n→∞
E ‖W‖r∞. (1.6)

It turns out that the condition E |X1|r <∞ for some r > 2 provides also the convergence in distribution of
n−1/2ξn to W in a stronger topology than the C[0, 1]’s one. Define for 0 ≤ α < 1 the Hölder space Hoα[0, 1] as
the set of functions x : [0, 1]→ R such that

ωα(x, δ) := sup
0<t−s≤δ
s,t∈[0,1]

|x(t)− x(s)|
(t− s)α

−−−→
δ→0

0, (1.7)



188 A. RAČKAUSKAS AND C. SUQUET

endowed with the norm

‖x‖α = |x(0)|+ ωα(x, 1), (1.8)

which makes it a separable Banach space (isomorphic to C[0, 1] in the special case α = 0).
Let α ∈ (0, 1/2) and p(α) = (1/2− α)−1. By the necessary and sufficient condition for Lamperti’s Hölderian

invariance principle [12, 13], we know that n−1/2ξn converges in distribution in the spaceHoα[0, 1] to the standard
Brownian motion if and only if P(|X1| > t) = o(t−p(α)) when t tends to infinity. When E |X1|p(α) < ∞, this
condition is satisfied. Our first result extends the Bernstein–Kantorovich functional central limit theorem to the
spaces Hoα[0, 1].

Theorem 1.1. Let α ∈ (0, 1/2) and p(α) = (1/2− α)−1. Let r > 0. Then the joint convergence

n−1/2ξn
d−−−−→

n→∞
W in Hoα[0, 1] with E ‖n−1/2ξn‖rα −−−−→

n→∞
E ‖W‖rα (1.9)

holds if and only if

lim
t→∞

tp(α) P(|X1| > t) = 0, when r < p(α), (1.10)

E |X1|r <∞, when r ≥ p(α). (1.11)

It is worth noticing here that (1.9) is equivalent to the convergence of the distribution of n−1/2ξn to the
one of W with respect to the Wasserstein distance of order r associated to the norm ‖.‖α, i.e. with the mass
transportation cost function c(x, y) = ‖x− y‖rα, see Section 3.2 for details.

An immediate consequence of Theorem 1.1 is that (1.11) implies the convergence of E f(n−1/2ξn) to E f(W )
for any continuous functional f : Hoα[0, 1]→ R satisfying

|f(x)| ≤ c1‖x‖rα + c2. (1.12)

Among the various functionals f(n−1/2ξn) where f satisfies a condition like (1.12) are the (powers of the)
following weighted scan type statistics :

Mn,α = max
1≤j≤n

j−α max
0≤k≤n−j

|Sk+j − Sk|.

We refer to [1, 10] for valuable information about scan statistics and their applications. The following result is
a corollary of more general results obtained in this paper (see Thms. 4.1 and 4.2).

Theorem 1.2. Let p > 2.

(a) If 0 ≤ α ≤ 1/2− 1/p, and E |X1|p <∞ then

lim
n→∞

n−1 EMp
n,α = Eωpα(W, 1).

(b) If 1/2− 1/p < α < 1 and X1 is regularly varying with exponent p then for any 0 ≤ r < p,

lim
n→∞

b−rn EMr
n,α = EY rp ,
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where

bn = inf{t > 0 : P(|X1| ≤ t) ≥ 1− 1/n} (1.13)

and Yp has Fréchet distribution with exponent p.

The paper is organized as follows. Section 2 is devoted to preliminaries where uniform integrability, regu-
larly varying random variables are discussed and necessary tools on Hölder spaces are presented. In Section 3,
one proves Theorem 1.1 and some comments concerning the upper bound for admissible Hölder index in the
Bernstein–Kantorovich invariance principle are presented. Convergence of moments of weighted scan statistics
is considered in Section 4. The paper ends with an appendix devoted to some facts from Karamata theory.

2. Preliminaries

2.1. Uniform integrability

Lemma 2.1. Let (Zn)n≥1 be a sequence of random elements in the Banach space (S, ‖ ‖). For r > 0, (‖Zn‖r)n≥1

is uniformly integrable if and only if

lim
a→∞

sup
n≥1

∫ ∞
a

tr−1 P(‖Zn‖ > t) dt = 0. (2.1)

The proof is elementary and will be omitted.

2.2. Hölderian tools

Let Dj denotes the set of dyadic numbers of level j in [0, 1], that is D0 := {0, 1} and for j ≥ 1, Dj :={
(2l− 1)2−j ; 1 ≤ l ≤ 2j−1

}
. For d ∈ Dj set d− := d− 2−j , d+ := d+ 2−j , j ≥ 0. For x : [0, 1]→ R and d ∈ Dj

let us define

λd(x) :=

{
x(d)− x(d+)+x(d−)

2 if j ≥ 1,

x(d) if j = 0.

The following sequential norm defined on Hoα[0, 1] by

‖x‖seq
α := sup

j≥0
2αj max

d∈Dj

|λd(x)|,

is equivalent to the natural norm ‖x‖α, see [5]. Let us define also Dj := {k2−j , 0 ≤ k < 2j}, so that Dj =
{0} ∪

⋃
1≤i≤j Di.

The Hölder norm of a polygonal line function is very easy to compute according to the following lemma for
which we refer e.g. to [8] Lemma 3, where it is proved in a more general setting.

Lemma 2.2. Let t0 = 0 < t1 < · · · < tn = 1 be a partition of [0, 1] and x be a real-valued polygonal line function
on [0, 1] with vertices at the ti’s, i.e. x is continuous on [0, 1] and its restriction to each interval [ti, ti+1] is an
affine function. Then for any 0 ≤ α < 1,

sup
0≤s<t≤1

|x(t)− x(s)|
(t− s)α

= max
0≤i<j≤n

|x(tj)− x(ti)|
(tj − ti)α

.
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2.3. Regularly varying random variables

Throughout this paper we implicitly assume that all the random variables considered are defined on the same
probability space (Ω,F ,P) and we use the following notion of regularly varying random variable.

Definition 2.3. The random variable X is regularly varying with index p > 0 (denoted X ∈ RVp) if there
exists a slowly varying function L such that the distribution function F (t) = P(X ≤ t) satisfies the tail balance
condition

F (−x) ∼ bL(x)x−p and 1− F (x) ∼ aL(x)x−p, as x→∞, (2.2)

where a, b ∈ (0, 1) and a+ b = 1.

We refer to [4] for an encyclopaedic treatment of regular variation.
Writing Lp or Lop,∞ for the sets of random variables X verifying respectively E |X|p <∞ or limt→∞ tp P(|X| >

t) = 0, we note that

RVp ⊂ Lr, for 0 ≤ r < p,

RVp ∩ Lp 6= ∅, RVp ∩ Lop,∞ 6= ∅,
RVp ∩ Lp′ = ∅ for p′ > p.

The next lemma plays a key role in our results on the scan statistics built on RVp random variables. Its proof
is detailed in the Appendix.

Lemma 2.4. Let X ∈ RVp and bn be its (1− 1/n) quantile defined as in (1.13).

i) For any 0 < s < p,

E |X|s1{|X|>ybn} ≤
2p

p− s
bsn

1

n
ys−p, (2.3)

for n large enough, uniformly in y ∈ [1,∞).
ii) For any s > p,

E |X|s1{|X|≤ybn} ≤
2p

s− p
bsn

1

n
ys−p, (2.4)

for n large enough, uniformly in y ∈ [1,∞).

iii) Let X̃ = X1{|X|≤ybn}, X
′ = X̃ − E X̃. Then for any 0 < s 6= p,

E |X ′|s ≤ K(s, p)bsn
1

n
ys−p, (2.5)

for n large enough, uniformly in y ∈ [1,∞), where

K(s, p) = max(1, 2s−1)
4p

|p− s|
.

3. Bernstein–Kantorovich theorem in Ho
α[0, 1]

In this section first we prove Theorem 1.1 and then discuss some aspects of Bernstein–Kantorovich theorem
in Hölder framevork.
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3.1. Proof of Theorem 1.1

The necessity of the X1’s integrability conditions for the joint convergence (1.9) is easily seen. Indeed when
r < p(α), (1.10) follows from the first convergence in (1.9), see [12]. When r ≥ p(α), we note that |X1| =
|ξn(1/n)− ξn(0)| ≤ ‖ξn‖αn−α. From the second convergence in (1.9), E ‖n−1/2ξn‖rα is finite, at least for n large
enough, whence E |X1|r ≤ n(1/2−α)r E ‖n−1/2ξn‖rα <∞, giving the necessity of (1.11).

Now let us prove that the integrability conditions (1.10) or (1.11) are sufficient for the joint convergence (1.9).
By the Hölderian invariance principle [12], (1.10) or a fortiori (1.11) implies that n−1/2ξn converges in distri-
bution to W in Hoα[0, 1] and by continuous mapping that ‖n−1/2ξn‖α converges in distribution to ‖W‖α. It
remains to check the uniform integrability of the sequence

(
‖n−1/2ξn‖rα

)
n≥1

. It is enough to consider the case

where r ≤ p(α) only. Indeed, if r > p(α), then we choose β = 1/2 − 1/r (so that r = p(β)) and notice that

uniform integrability of the sequence
(
‖n−1/2ξn‖p(β)

β

)
n≥1

yields that of the sequence
(
‖n−1/2ξn‖p(β)

α

)
n≥1

since

β > α.
Now to prove the uniform integrability of the sequence (‖n−1/2ξn‖rα)n≥1 we can obviously replace ‖ ‖α by

an equivalent norm. The choice of ‖ ‖seq
α seems more convenient here. So we have to prove that for r ≤ p(α),

lim
a→∞

sup
n≥1

∫ ∞
a

rtr−1 P
(
‖n−1/2ξn‖seq

α > t
)

dt = 0. (3.1)

The following proof of (3.1) is essentially common to the cases r < p(α) and r = p(α) except for some nuance
in the exploitation of the integrability of X1. From now on, we write p for p(α).

The first task in establishing (3.1) is to obtain a good estimate for

P (n, t) := P
(
‖n−1/2ξn‖seq

α > t
)
. (3.2)

Write for simplicity tk,j = k2−j , k = 0, 1, . . . , 2j , j = 1, 2, . . . and tk = tk,j whenever the context dispels any
doubt on the value of j. It is easily seen that for any x ∈ Hα such that x(0) = 0,

‖x‖seq
α ≤ sup

j≥0
2jα max

0≤k<2j
|x(tk+1,j)− x(tk,j)|.

From this we deduce that

P (n, t) ≤ P1(n, t) + P2(n, t), (3.3)

with

P1(n, t) = P

(
max

0≤j≤logn
2jα max

0≤k<2j
|ξn(tk+1,j)− ξn(tk,j)| > n1/2t

)
, (3.4)

P2(n, t) = P

(
sup

j>logn
2jα max

0≤k<2j
|ξn(tk+1,j)− ξn(tk,j)| > n1/2t

)
, (3.5)

where log denotes the logarithm with basis 2 (log 2 = 1).

Estimation of P2(n, t). If j > log n, then tk+1 − tk = 2−j < 1/n and therefore with tk ∈ [i/n, (i+ 1)/n), either
tk+1 is in (i/n, (i+ 1)/n] or belongs to

(
(i+ 1)/n, (i+ 2)/n

]
, where 1 ≤ i ≤ n− 2 depends on k and j.

In the first case we have

|ξn(tk+1)− ξn(tk)| = |Xi+1|2−jn ≤ 2−jn max
1≤i≤n

|Xi|.
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If tk and tk+1 are in consecutive intervals, noticing that the slope of each of the two involved segments of the
polygonal line is bounded in absolute value by nmax1≤i≤n |Xi|, we get

|ξn(tk+1)− ξn(tk)| ≤ |ξn(tk)− ξn((i+ 1)/n)|+ |ξn((i+ 1)/n)− ξn(tk+1)|
≤ 2−jn max

1≤i≤n
|Xi|.

With both cases taken into account we obtain

P2(n, t) ≤ P

(
sup

j>logn
2jαn−1/22−jn max

1≤i≤n
|Xi| > t

)
.

Noting that for j > log n, 2j(−1+α)n1/2 < n−1/2+α = n−1/p, this leads to

P2(n, t) ≤ nP
(
|X1| > tn1/p

)
. (3.6)

To control the contribution of P2(n, t) when estimating the integral in (3.1), we note that for every n ≥ 1,∫ ∞
a

rtr−1nP
(
|X1| > tn1/p

)
dt = n1−r/p

∫ ∞
an1/p

rsr−1 P(|X1| > s) ds. (3.7)

In the case where r = p, as E |X1|p =
∫∞

0
psp−1 P(|X1| > s) ds is supposed finite, we can bound the right hand

side of (3.7) by
∫∞
a
psp−1 P(|X1| > s) ds uniformly in n ≥ 1. In the case where r < p, the hypothese (1.10)

implies that

P(|X1| > t) ≤ Kt−p, t > 0, (3.8)

for some constant K depending only on the distribution of X1. Hence

n1−r/p
∫ ∞
an1/p

rsr−1 P(|X1| > s) ds ≤ Kr

p− r
ar−p, n ≥ 1. (3.9)

Gathering both cases we obtain that for r ≤ p,

lim
a→∞

sup
n≥1

∫ ∞
a

rtr−1nP
(
|X1| > tn1/p

)
dt = 0 (3.10)

and consequently,

lim
a→∞

sup
n≥1

∫ ∞
a

rtr−1P2(n, t) dt = 0. (3.11)

Estimation of P1(n, t). Let uk = [ntk]. Then uk ≤ ntk ≤ 1 + uk and 1 + uk ≤ uk+1 ≤ ntk+1 ≤ 1 + uk+1.
Therefore

|ξn(tk+1)− ξn(tk)| ≤ |ξn(tk+1)− Suk+1
|+ |Suk+1

− Suk
|+ |Suk

− ξn(tk)|.
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Since |Suk
− ξn(tk)| ≤ |X1+uk

| and |ξn(tk+1)− Suk+1
| ≤ |X1+uk+1

| we obtain

P1(n, t) ≤ P1,1(n, t) + 2P1,2(n, t), (3.12)

where

P1,1(n, t) := P

(
sup

0≤j≤logn
2jαn−1/2 max

0≤k<2j
|Suk+1

− Suk
| > t

2

)

P1,2(n, t) := P

(
max

0≤j≤logn
2jαn−1/2 max

1≤i≤n
|Xi| >

t

4

)
.

In P1,2(n, t), max0≤j≤logn 2jα ≤ nα, so

P1,2(n, t) ≤ P

(
n−1/2+α max

1≤i≤n
|Xi| >

t

4

)
≤ nP

(
|X1| >

tn1/p

4

)
.

Using (3.10) we obtain that for r ≤ p,

lim
a→∞

sup
n≥1

∫ ∞
a

rtr−1P1,2(n, t) dt = 0. (3.13)

To estimate P1,1(n, t), we use a truncation method. Define for t > 0 and 0 < δ ≤ 1,

X̃i := Xi1{|Xi|≤δtn1/p}, X ′i := X̃i − E X̃i.

Let S̃uk
and S′uk

be the random variables obtained by replacing Xi with respectively X̃i in Suk
or with X ′i in

Suk
. We introduce also

P̃1,1(n, t, δ) := P

(
sup

0≤j≤logn
2jαn−1/2 max

0≤k<2j
|S̃uk+1

− S̃uk
| > t

2

)
, (3.14)

P ′1,1(n, t, δ) := P

(
sup

0≤j≤logn
2jαn−1/2 max

0≤k<2j
|S′uk+1

− S′uk
| > t

4

)
. (3.15)

First, since on the event {max1≤i≤n |Xi| ≤ δtn1/p}, S̃uk
= Suk

for every k, we note that

P1,1(n, t) ≤ P̃1,1(n, t, δ) + P

(
max

1≤i≤n
|Xi| > δtn1/p

)
≤ P̃1,1(n, t, δ) + nP

(
|X1| > δtn1/p

)
. (3.16)

Invoking again (3.10) reduces the control of the contribution of P1,1(n, t) when bounding the integral in (3.1)

to the one of P̃1,1(n, t, δ).

Now to work with centered random variables, we prove that P̃1,1(n, t, δ) ≤ P ′1,1(n, t, δ) for t large enough,

uniformly in n ≥ 1. Comparing (3.14) and (3.15), we see that P̃1,1(n, t, δ) ≤ P ′1,1(n, t, δ) will be satisfied provided
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that

max
0≤j≤logn

2jαn−1/2 max
0≤k<2j

uk+1∑
i=1+uk

|E X̃i| <
t

4
. (3.17)

As j ≤ log n, 1 ≤ uk+1 − uk ≤ 2n2−j , (3.17) reduces to 2n1/2|E X̃1| < t/4. Since EX1 = 0, E X̃1 =
−EX11{|X1|>δtn1/p}, so we just have to check that

E |X1|1{|X1|>δtn1/p} <
t

8
n−1/2, (3.18)

for t large enough, uniformly in n ≥ 1. By a Fubini argument,

E |X1|1{|X1|>δtn1/p} =

∫ ∞
0

P
(
|X1| > max(δtn1/p, s)

)
ds

=

∫ δtn1/p

0

P(|X1| > δtn1/p) ds+

∫ ∞
δtn1/p

P(|X1| > s) ds

= δtn1/p P(|X1| > δtn1/p) +

∫ ∞
δtn1/p

P(|X1| > s) ds.

Now, in the case where r < p, using (3.8) we obtain

E |X1|1{|X1|>δtn1/p} ≤ δ1−pK

tp

(
1 +

1

p− 1

)
tn1/p−1=δ1−p pK

(p− 1)tp
tn−1/2−α.

Therefore (3.18) is satisfied for every t > t0 not depending on n, since we can choose

t0 = δ1/p−1

(
8pK

(p− 1)

)1/p

. (3.19)

The same holds in the case where r = p, replacing (3.8) by Markov’s inequality and K by E |X1|p.

Now it only remains to deal with supn≥1

∫∞
a
rtr−1P ′1,1(n, t, δ) dt. For any q > p, we have

P ′1,1(n, t, δ) = P

(
max

0≤j≤logn
2jαn−1/2 max

0≤k<2j
|S′uk+1

− S′uk
| > t

4

)
≤

logn∑
j=0

∑
0≤k<2j

P

(
|S′uk+1

− S′uk
| > tn1/2

2jα+2

)

≤ 4q

tqnq/2

logn∑
j=0

2jαq
∑

0≤k<2j

E |S′uk+1
− S′uk

|q. (3.20)

Next we bound up E |S′uk+1
− S′uk

|q by using the Rosenthal inequality:

E |S′uk+1
− S′uk

|q ≤ Cq

(
Var(S′uk+1

− S′uk
)q/2 +

uk+1∑
i=1+uk

E |X ′i|q
)
,
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were Cq is a universal constant, i.e. not depending on the distribution of the Xi’s. As the X ′is are i.i.d. and
uk+1 − uk ≤ 2n2−j , this gives

E |S′uk+1
− S′uk

|q ≤ Cq
(

(2n2−j)q/2(EX ′1
2
)q/2 + 2n2−j E |X ′1|q

)
.

Going back to (3.20) with this bound, we obtain

P ′1,1(n, t, δ) ≤ 4qCq
tqnq/2

(2n)q/2(EX ′1
2
)q/2

logn∑
j=0

2j(αq−q/2+1) + 2nE |X ′1|q
logn∑
j=0

2jαq


As q > p = (1/2− α)−1, 1− q/2 + qα is negative, whence for every n,

logn∑
j=0

2j(αq−q/2+1) <
1

1− 21−q/2+qα
=

1

1− 21−q/p .

Next, for every n ≥ 1,

logn∑
j=0

2jαq <
2qα

2qα − 1
nqα.

Moreover

EX ′1
2

= Var X̃1 ≤ E X̃1

2
≤ EX2

1

and

E |X ′1|q = E |X̃1 − E X̃1|q ≤ 2q E |X̃1|q.

With all these partial estimates, the upper bound obtained for P ′1,1(n, t, δ) becomes

P ′1,1(n, t, δ) ≤ C1(p, q)(EX2
1 )q/2

tq
+
C2(p, q)n1−q/p E |X̃1|q

tq
,

with

C1(p, q) =
25q/2Cq

1− 21−q/p and C2(p, q) =
23q+qα+1Cq

2qα − 1
.

Now we have for r ≤ p,∫ ∞
a

rtr−1P ′1,1(n, t, δ) dt ≤ C1(p, q)(EX2
1 )q/2r

q − r
ar−q + C2(p, q)Ir,q(a, n), (3.21)

where

Ir,q(a, n) = n1−q/p
∫ ∞
a

rtr−q−1 E |X̃1|q dt.
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It is worth recalling here that E |X̃1|q depends on n, δ and t. As the first term in the upper bound (3.21) neither
depends on n or on δ and goes to 0 as a tends to infinity, it remains only to investigate the asymptotic behavior
of supn≥1 Ir,q(a, n) when a tends to infinity. To transform Ir,q(a, n), we use the fact that if Y is a positive random
variable and f a C1 non decreasing function on [0,∞) with f(0) = 0, then by the Fubini-Tonelli theorem, for
any positive constant c,

E
(
f(Y )1{Y≤c}

)
=

∫ c

0

f ′(s) P(s < Y ≤ c) ds ≤
∫ c

0

f ′(s) P(Y > s) ds.

Applying this to E |X̃1|q = E |X1|q1{|X1|≤δtn1/p}, we obtain

Ir,q(a, n) ≤ n1−q/p
∫ ∞
a

rtr−q−1

∫ δtn1/p

0

qsq−1 P(|X1| > s) dsdt =: Jr,q(a, n).

Exchanging the order of integrations in Jr,q(a, n) gives

Jr,q(a, n) = n1−q/p
∫ ∞

0

{∫ ∞
max(a,sδ−1n−1/p)

rtr−q−1 dt

}
qsq−1 P(|X1| > s) ds

=
qr

q − r
n1−q/p

∫ ∞
0

max(a, sδ−1n−1/p)r−qsq−1 P(|X1| > s) ds

=
qr

q − r

(
n1−q/par−qJ ′ + n1−r/pδq−rJ ′′

)
, (3.22)

where

J ′ =

∫ δan1/p

0

sq−1 P(|X1| > s) ds, J ′′ =

∫ ∞
δan1/p

sr−1 P(|X1| > s) ds.

We bound J ′ for r ≤ p, using (3.8), agreeing for simplicity that K = E |X1|p when r = p. This gives

J ′ ≤ K
∫ δan1/p

0

sq−p−1 ds =
K

q − p
aq−pδq−pnq/p−1. (3.23)

For J ′′, the same method would lead to a divergent integral in the special case r = p, so we restrict the use
of (3.8) to the case where r < p. This gives

J ′′ ≤

{
K
p−ra

r−pδr−pnr/p−1 when r < p,∫∞
δan1/p s

p−1 P(|X1| > s) ds when r = p.
(3.24)

Going back to Ir,q(a, n) and accounting (3.22)–(3.24) we obtain (recalling that δ ≤ 1)

Ir,q(a, n) ≤ Kqr

(q − p)(p− r)
ar−pδr−p ≤ Kqr

(q − p)(p− r)
ar−p, (r < p). (3.25)

In the case r = p, bounding the integral in (3.24) by 1
p E |X1|p = K/p, we obtain

Ip,q(a, n) ≤ q2

(q − p)2
Kδq−p. (3.26)
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Recapitulating all the estimate proposed throughout the proof, we see that for every a > t0(δ) defined
by (3.19) and every n ≥ 1,∫ ∞

a

rtr−1P (n, t) dt ≤
∫ ∞
a

rtr−1P2(n, t) dt+ 2

∫ ∞
a

rtr−1P1,2(n, t) dt

+

∫ ∞
a

rtr−1nP
(
|X1| > δtn1/p

)
dt

+
pC1(p, q)(EX2

1 )q/2

q − p
ap−q + C2(p, q)Ir,q(a, n). (3.27)

In the case where r < p, recalling (3.11), (3.13), (3.10) and (3.25), it follows

lim
a→∞

sup
n≥1

∫ ∞
a

rtr−1P (n, t) dt = 0.

We note in passing that in this case we did not really need the freedom to tune the value of δ, the simple choice
δ = 1 would have done the job as well.

In the special case where r = p, we have only to modify the treatment of the last term in the bound (3.27).
As q > p, for any ε > 0, we can fix a δ > 0 such that C2(p, q)(1− p/q)−2Kδq−p < ε. Accounting (3.11), (3.13),
(3.10) and (3.26), there is some a1 depending on ε, p, q and on the distribution of X1, such that for every a ≥ a1

and every n ≥ 1, ∫ ∞
a

ptp−1P (n, t) dt < 6ε.

As ε was arbitrary, the uniform convergence (3.1) is established and the proof is complete.

3.2. Comments

If we fix p > 2 and consider X1 ∈ Lp, then the best possible Hölderian index corresponding to the p’th
moments convergence is α = α(p) := 1/2− 1/p as shows the following result.

Theorem 3.1. Let p > 2. If for any X1 ∈ Lp,

sup
n≥1

E ‖n−1/2ξn‖pβ <∞ (3.28)

then β ≤ α(p) = 1/2− 1/p.

Proof. Put r = (1/2− β)−1. By looking at the increments of n−1/2ξn between k/n and (k + 1)/n, 0 ≤ k < n,
we see that

‖n−1/2ξn‖pβ ≥
(
n−1/2+β max

1≤i≤n
|Xi|

)p
,

so (3.28) implies

sup
n≥1

∫ ∞
0

tp−1 P

(
max

1≤i≤n
|Xi| > n1/rt

)
dt <∞,
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which can be recast as

sup
n≥1

n−p/r
∫ ∞

0

sp−1 P

(
max

1≤i≤n
|Xi| > s

)
ds <∞. (3.29)

It is well known that when the Xi’s are i.i.d.,

nP(|X1| > s) ≤ 1 ⇒ P

(
max

1≤i≤n
|Xi| > s

)
≥ (1− e−1)nP(|X1| > s). (3.30)

Now choose for |X1| the distribution given by

P(|X1| > s) =
c

sp(ln s)2
1[2,∞)(s).

Then P(|X1| > n1/p) = cp2n−1(lnn)−2 ≤ n−1 for n ≥ n0, so we deduce from (3.29) and (3.30) that

sup
n≥n0

n1−p/r
∫ ∞
n1/p

1

s(ln s)2
ds = sup

n≥n0

pn1−p/r

lnn
<∞,

which holds if and only if p/r ≥ 1 or equivalently β ≤ α(p).

Let us turn now on some probability distances considerations. Recall the Kantorovich functionals which are
involved in the Monge-Kantorovich minimal cost of mass transportation problem :

Ac(P1, P2) = inf

{∫
S×S

c(x, y)P (dx, dy), P ∈ P(P1,P2)

}
, (3.31)

where (S, d) is a separable metric space, P(P1,P2) denotes the set of all probabilities on the Borel σ-field of
S× S with given marginals P1, P2 and c(x, y) = H(d(x, y)) where H(0) = 0, H is non decreasing on [0,∞) and
satisfies the Orlicz condition supt>0H(2t)/H(t) <∞. It is known, see Theorem 11.1.1 in [11] that if for some
a ∈ S,

∫
S c(x, a)Pn( dx) <∞ for every n ≥ 1, then

lim
n→∞

Ac(Pn, P0) = 0 if and only if

Pn
weakly−−−−→
n→∞

P0 and lim
n→∞

∫
S
c(x, b)(Pn − P0)(dx) = 0,

(3.32)

for some (and therefore for any) b ∈ S.
Let us denote by Aαr the Kantorovich functional obtained by choosing H(t) = tr and S = Hoα[0, 1] with

d(x, y) = ‖x − y‖α (recall that Ho0[0, 1] is isomorphic to C[0, 1]). We observe that (Aαr )1/r is the Wasserstein
distance Wr associated to the space Hoα[0, 1]. Write Pn for the distribution of n−1/2ξn and P0 for the Wiener
measure. Then (3.32) can be rewritten as

lim
n→∞

Aαr (Pn, P0) = 0 if and only if n−1/2ξn
d−−−−→

n→∞
W in Hoα[0, 1] and

E ‖n−1/2ξn‖rα −−−−→
n→∞

E ‖W‖rα.
(3.33)

From this point of view, Theorem 1.1 means that the convergence of Aαr (Pn, P0) to 0 is equivalent to the
moment condition (1.10) or (1.11) according to r < p(α) or r ≥ p(α). Similarly, from the Bernstein Kantorovich
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invariance principle in C[0, 1], the convergence of A0
r(Pn, P0) to 0 is equivalent to E |X1|max(r,2) <∞. As already

hinted in the introduction, we see that starting from the classical Donsker-Prokhorov invariance principle in
C[0, 1] (A0

2(Pn, P0) → 0 iff EX2
1 < ∞) and looking for a stronger convergence in the framework of C[0, 1]

(A0
p(Pn, P0) → 0) at the price of a stronger moment assumption E |X1|p < ∞ (p > 2), we obtain a similar

convergence (Aαp (Pn, P0)→ 0) with a stronger topological path’s space.

3.3. An application to uniform quantile processes

As a corollary of Theorem 1.1, we look now at the convergence of moments for the uniform quantile process.
For the weak-Hölderian convergence of the uniform quantile process we refer to [7].

Let U1, . . . , Un be a sample of i.i.d. random variables uniformly distributed on [0, 1]. We denote by Un:i the
order statistics of the sample:

0 = Un:0 ≤ Un:1 ≤ · · · ≤ Un:n ≤ Un:n+1 = 1,

which are distinct with probability one. For notational convenience, put

un:i = EUn:i =
i

n+ 1
, i = 0, 1, . . . , n+ 1.

The polygonal uniform quantile process χpg
n is the random polygonal line on [0, 1] which is affine on each

[un:i−1, un:i], i = 1, . . . , n+ 1 and satisfies

χpg
n (un:i) =

√
n(Un:i − un:i), i = 0, 1, . . . , n+ 1. (3.34)

As a corollary of Theorem 10 in [7], for any 0 < α < 1/2, χpg
n converges weakly in Hoα[0, 1] to the Brownian

bridge B. Theorem 1.1 enables us to complete this convergence by the following convergence of moments.

Corollary 3.2. Let χpg
n be the polygonal uniform quantile process defined above. Then for every 0 ≤ α < 1/2,

and every r > 0,

lim
n→∞

E ‖χpg
n ‖rα = E ‖B‖rα, (3.35)

where B is the Brownian bridge on [0, 1].

Proof. We recall the distributional equality (see e.g. [15])

(Un:1, . . . , Un:n)
d
=
( S1

Sn+1
, . . . ,

Sn
Sn+1

)
, (3.36)

where Sk = X1 + · · · + Xk and the Xk’s are i.i.d 1-exponential random variables. Following [7], introduce the
polygonal process ζn which is affine on each interval [un:i−1, un:i], i = 1, . . . , n+ 1 and such that

ζn(un:i) =
√
n
( Si
Sn+1

− un:i

)
, i = 0, 1, . . . , n+ 1. (3.37)

It easily follows from the distributional equalities (3.36) that χpg
n and ζn have the same distribution as random

elements in any Hoα[0, 1] (0 ≤ α < 1). Hence it is enough to prove the convergence of moments (3.35) with χpg
n

replaced by ζn.
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Putting X ′i = Xi − EXi (note that EX ′21 = 1) and S′k = Sk − ESk, we consider also the normalized partial
sums polygonal process Ξn built on the S′k’s, i.e. the random polygonal line with vertices (k/n, n−1/2S′k),
k = 0, 1, . . . , n. As shown in the proof of Theorem 10 in [7],

ζn(t) =

√
n(n+ 1)

Sn+1

(
Ξn+1(t)− tΞn+1(1)

)
, t ∈ [0, 1]. (3.38)

Since we already know that ζn, as well as χpg
n , converges weakly to B in any Hoα[0, 1] for 0 ≤ α < 1/2, it remains

just to check the uniform integrability of the sequence (‖ζn‖rα)n≥1, for which it suffices to prove that for some
s > r,

sup
n≥1

E ‖ζn‖sα <∞. (3.39)

Define for each x ∈ C[0, 1], the function xbr: [0, 1] → R, t 7→ x(t) − tx(1). It is easily seen that the bridge
linear operator x 7→ xbr maps Hoα[0, 1] into itself and that for every x ∈ Hoα[0, 1], ‖xbr‖α ≤ 2‖x‖α. Now

E ‖ζn‖sα ≤ E

(∣∣∣∣n+ 1

Sn+1

∣∣∣∣ ‖Ξbr
n+1‖α

)s
≤ 2s E1/2

∣∣∣∣n+ 1

Sn+1

∣∣∣∣2s E1/2 ‖Ξn+1‖2sα .

To obtain (3.39) with any s > r, we just note the following facts. First, by elementary computation,

E

∣∣∣∣n+ 1

Sn+1

∣∣∣∣2s =
(n+ 1)2s

n!
Γ(n+ 1− 2s) =

(n+ 1)2s(n− 2s)!

n!
−−−−→
n→∞

1.

Next, since X ′1 has finite moments of every order, E ‖Ξn+1‖2sα converges to E ‖W‖2sα by Theorem 1.1.

4. Weighted scan statistics

In this section we consider several weighted scan type statistics. For α ≥ 0, define

Mn,α = max
1≤`≤n

1

`α
max

0≤k≤n−`
|Sk+` − Sk|,

and

Tn,α = max
1≤`≤n

1

[`(1− `/n)]α
max

0≤k≤n−`
|Sk+` − Sk − (`/n)Sn|.

Theorem 4.1. Let p > 2. If E |X1|p <∞, then for any 0 ≤ α ≤ 1/2− 1/p and any 0 ≤ r ≤ p,

lim
n→∞

n−r(1/2−α) EMr
n,α = Eωrα(W, 1); (4.1)

and

lim
n→∞

n−r(1/2−α) ET rn,α = ET rα(B), (4.2)

where

Tα(B) = sup
0<h<1

1

[h(1− h)]α
sup

0≤t<1−h
|B(t+ h)−B(t)|
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and B = (Bt = Wt − tW1, 0 ≤ t ≤ 1) denotes the Brownian bridge on [0, 1].

Proof. By Lemma 2.2 we have

n−1/2+αMn,α = ωα(n−1/2ξn, 1)

and the convergence (4.1) follows from Theorem 1.1.
To prove (4.2), we use the representation

n−1/2+αTn,α = gn(n−1/2ξn) = g(n−1/2ξn) + oP (1), (4.3)

which is explained in details in [14]. Here the functional g is defined by

g : Hoα[0, 1]→ R+, x 7→ sup
0<h<1

1

[h(1− h)]α
sup

0≤t<1−h
|x(t+ h)− x(t)− hx(1)|

and (gn)n≥1 is an equicontinuous sequence of non negative, subadditive, homogeneous (gn(cx) = |c|gn(x))
functionals Hoα[0, 1]→ R+ converging pointwise to g on Hoα and verifying for some positive constant C

0 ≤ gn(x) ≤ g(x) ≤ C‖x‖α. (4.4)

By the Hölderian invariance principle [12], continuous mapping and Slutsky lemma, (4.3) provides the con-
vergence in distribution of gn(n−1/2ξn) to g(W ). Then in view of (4.4), Theorem 1.1 gives (4.2) since
g(W ) = Tα(B).

Theorem 4.2. Let p > 0. Assume that X1 ∈ RVp and EX1 = 0 when p > 1. Then for α > max{0, 1/2− 1/p},
and any 0 ≤ r < p it holds

lim
n→∞

b−rn EMr
n,α = EY rp (4.5)

and

lim
n→∞

b−rn ET rn,α = EY rp , (4.6)

where bn is defined by (1.13) and Yp has the Fréchet distribution with exponent p.

Proof. From [9] we know, that

b−1
n Mn,α

d−−−−→
n→∞

Yp.

Hence, in order to prove convergence of moments we need to check uniform integrability of (b−rn Mr
n,α) for each

0 < r < p. Actually it is enough to prove that for each 0 < r < p,

sup
n≥1

E[b−1
n Mn,α]r <∞. (4.7)

And to establish (4.7) it is clearly sufficient to prove that for some positive constant c and some integer n0

(possibly depending on r),

sup
n≥n0

∫ ∞
c

yr−1 P(Mn,α > bny) dy <∞. (4.8)
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To this aim we shall use the following lemma (see Lem. 3.3 in [9]).

Lemma 4.3. Assume that (Yi, i ≥ 1) are i.i.d. random variables. Then for all y > 0 and n ≥ 1,

P

(
max

1≤`≤n
`−α max

1≤k≤n

∣∣∣∣∣
k+∑̀
i=k+1

Yi

∣∣∣∣∣ > y

)
≤ 2

logn∑
j=1

2j P

(
max

1≤k≤n2−j

∣∣∣∣∣
k∑
i=1

Yi

∣∣∣∣∣ > y(n2−j)α

)
.

We shall estimate for y > 0 the probability

P (y) = P(b−1
n Mn,α > y).

To this aim, we introduce the truncated random variables

X̃k = Xk1{|Xk|≤ybn}, X ′k = X̃k − E X̃k, k = 1, . . . , n.

Then

P (y) ≤ P

(
max

1≤k≤n
|Xk| > ybn

)
+ P(b−1

n M̃n,α > y),

where M̃n,α is defined as Mn,α substituting Xk by X̃k. Let M ′n,α be defined as Mn,α substituting Xk by X ′k.
We have

b−1
n M̃n,α = b−1

n max
1≤`≤n

`−α max
0≤k≤n−`

|S̃k+` − S̃k|

≤ b−1
n M ′n,α + b−1

n max
1≤`≤n

`−α max
0≤k≤n−`

∣∣∣∣∣
k+∑̀
i=k+1

E X̃k

∣∣∣∣∣
= b−1

n M ′n,α + b−1
n n1−α|E X̃1|.

Since X1 is regularly varying with index p, Lemma 2.4 gives the estimates

E |X1|1{|X1|≤ybn} ≤ cpn
−1bny

1−p if p < 1, (4.9)

E |X1|1{|X1|>ybn} ≤ cpn
−1bny

1−p if p > 1. (4.10)

When 0 < p < 1, (4.9) gives

b−1
n n1−α|E X̃1| ≤ cpn−αy1−p ≤ 1

2
y, for n ≥ c1/αp and y ≥ 21/p. (4.11)

In the case where p > 1, X1 is integrable and EX1 = 0, hence EX11{|X1|≤ybn} = −EX11{|X1|>ybn}, so (4.10)

leads also to (4.11). It follows that for n ≥ c1/αp and y ≥ 21/p,

P(b−1
n M̃n,α > y) ≤ P(b−1

n M ′n,α > y/2). (4.12)

Consequently,

P (y) ≤ P

(
max

1≤k≤n
|Xk| > ybn

)
+ P(b−1

n M ′n,α > y/2).
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By Lemma 4.3, Markov and Doob inequalities with q > p,

P(b−1
n M ′n,α > y/2) ≤ 2

logn∑
j=1

2j P

(
max

1≤k≤n2−j

∣∣∣∣∣
k∑
i=1

X ′i

∣∣∣∣∣ > (n2−j)αybn/2

)

≤ 2

(
2q

q − 1

)q logn∑
j=1

2j(n2−j)−αqy−qb−qn E

∣∣∣∣∣∣
n2−j∑
i=1

X ′i

∣∣∣∣∣∣
q

. (4.13)

By Rosenthal’s inequality,

E

∣∣∣∣∣∣
n2−j∑
i=1

X ′i

∣∣∣∣∣∣
q

≤ Cq
(
(n2−j)q/2(EX ′1

2
)q/2 + n2−j E |X ′1|q

)
.

By iii) in Lemma 2.4, assuming q > 1

EX ′1
2 ≤ 8p

|p− 2|
b2n

1

n
y2−p, E |X ′1|q ≤

p2q+1

q − p
bqn

1

n
yq−p,

whence

E

∣∣∣∣∣∣
n2−j∑
i=1

X ′i

∣∣∣∣∣∣
q

≤ Cq
(

(8p)q/2

|p− 2|q/2
2−jq/2bqny

q−pq/2 +
p2q+1

q − p
2−jbqny

q−p
)
.

It is worth noticing here that for s > 0,

logn∑
j=1

2js ≤ 1

1− 2−s
ns,

recalling that log n denotes the dyadic logarithm: 2logn = n. Moreover we can always choose q such that

q > max(2, p) and 1 + (α− 1/2)q > 0.

Indeed if α ≥ 1/2, the second inequality above is automatically satisfied for any q > 0 which leaves us free to
choose q > max(2, p). If 1/2 > α > max(1/2− 1/p, 0), one can find q so that

α > 1/2− 1/q > max(1/2− 1/p, 0).

The first inequality above gives 1 + (α− 1/2)q > 0 while the second gives q > max(2, p).
Now, going back to (4.13), we obtain for large n, uniformly in y ∈ [21/p,∞),

P
(
b−1
n M ′n,α > y/2

)
≤ Cy−p,

with

C := 2

(
2q

q − 1

)q ((
8p

|p− 2|

)q/2
+
p2q+1

q − p

)
2qα

2qα − 2−1+q/2
.
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Using (4.12) yields

Pn(y) ≤ P

(
max

1≤k≤n
|Xk| > ybn

)
+ Cy−p.

Integrating this inequality over the interval [21/p,∞) gives

∫ ∞
21/p

yr−1Pn(y) dy ≤
∫ ∞

21/p

yr−1nP (|X1| > ybn) dy +
2r/p−1C

p− r

By Markov inequality and i) in Lemma 2.4,

P (|X1| > ybn) ≤ b−rn y−r E |X1|r1{|X1|>bny} ≤
2p

p− r
1

n
y−p,

so finally, ∫ ∞
21/p

yr−1nP (|X1| > ybn) dy ≤ p2r/p

(p− r)2
,

which completes the verification of (4.8) and the proof of the convergence (4.5) in Theorem 4.2.
To prove the convergence (4.6), we already know from [9] that

b−1
n Tn,α

d−−−−→
n→∞

Yp.

Hence it remains only to check that

sup
n≥1

E[b−1
n Tn,α]r <∞. (4.14)

Using the same representation as in the proof of Theorem 4.1, we see from (4.3) and (4.4) that

nαTn,α = gn(ξn) ≤ C‖ξn‖α.

As ξn(0) = 0, ‖ξn‖α = ωα(ξn, 1) = nαMn,α, whence

b−1
n Tn,α ≤ Cb−1

n Mn,α,

so (4.14) follows from (4.7) established above.

Appendix A. Proof of Lemma 2.4

Before proving the Lemma 2.4, let us recall some basic facts from Karamata theory. A positive measurable
function f defined on some neighbourhood [a,∞) (a ≥ 0) of infinity and satisfying for some real p and every
y > 0,

f(xy)

f(x)
−−−−→
x→∞

yp,
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is said regularly varying (at infinity) with exponent p. In the special case where p = 0, f is said slowly varying.
It is easily seen that each regulary varying function f with exponent p can be writen as f(x) = xp`(x) where `
is slowly varying. So for X ∈ RVp, the tail function t 7→ P(|X| > t) is regularly varying with exponent −p.

Assuming for notational simplicity that a = 0 and that f is locally bounded and regularly varying with
exponent p, let us define for r real,

fr(x) =

∫ x

0

yrf(y) dy, f∗r (x) =

∫ ∞
x

yrf(y) dy. (A.1)

From Karamata’s theorem (see e.g. [6], Thm. 1, p.281) we know that

i) If f∗r (x) is finite (for some and then for every positive x),

xr+1f(x)

f∗r (x)
−−−−→
x→∞

λ = −(r + p+ 1) ≥ 0. (A.2)

ii) If r ≥ −p− 1, then

xr+1f(x)

fr(x)
−−−−→
x→∞

λ = r + p+ 1. (A.3)

Proof of Lemma 2.4. We take f(x) = P(|X| > x) and use the notations (A.1). Then f is regularly varying with
exponent −p.

To prove i), we note first that by a Fubini argument,

E |X|s1{|X|>ybn} = (ybn)s P(|X| > ybn) + s

∫ ∞
ybn

ts−1 P(|X| > t) dt

= (ybn)sf(ybn) + sf∗s−1(ybn). (A.4)

Then applying (A.2) with λ = −(s− 1− p+ 1) = p− s > 0 and fixed y, we obtain

f∗s−1(ybn)

(ybn)sf(ybn)
−−−−→
n→∞

1

λ
=

1

p− s
.

For y ≥ 1, bny ≥ bn →∞, so the above convergence is obviously uniform in y ∈ [1,∞). Hence when n tends to
infinity,

E |X|s1{|X|>ybn} ∼
p

p− s
(ybn)sf(ybn),

uniformly in y ∈ [1,∞). Now since f has regular variation with exponent −p < 0, f(ybn) ∼ y−pf(bn), uniformly
in y ∈ [1,∞), see e.g. Theorem 1.5.2 in [4]. Recalling now the definition (1.13) of bn as the 1− 1/n quantile of
|X| and using the right continuity of the distribution function of |X| we see that f(bn) ≤ 1/n, which gives (2.3)
and complete the proof of i).

The proof of ii) is completely similar and will be omitted.
To check iii), let us begin with the case where s ≥ 1. Then since x 7→ xs is convex on R for s ≥ 1, |X ′|s ≤

2s−1
(
|X̃|s + E(|X̃|s

)
, whence E |X ′|s ≤ 2s E |X̃|s. Using (2.3) or (2.4) according to s < p or s > p, we obtain

E |X ′|s ≤ 2s+1p

|p− s|
bsn

1

n
ys−p
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for n large enough, uniformly in y ∈ [1,∞),

For s < 1, we have directly (|X̃|+ E |X̃|)s ≤ |X̃|s + (E |X̃|)s, which leads similarly to

E |X ′|s ≤ 4p

|p− s|
bsn

1

n
ys−p.
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