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Abstract: This paper is devoted to the investigation of the ruin probability in the risk model with
stochastic premiums where dividends are paid according to a multi-layer dividend strategy. We obtain
an exponential bound for the ruin probability and investigate conditions, under which it holds for
a number of distributions of the premium and claim sizes. Next, we use the exponential bound to
construct non-exponential bounds for the ruin probability. We show that the non-exponential bounds
turn out to be tighter than the exponential one in some cases. Moreover, we derive explicit formulas
for the ruin probability when the premium and claim sizes have either the hyperexponential or the
Erlang distributions and apply them to investigate how tight the bounds are. To illustrate and analyze
the results obtained, we give numerical examples.
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1. Introduction

One of the central objects investigated in risk theory is the ruin probability, which is the probability
that the surplus of an insurance company becomes negative in some time interval and implies that the
company is no longer able to reimburse claims. To calculate the ruin probability in different risk models,
a great number of approaches has been proposed and studied recently (see the monographs [1–6] and
references therein). Since Gerber and Shiu [7] introduced the expected discounted penalty function
for the classical risk model, the ruin probability has often been investigated together with the surplus
prior to ruin and the deficit at ruin in various risk models (see, e.g., [8–14] and references therein).
The expected discounted penalty function, which is also called the Gerber–Shiu function, combines
these three objects into one function, and the ruin probability is a special case of the function.

Risk models where the insurance company pays dividends to its shareholders have attracted great
interest since De Finetti [15] considered dividend strategies for a binomial model. We mention only
a few papers [16–24] devoted to the investigation of risk models with different dividend strategies.
Multi-layer dividend strategies are of special interest because they enable to change the intensity of
dividend payments depending on the current surplus. Different risk models with multi-layer dividend
strategies are investigated in [25–36]. In particular, algorithmic schemes for the determination of
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explicit expressions for the Gerber–Shiu function and the expected discounted dividend payments in
the classical risk model with multi-layer dividend strategies are developed in [25].

Although explicit formulas for the ruin probability are highly beneficial, it is well known that they
can be obtained only in some special cases (see, e.g., [24,36–43], and also [44,45] for recursive formulas).
That is why numerous bounds and approximations for the ruin probability are established and
investigated in different risk models (see, e.g., [1–5] and references therein). Construction of exponential
bounds is one of the key problems that is studied in risk theory (see, e.g., [46], [47] (Theorem 1), [48]
(Theorem 1), [49] (Section 2), [50] (Theorem 2), [51] ([Theorem 5.1), [52] (Section 3), [53] (Theorems 2–4)
and [54] (Theorem 2)). In particular, for the classical compound Poisson risk model, the exponential
bound, which is also called the Lundberg inequality, can be derived in different ways (see, e.g., [1–3]),
one of which is the martingale approach introduced by Gerber [46]. The supermartingale approach,
which generalizes the martingale one and enables to construct exponential bounds in more complicated
risk models, is applied in [4] (Chapters 7–9) and [51] (Sections 4 and 5). In some risk models, if claim
sizes belong to heavy-tailed distributions, then the ruin probability decreases much more slowly
compared with exponential rate with increasing initial surplus. Hence, exponential bounds do not
hold any longer. Different non-exponential upper bounds for the ruin probability are obtained,
e.g., in [48,55,56]. Moreover, a lot of papers are devoted to the construction of upper and lower bounds
for the ruin probability in the compound Poisson risk model and its generalizations (see, e.g., [57–61]).

In this paper, we deal with the risk model considered in [36] where premiums are stochastic and
dividends are paid according to a multi-layer dividend strategy. In what follows, we suppose that all
stochastic objects are defined on a probability space (Ω,F,P) satisfying the usual conditions. In the
risk model considered in the present paper, premium sizes form a sequence

{
Ŷi

}
i>1

of non-negative

independent and identically distributed (i.i.d.) random variables (r.v.s), which are independent copies
of a r.v. Ŷ with cumulative distribution function (c.d.f.) FŶ(y) = P[Ŷ 6 y], and the number of

premiums on the time interval [0, t] is a Poisson process
{

N̂t

}
t>0

with constant intensity λ̂ > 0.

Similarly, claim sizes form a sequence {Yi}i>1 of i.i.d. r.v.s, which are independent copies of a r.v. Y
with c.d.f. FY(y) = P[Y 6 y], and the number of claims on the time interval [0, t] is a Poisson process

{Nt}t>0 with constant intensity λ > 0. Thus, the total premiums and claims on [0, t] equal ∑N̂t
i=1 Ŷi

and ∑Nt
i=1 Yi, respectively. Here and subsequently, a sum is always set to be equal to 0 if the upper

summation index is less than the lower one. Thus, ∑N̂t
i=1 Ŷi = 0 if N̂t = 0, and ∑Nt

i=1 Yi = 0 if Nt = 0.

In what follows, we also assume that the r.v.s
{

Ŷi

}
i>1

and {Yi}i>1 have finite expectations µ̂ > 0 and

µ > 0, respectively, and
{

Ŷi

}
i>1

, {Yi}i>1,
{

N̂t

}
t>0

and {Nt}t>0 are mutually independent.

We denote a non-negative initial surplus by x, and let {Xt(x)}t>0 be the surplus process provided
that the initial surplus is x. Next, we make the additional assumption that dividends are paid
to shareholders according to a k-layer dividend strategy with k > 1. Let b = (b0, . . . , bk) be a
(k + 1)-dimensional vector with real-valued components such that 0 = b0 < b1 < . . . < bk−1 < bk = ∞.
The k-layer dividend strategy b implies that dividends are paid continuously at a rate dj > 0 whenever
bj−1 6 Xt(x) < bj, i.e., the process {Xt(x)}t>0 is in the j-th layer at time t, where 1 6 j 6 k. Then the
surplus process {Xt(x)}t>0 is defined by

Xt(x) = x +
N̂t

∑
i=1

Ŷi −
Nt

∑
i=1

Yi −
∫ t

0

k

∑
j=1

dj1{bj−16Xs(x)<bj} ds, t > 0, (1)

where 1{·} denotes the indicator function. Let dmax = max16j6k{dj}. From now on, we suppose that
the following net profit condition holds for the model described:

λ̂µ̂ > λµ + dmax. (2)
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Next, let τ(x) = inf{t > 0 : Xt(x) < 0} be the ruin time for the risk process {Xt(x)}t>0 defined
by (1). For x > 0, the infinite-horizon ruin probability is defined by

ψ(x) = E
(
1{τ(x)<∞} |X0(x) = x

)
.

As mentioned before, the ruin probability is a special case of the Gerber–Shiu function introduced in [7].
The model described above is investigated in [36] for k > 2, where piecewise integro-differential

equations for the Gerber–Shiu function and the expected discounted dividend payments until ruin are
derived. Moreover, explicit formulas for the ruin probability as well as for the expected discounted
dividend payments are obtained in [36] in the case of exponentially distributed claim and premium
sizes. The special case of this model where k = 1 is studied in [62]. In that paper, five-moment and
three-moment analogues to the De Vylder approximation for the ruin probability are constructed,
the accuracy of those approximations is analyzed and an explicit formula for the ruin probability
in the case of exponentially distributed premium and claim sizes is obtained. Furthermore, the
risk model with stochastic premiums and some its modifications are investigated in [24,47,63–72]
(see also [3] (Chapters XI and XII), [4] (Chapters 1, 3 and 6) and references therein).

The aim of the present paper was to construct upper exponential and non-exponential bounds
for the ruin probability in the model described above as well as to obtain explicit formulas for it and
analyze the results in detail for the exponential, hyperexponential and Erlang distributions of the
premium and claim sizes. To get the exponential bound, we reduce our model to the model with a
constant dividend strategy, to which we apply the martingale approach introduced by Gerber [46].
To improve our exponential bound, i.e., to obtain tighter bounds, we construct non-exponential bounds
using the exponential bound. We deal with light-tailed distributions of claim sizes, and the existence of
their finite exponential moments is necessary for the construction of our non-exponential bounds. Thus,
in contrast to other papers where non-exponential bounds are usually obtained when exponential
bounds do not exist (see, e.g., [48,55–61]), our non-exponential bounds are based on the exponential
one and proved to be tighter in some cases, especially for relatively small values of the initial surplus.
To analyze the accuracy of the bounds, we derive explicit formulas for the ruin probability when the
premium and claim sizes have either the hyperexponential or the Erlang distributions as well as apply
explicit formulas obtained in [36,62] in the case of exponentially distributed premium and claim sizes.
Note that although the exponential case is investigated in detail in [36,62] and explicit formulas are
available, it is still worth being considered for the following two reasons: firstly, the bounds seem
to be more elegant and easier to apply than the explicit formulas, especially when their accuracy is
acceptable or the number of layers is large, and secondly, it is the only case where the explicit formulas
are not so complicated and can be used to analyze the accuracy of the bounds if the number of layers
is more than one.

The rest of the paper is organized as follows. In Section 2, we formulate two theorems, which
follow immediately from results obtained in [36,62] and are often referred to in our main results.
In Section 3, we get an exponential bound for the ruin probability and investigate conditions,
under which it holds for a number of distributions of the premium and claim sizes. In Section 4,
we obtain non-exponential bounds for the ruin probability using the exponential bound and show
that they turn out to be tighter than the exponential one in some cases. These non-exponential bounds,
which are given in Theorems 7 and 8, are the main result of the paper. Section 5 is devoted to the
construction of explicit formulas for the ruin probability when the premium and claim sizes have
either the hyperexponential or the Erlang distributions. Numerical illustrations are given in Section 6,
where, in particular, the explicit formulas obtained in Section 5 and [36,62] are applied in order to
investigate how tight the exponential and non-exponential bounds are.
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2. Preliminary Results

We now formulate some auxiliary results, which are frequently used in the rest of the paper.
Theorem 1 below is a special case of Theorem 1 in [36], which is formulated

for the Gerber–Shiu function in the model where k > 2. The assertion of the theorem is given
in [62] for the case k = 1.

Theorem 1. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions, and let FY(y)
be continuous on R+. Then the function ψ(x) is differentiable on the intervals [bj−1, bj] for all 1 6 j 6 k and
satisfies the piecewise integro-differential equation

djψ
′(x) + (λ + λ̂)ψ(x) = λ̂

∫ ∞

0
ψ(x + y)dFŶ(y)

+ λ
∫ x

0
ψ(x− y)dFY(y) + λ

(
1− FY(x)

)
, x ∈ [bj−1, bj].

(3)

Note that here the derivatives of ψ(x) at the ends of the closed intervals [bj−1, bj] are assumed to
be one-sided. Moreover, although we imply the interval [bk−1, ∞) instead of [bj−1, bj] if j = k, for the
sake of convenience and compactness, we do write [bj−1, bj] for all 1 6 j 6 k.

Remark 1. To solve Equation (3), we use the following natural boundary conditions (see [36,62]). The first
k− 1 conditions are easily obtained from the equality ψj(bj) = ψj+1(bj) for all 1 6 j 6 k− 1. Next, using the
standard considerations (see, e.g., [2] (pp. 153, 162), [4] (Lemma 1.1) or [42] (Lemma 2.1)) it can be shown easily
that limx→∞ ψ(x) = 0 provided that the net profit condition (2) holds. Finally, it is obvious that ψ(0) = 1 for
this risk model.

Now we fix j ∈ {1, 2, . . . , k} and define the following functions for all x ∈ [bj−1, bj]:

a1(x) = (x− bj−1)/dj + (bj−1 − bj−2)/dj−1 + . . . + (b2 − b1)/d2 + (b1 − b0)/d1,

a2(x) = (x− bj−1)/dj + (bj−1 − bj−2)/dj−1 + . . . + (b2 − b1)/d2,

. . .

aj−1(x) = (x− bj−1)/dj + (bj−1 − bj−2)/dj−1,

aj(x) = (x− bj−1)/dj.

The next assertion follows immediately from the proof of Theorem 1 in [36].

Theorem 2. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions. Then for any
1 6 j 6 k, we have

ψ(x) = Ij(x) + Ij−1(x) + . . . + I1(x) + I0(x), x ∈ [bj−1, bj], (4)

where

Ij(x) =
1
dj

e−(λ+λ̂)x/dj

∫ x

bj−1

e(λ+λ̂)s/dj

(
λ̂
∫ ∞

0
ψ(s + y)dFŶ(y)

+ λ
∫ s

0
ψ(s− y)dFY(y) + λ

(
1− FY(s)

))
ds,
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Ij−1(x) =
1

dj−1
e−(λ+λ̂)(aj(x)+bj−1/dj−1)

∫ bj−1

bj−2

e(λ+λ̂)s/dj−1

(
λ̂
∫ ∞

0
ψ(s + y)dFŶ(y)

+ λ
∫ s

0
ψ(s− y)dFY(y) + λ

(
1− FY(s)

))
ds,

. . .

I1(x) =
1
d1

e−(λ+λ̂)(a2(x)+b1/d1)
∫ b1

b0

e(λ+λ̂)s/d1

(
λ̂
∫ ∞

0
ψ(s + y)dFŶ(y)

+ λ
∫ s

0
ψ(s− y)dFY(y) + λ

(
1− FY(s)

))
ds,

I0(x) = e−(λ+λ̂) a1(x).

Note that a simple lower bound for ψ(x) follows immediately from the assertion of Theorem 2.
To be more precise, for any 1 6 j 6 k, we have ψ(x) > e−(λ+λ̂) a1(x), x ∈ [bj−1, bj]. This bound is not so
tight and can be improved. Nonetheless, in what follows, we concentrate on the construction of upper
bounds for ψ(x).

3. Exponential Bound for the Ruin Probability

In this section, we obtain an exponential bound for the ruin probability and we investigate
conditions, under which it holds for a number of distributions of the premium and claim sizes.

3.1. Exponential Bound

Consider the surplus process
{

X̃t(x)
}

t>0
defined by

X̃t(x) = x +
N̂t

∑
i=1

Ŷi −
Nt

∑
i=1

Yi − dmaxt, t > 0. (5)

Let τ̃(x) = inf{t > 0 : X̃t(x) < 0} and ψ̃(x) = E[1(τ̃(x) < ∞) | X̃0(x) = x] be the ruin time and the
infinite-horizon ruin probability for

(
X̃t(x)

)
t>0.

Lemma 1. Let
{

X̃t(x)
}

t>0
be the surplus process defined by Equation (5) under the above assumptions. If there

exists R > 0 such that
λ̂
(
E
[
e−RŶ]− 1

)
+ λ

(
E
[
eRY]− 1

)
+ dmaxR = 0, (6)

then
ψ̃(x) 6 e−Rx for all x > 0.

The proof of Lemma 1 is similar to the proof of Theorem 1.8 together with Lemma 1.3 in [4]
(see also [1] (pp. 10–11), [47] (Theorem 1) or [50] (Theorem 2 together with Lemma 1)) and is based
on the martingale approach introduced by Gerber [46]. The main idea is to show that if there exists

R > 0 such that (6) holds, then the exponential process
{

exp
(
−R

(
∑N̂t

i=1 Ŷi −∑Nt
i=1 Yi − dmaxt

))}
t>0

is a martingale w.r.t. the filtration generated by
{

Ŷi

}
i>1

, {Yi}i>1,
{

N̂t

}
t>0

and {Nt}t>0, and then to

apply the optional stopping theorem.

Theorem 3. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions. If there is
R > 0 such that (6) holds, then, for all x > 0,

ψ(x) 6 e−Rx. (7)



Mathematics 2020, 8, 1885 6 of 35

The proof of Theorem 3 follows immediately from Lemma 1. Indeed, since X̃t(x) 6 Xt(x) a.s. for
all t > 0 and x > 0, we conclude that τ̃(x) 6 τ(x) a.s. and, consequently, ψ(x) 6 ψ̃(x) for all x > 0.

Hence, the exponential estimate of ruin probability ψexp(x) = e−Rx holds for all x > 0.

3.2. Exponential Distributions for the Premium and Claim Sizes

We now suppose that the premium and claim sizes are exponentially distributed, i.e., their probability
density functions (p.d.f.s) are fŶ(y) = e−y/µ̂/µ̂ and fY(y) = e−y/µ/µ, y > 0, respectively.

Theorem 4. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions, and let the
premium and claim sizes be exponentially distributed with means µ̂ and µ, respectively. Then condition (6)
holds with

R =
µµ̂(λ + λ̂) + dmax(µ̂− µ)−

√(
µµ̂(λ + λ̂) + dmax(µ̂− µ)

)2 − 4dmaxµµ̂
(
λ̂µ̂− λµ− dmax

)
2dmaxµµ̂

(8)

if and only if the net profit condition (2) is true.

Proof. Since

E
[
e−RŶ] = 1

1 + µ̂R
, R > 0, and E

[
eRY] = 1

1− µR
, 0 6 R <

1
µ

,

condition (6) takes the form

λ̂

(
1

1 + µ̂R
− 1
)
+ λ

(
1

1− µR
− 1
)
+ dmaxR = 0, 0 < R <

1
µ

,

from which we get either R = 0, which does not meet the condition 0 < R < 1/µ, or

dmaxµµ̂R2 −
(
µµ̂(λ + λ̂) + dmax(µ̂− µ)

)
R + λ̂µ̂− λµ− dmax = 0. (9)

Note that the discriminant of (9) is always positive. Indeed, we have(
µµ̂(λ + λ̂) + dmax(µ̂− µ)

)2 − 4dmaxµµ̂
(
λ̂µ̂− λµ− dmax

)
=
(
µµ̂(λ̂− λ)− dmax(µ + µ̂)

)2
+ 4λλ̂(µµ̂)2 > 0.

Hence, (9) has two real roots:

R1,2 =
µµ̂(λ + λ̂) + dmax(µ̂− µ)±

√(
µµ̂(λ + λ̂) + dmax(µ̂− µ)

)2 − 4dmaxµµ̂
(
λ̂µ̂− λµ− dmax

)
2dmaxµµ̂

.

For definiteness, we assume that R1 < R2. We now show that R1 < 1/µ and R2 > 1/µ.
Indeed, R1 < 1/µ if and only if

µµ̂(λ + λ̂) + dmax(µ̂− µ)−
√(

µµ̂(λ + λ̂) + dmax(µ̂− µ)
)2 − 4dmaxµµ̂

(
λ̂µ̂− λµ− dmax

)
< 2dmaxµ̂

or, equivalently,

µµ̂(λ + λ̂)− dmax(µ + µ̂) <

√(
µµ̂(λ + λ̂) + dmax(µ̂− µ)

)2 − 4dmaxµµ̂
(
λ̂µ̂− λµ− dmax

)
. (10)

To prove that (10) is true, it is enough to show that(
µµ̂(λ + λ̂)− dmax(µ + µ̂)

)2 −
(
µµ̂(λ + λ̂) + dmax(µ̂− µ)

)2
< −4dmaxµµ̂

(
λ̂µ̂− λµ− dmax

)
. (11)
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Simplifying (11) yields µ̂ > −µ, which is always true. Thus, R1 < 1/µ. Similarly, R2 > 1/µ if and
only if

µµ̂(λ + λ̂) + dmax(µ̂− µ) +

√(
µµ̂(λ + λ̂) + dmax(µ̂− µ)

)2 − 4dmaxµµ̂
(
λ̂µ̂− λµ− dmax

)
> 2dmaxµ̂

or, equivalently,√(
µµ̂(λ + λ̂) + dmax(µ̂− µ)

)2 − 4dmaxµµ̂
(
λ̂µ̂− λµ− dmax

)
> dmax(µ + µ̂)− µµ̂(λ + λ̂). (12)

To prove (12), it is enough to show that(
µµ̂(λ + λ̂) + dmax(µ̂− µ)

)2 −
(
dmax(µ + µ̂)− µµ̂(λ + λ̂)

)2
> 4dmaxµµ̂

(
λ̂µ̂− λµ− dmax

)
,

which is equivalent to (11) and, consequently, always true. Therefore, R2 > 1/µ.
Next, if the net profit condition (2) holds, then by Vieta’s theorem, both roots of (9) have the same

sign. Since R2 > 1/µ, we conclude that R1 > 0. Thus, condition (6) holds with R given by (8).
If the net profit condition (2) does not hold, i.e., λ̂µ̂− λµ− dmax 6 0, then by Vieta’s theorem,

R1 6 0 and R2 > 1/µ. Hence, there is no R from the interval (0, 1/µ), which completes the proof.

3.3. Hyperexponential Distributions for the Premium and Claim Sizes

Now let
FŶ(y) = p̂1FŶ,1(y) + p̂2FŶ,2(y) + . . . + p̂n̂FŶ,n̂(y), y > 0,

where n̂ > 1, p̂i > 0, FŶ,i is the c.d.f. of the exponential distribution with mean µ̂i > 0 for all 1 6 i 6 k̂,

all µ̂i are distinct, ∑n̂
i=1 p̂i = 1 and ∑n̂

i=1 p̂iµ̂i = µ̂. In addition, let

FY(y) = p1FY,1(y) + p2FY,2(y) + . . . + pnFY,n(y), y > 0,

where n > 1, pi > 0, FY,i is the c.d.f. of the exponential distribution with mean µi > 0 for all 1 6 i 6 n,
all µi are distinct, ∑n

i=1 pi = 1 and ∑n
i=1 piµi = µ. We set µmax = max16i6n{µi}.

Theorem 5. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions, and let the
premium and claim sizes have the hyperexponential distributions described at the beginning of this section above.
Then the condition (6) holds with R defined as a root of the equation

− λ̂

(
n

∏
i=1

(1− µiR)

)
n̂

∑
i=1

(
p̂iµ̂i

n̂

∏
l=1
l 6=i

(1 + µ̂iR)

)
+ λ

(
n̂

∏
i=1

(1 + µ̂iR)

)
n

∑
i=1

(
piµi

n

∏
l=1
l 6=i

(1− µiR)

)

+ dmax

(
n̂

∏
i=1

(1 + µ̂iR)

)(
n

∏
i=1

(1− µiR)

)
= 0

(13)

belonging to the interval (0, 1/µmax), which exists provided that the net profit condition (2) is satisfied.

Proof. Let m be the value of i in µmax = max16i6n{µi} such that µm = µmax. It can be easily
checked that

E
[
e−RŶ] = n̂

∑
i=1

p̂i
1 + µ̂iR

, R > 0, and E
[
eRY] = n

∑
i=1

pi
1− µiR

, 0 6 R <
1

µmax
.
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Therefore, condition (6) takes the form

λ̂

( n̂

∑
i=1

p̂i
1 + µ̂iR

− 1
)
+ λ

( n

∑
i=1

pi
1− µiR

− 1
)
+ dmaxR = 0, 0 < R <

1
µmax

. (14)

Multiplying (14) by
(
∏n̂

i=1(1 + µ̂iR)
)(

∏n
i=1(1− µiR)

)
yields

λ̂

(
n

∏
i=1

(1− µiR)

)(
n̂

∑
i=1

(
p̂i

n̂

∏
l=1
l 6=i

(1 + µ̂iR)

)
−

n̂

∏
i=1

(1 + µ̂iR)

)

+ λ

(
n̂

∏
i=1

(1 + µ̂iR)

)(
n

∑
i=1

(
pi

n

∏
l=1
l 6=i

(1− µiR)

)
−

n

∏
i=1

(1− µiR)

)

+ dmaxR

(
n̂

∏
i=1

(1 + µ̂iR)

)(
n

∏
i=1

(1− µiR)

)
= 0.

(15)

Taking into account that

n̂

∑
i=1

(
p̂i

n̂

∏
l=1
l 6=i

(1 + µ̂iR)

)
−

n̂

∏
i=1

(1 + µ̂iR) =
n̂

∑
i=1

p̂i

(
n̂

∏
l=1
l 6=i

(1 + µ̂iR)−
n̂

∏
i=1

(1 + µ̂iR)

)

=
n̂

∑
i=1

(
p̂i(−µ̂iR)

n̂

∏
l=1
l 6=i

(1 + µ̂iR)

)

and

n

∑
i=1

(
pi

n

∏
l=1
l 6=i

(1− µiR)

)
−

n

∏
i=1

(1− µiR) =
n

∑
i=1

pi

(
n

∏
l=1
l 6=i

(1− µiR)−
n

∏
i=1

(1− µiR)

)

=
n

∑
i=1

(
pi(µiR)

n

∏
l=1
l 6=i

(1− µiR)

)
,

from (15) we get

− λ̂

(
n

∏
i=1

(1− µiR)

)
n̂

∑
i=1

(
p̂iµ̂iR

n̂

∏
l=1
l 6=i

(1 + µ̂iR)

)
+ λ

(
n̂

∏
i=1

(1 + µ̂iR)

)
n

∑
i=1

(
piµiR

n

∏
l=1
l 6=i

(1− µiR)

)

+ dmaxR

(
n̂

∏
i=1

(1 + µ̂iR)

)(
n

∏
i=1

(1− µiR)

)
= 0.

(16)

Since we are looking for R ∈ (0, 1/µmax), we can divide (16) by R, which gives (13).
Now we show that (13) has at least one root on interval (0, 1/µmax). To this end, we define the

function h(R) on [0, 1/µmax] as follows:

h(R) = −λ̂

(
n

∏
i=1

(1− µiR)

)
n̂

∑
i=1

(
p̂iµ̂i

n̂

∏
l=1
l 6=i

(1 + µ̂iR)

)
+ λ

(
n̂

∏
i=1

(1 + µ̂iR)

)
n

∑
i=1

(
piµi

n

∏
l=1
l 6=i

(1− µiR)

)

+ dmax

(
n̂

∏
i=1

(1 + µ̂iR)

)(
n

∏
i=1

(1− µiR)

)
.
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It is easily seen that
h(0) = −λ̂µ̂ + λµ + dmax,

which is negative provided that the net profit condition (2) holds, and

h
(

1
µmax

)
= λ

n̂

∏
i=1

(
1 +

µ̂i
µmax

)
· pmµmax

n

∏
l=1
l 6=m

(
1− µl

µmax

)
> 0.

Therefore, since h(R) is continuous on [0, 1/µmax], there is R ∈ (0, 1/µmax) such that h(R) = 0,
i.e., (13) has at least one root in the interval (0, 1/µmax).

3.4. Erlang Distributions for the Premium and Claim Sizes

Now let the p.d.f.s of Ŷ and Y be

fŶ(y) =
1

(n̂− 1)! β̂n̂
yn̂−1 e−y/β̂, fY(y) =

1
(n− 1)! βn yn−1 e−y/β, y > 0,

where n̂ ∈ N, n ∈ N, β̂ > 0, β > 0, n̂β̂ = µ̂ and nβ = µ.

Theorem 6. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions, and let the
premium and claim sizes have the Erlang distributions described above. Then the condition (6) holds with R
defined as a root of the equation

dmax(1 + β̂R)n̂(1− βR)n + λβ(1 + β̂R)n̂
n

∑
i=1

(
n
i

)
(−βR)i−1

− λ̂β̂(1− βR)n
n̂

∑
i=1

(
n̂
i

)
(β̂R)i−1 = 0

(17)

on the interval (0, 1/β), which exists under the net profit condition (2).

Note that here and everywhere, symbols (n
i ) and (n̂

i ) denote binomial coefficients.

Proof. A standard computation shows that

E
[
e−RŶ] = ( 1

1 + β̂R

)n̂

, R > 0, and E
[
eRY] = ( 1

1− βR

)n

, 0 6 R <
1
β

.

Therefore, condition (6) takes the form

λ̂

((
1

1 + β̂R

)n̂

− 1
)
+ λ

((
1

1− βR

)n

− 1
)
+ dmaxR = 0, 0 < R <

1
β

. (18)

Multiplying (18) by (1 + β̂R)n̂(1− βR)n gives

λ̂(1− βR)n + λ(1 + β̂R)n̂ + (dmaxR− λ− λ̂)(1 + β̂R)n̂(1− βR)n = 0. (19)

Since (1− βR)n = ∑n
i=0 (

n
i )(−βR)i and (1 + β̂R)n̂ = ∑n̂

i=0 (
n̂
i )(β̂R)i, from (19) we obtain

λ̂
n

∑
i=1

(
n
i

)
(−βR)i + λ

n̂

∑
i=1

(
n̂
i

)
(β̂R)i + dmaxR(1 + β̂R)n̂(1− βR)n

− (λ + λ̂)

(
n

∑
i=1

(
n
i

)
(−βR)i +

n̂

∑
i=1

(
n̂
i

)
(β̂R)i +

(
n

∑
i=1

(
n
i

)
(−βR)i

)(
n̂

∑
i=1

(
n̂
i

)
(β̂R)i

))
= 0.

(20)
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Dividing (20) by R and rearranging the terms we get

dmax(1 + β̂R)n̂(1− βR)n + λβ
n

∑
i=1

(
n
i

)
(−βR)i−1 − λ̂β̂

n̂

∑
i=1

(
n̂
i

)
(β̂R)i−1

− (λ + λ̂)β̂

(
n

∑
i=1

(
n
i

)
(−βR)i

)(
n̂

∑
i=1

(
n̂
i

)
(β̂R)i−1

)
= 0,

which is equivalent to

dmax(1 + β̂R)n̂(1− βR)n

+ λβ
n

∑
i=1

(
n
i

)
(−βR)i−1 + λββ̂R

(
n

∑
i=1

(
n
i

)
(−βR)i−1

)(
n̂

∑
i=1

(
n̂
i

)
(β̂R)i−1

)

− λ̂β̂
n̂

∑
i=1

(
n̂
i

)
(β̂R)i−1 − λ̂β̂

(
n

∑
i=1

(
n
i

)
(−βR)i

)(
n̂

∑
i=1

(
n̂
i

)
(β̂R)i−1

)
= 0.

(21)

Next, we rewrite (21) in the form

dmax(1 + β̂R)n̂(1− βR)n + λβ

(
n

∑
i=1

(
n
i

)
(−βR)i−1

)(
n̂

∑
i=0

(
n̂
i

)
(β̂R)i

)

− λ̂β̂

(
n

∑
i=0

(
n
i

)
(−βR)i

)(
n̂

∑
i=1

(
n̂
i

)
(β̂R)i−1

)
= 0,

from which (17) follows immediately.
To show that (17) has at least one root on (0, 1/β), we consider the function

h(R) = dmax(1 + β̂R)n̂(1− βR)n + λβ(1 + β̂R)n̂
n

∑
i=1

(
n
i

)
(−βR)i−1 − λ̂β̂(1− βR)n

n̂

∑
i=1

(
n̂
i

)
(β̂R)i−1

on the interval [0, 1/β]. This function is continuous on [0, 1/β]. Moreover, it is easily seen that

h(0) = dmax + λβn− λ̂β̂n̂ = dmax + λµ− λ̂µ̂,

which is negative due to the net profit condition (2), and

h
(

1
β

)
= λβ

(
1 +

β̂

β

)n̂ n

∑
i=1

(
n
i

)
(−1)i−1 = λβ

(
1 +

β̂

β

)n̂

> 0.

Therefore, we deduce that (17) has at least one root on (0, 1/β).

Now let us consider the particular case with n̂ = 2 and n = 2, which is also investigated in
Section 5 in detail. In this case, Equation (17) takes the form

dmax(1 + β̂R)2(1− βR)2 + λβ(1 + β̂R)2(2− βR)− λ̂β̂(1− βR)2(2 + β̂R) = 0,

which is equivalent to

dmaxβ2 β̂2R4 +
(
2dmaxββ̂(β− β̂)− β2 β̂2(λ + λ̂)

)
R3

+
(
dmax(β2 − 4ββ̂ + β̂2) + 2ββ̂(β̂− β)(λ + λ̂)

)
R2

+
(
2dmax(β̂− β) + 4ββ̂(λ + λ̂)− (λβ2 + λ̂β̂2)

)
R + dmax + 2λβ− 2λ̂β̂ = 0.

(22)
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The next proposition describes sufficient conditions, under which Equation (22) has 4 distinct real
roots. Note that only one of those roots belongs to the interval (0, 1/β) and, consequently, satisfies the
conditions of Theorem 6.

Proposition 1. Let the surplus process {Xt(x)}t>0 be defined by Equation (1) under the above assumptions,
and let the premium and claim sizes have the Erlang distributions described above with n̂ = 2 and n = 2. If the

net profit condition (2) holds and β̂
β <

√
5−1
4 , then Equation (22) has 4 distinct real roots R1, R2, R3 and R4

such that R1 < 0, R2 ∈ (0, 1/β), R3 ∈ (1/β, 2/β) and R4 > 2/β.

Proof. Consider the function

h(R) = dmax(1 + β̂R)2(1− βR)2 + λβ(1 + β̂R)2(2− βR)− λ̂β̂(1− βR)2(2 + β̂R)

on (−∞, ∞). It is easily seen that limR→−∞ h(R) = ∞ and limR→∞ h(R) = ∞. Moreover, by Theorem 6,
h(0) < 0 because the net profit condition (2) holds, and h(1/β) > 0. We now show that h(2/β) < 0 if,

in addition, β̂
β <

√
5−1
4 . Indeed, we have

h
(

2
β

)
= dmax

(
1 +

2β̂

β

)2

− 2λ̂β̂

(
1 +

β̂

β

)
< λ̂β̂

((
1 +

2β̂

β

)2

− 2
(

1 +
β̂

β

))
since the net profit condition (2) implies that dmax < λ̂β̂. In addition,(

1 +
2β̂

β

)2

− 2
(

1 +
β̂

β

)
< 0

if and only if β̂
β ∈

(
−
√

5−1
4 ,

√
5−1
4

)
. Since β̂/β must be positive, we conclude that h(2/β) < 0 if

β̂
β <

√
5−1
4 .

Thus, the continuous function h(R) changes the sign on each of the intervals (−∞, 0), (0, 1/β),
(1/β, 2/β), (2/β, ∞), and the assertion of the proposition follows.

4. Non-Exponential Bound for the Ruin Probability

In this section, we use the exponential bound from Section 3 to obtain non-exponential upper
bounds, which turn out to be tighter in a number of cases. We first deal with the special case of the
model where k = 1, and then consider the general case.

4.1. Model with a Constant Dividend Strategy

We now consider the special case of the model where k = 1, which implies a constant dividend
strategy. For this case, we write d instead of d1 and dmax. Thus, we suppose that dividends are always
paid continuously at a rate d > 0.

Theorem 7. Let the surplus process {Xt(x)}t>0 be defined by Equation (1) under the above assumptions with
k = 1. If there is R > 0 such that (6) holds, then

ψ(x) 6 e−Rx +
λ

d
e−(λ+λ̂)x/d

∫ x

0
e(λ+λ̂)s/d

∫ ∞

s

(
1− eR(y−s))dFY(y)ds for all x > 0, (23)

and this bound is tighter than the exponential one given by (7).
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Proof. Since k = 1, by Theorem 2, we have

ψ(x) =
1
d

e−(λ+λ̂)x/d
∫ x

0
e(λ+λ̂)s/d

(
λ̂
∫ ∞

0
ψ(s + y)dFŶ(y)

+ λ
∫ s

0
ψ(s− y)dFY(y) + λ

(
1− FY(s)

))
ds + e−(λ+λ̂)x/d, x > 0.

(24)

From (7) and (24) we get

ψ(x) 6
1
d

e−(λ+λ̂)x/d
∫ x

0
e(λ+λ̂)s/d

(
λ̂
∫ ∞

0
e−R(s+y) dFŶ(y)

+ λ
∫ s

0
e−R(s−y) dFY(y) + λ

(
1− FY(s)

))
ds + e−(λ+λ̂)x/d, x > 0.

(25)

Let the function g(s) be defined on [0, ∞) as follows:

g(s) = λ̂
∫ ∞

0
e−R(s+y) dFŶ(y) + λ

∫ s

0
e−R(s−y) dFY(y) + λ

(
1− FY(s)

)
.

Taking into account (6) we have

g(s) = e−Rs
(

λ
∫ ∞

0
eRy dFY(y) + λ̂

∫ ∞

0
e−Ry dFŶ(y)

)
− λe−Rs

∫ ∞

s
eRy dFY(y) + λ

(
1− FY(s)

)
= e−Rs(λ + λ̂− dmaxR

)
+ λ

∫ ∞

s

(
1− eR(y−s))dFY(y).

Thus, for all s > 0, we get
g(s) = g1(s) + g2(s), (26)

where
g1(s) = e−Rs(λ + λ̂− dmaxR

)
and g2(s) = λ

∫ ∞

s

(
1− eR(y−s))dFY(y).

For the case under consideration, dmax = d. It is obvious that for all s > 0, g1(s) > 0 since
λ + λ̂− dmaxR > 0 by (6), and g2(s) < 0 since 1− eR(y−s) < 0 for all y > s.

Substituting (26) into (25) yields

ψ(x) 6
1
d

e−(λ+λ̂)x/d
∫ x

0
e(λ+λ̂)s/d(g1(s) + g2(s)

)
ds + e−(λ+λ̂)x/d, x > 0. (27)

Since
1
d

e−(λ+λ̂)x/d
∫ x

0
e(λ+λ̂)s/d g1(s)ds = e−Rx − e−(λ+λ̂)x/d,

bound (23) follows from (27) immediately. Finally, it is evident that (23) is tighter than the exponential
bound (7) because g2(s) < 0 for all s > 0.

We now adjust (23) to the distributions considered in Section 3.

Proposition 2. Let the surplus process
(
Xt(x)

)
t>0 be defined by (1) under the above assumptions with k = 1,

and let the premium and claim sizes be exponentially distributed with means µ̂ and µ, respectively. If the net
profit condition (2) holds, then

ψ(x) 6 e−Rx +
λ(2− µR)

(µR− 1)(λ + λ̂− d/µ)

(
e−x/µ − e−(λ+λ̂)x/d), x > 0. (28)
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Proof. If the net profit condition (2) is true, then by Theorem 4, there is R > 0 such that (6) holds.
Hence, by Theorem 7, we get (23). Since∫ ∞

s

(
1− eR(y−s)) 1

µ
e−y/µ dy =

2− µR
µR− 1

e−s/µ, s > 0,

and

λ

d
e−(λ+λ̂)x/d

∫ x

0
e(λ+λ̂)s/d · 2− µR

µR− 1
e−s/µ ds =

λ(2− µR)
d(µR− 1)

e−(λ+λ̂)x/d
∫ x

0
e((λ+λ̂)/d−1/µ)s ds

=
λ(2− µR)

(µR− 1)(λ + λ̂− d/µ)

(
e−x/µ − e−(λ+λ̂)x/d), x > 0,

we conclude that the estimate (28) holds.

Proposition 3. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions with k = 1,
and let the premium and claim sizes have the hyperexponential distributions described in Section 3.3. If the net
profit condition (2) holds, then, for all x > 0,

ψ(x) 6 e−Rx +
n

∑
i=1

λpi(2− µiR)
(µiR− 1)(λ + λ̂− d/µi)

(
e−x/µi − e−(λ+λ̂)x/d). (29)

The proof of Proposition 3 can be derived along the lines to the proof of Proposition 2.

Proposition 4. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions with k = 1,
and let the premium and claim sizes have the Erlang distributions described in Section 3.4. If the net profit
condition (2) holds, then

ψ(x) 6 e−Rx

+
λ

d
e−x/β

n−1

∑
i=0

1
(n− i− 1)! βn−i−1

(
1− 1

(1− βR)i+1

)
· γ
(

x,
λ + λ̂

d
− 1

β
, n− i− 1

)

+
λ

d
e−(λ+λ̂)x/d

n−1

∑
i=0

(−1)n−i

βn−i−1
(
(λ + λ̂)/d− 1/β

)n−i

(
1− 1

(1− βR)i+1

)
for all x > 0,

(30)

where the function γ(x, α, i) is defined for all x > 0, α ∈ R and i ∈ N as follows:

γ(x, α, i) =
i+1

∑
l=1

(−1)l−1 i! xi−l+1

(i− l + 1)! αl .

Proof. If the net profit condition (2) is true, then by Theorems 6 and 7, we deduce that (23) holds with
R > 0 satisfying (6). Changing the integration variable twice, for all s > 0, we get∫ ∞

s

(
1− eR(y−s))dFY(y)ds

=
∫ ∞

s

(
1− eR(y−s)) 1

(n− 1)! βn yn−1 e−y/β dy =
∫ ∞

0

(
1− eRz) 1

(n− 1)! βn (z + s)n−1 e−(z+s)/β dz

=
e−s/β

(n− 1)! βn

∫ ∞

0
(z + s)n−1 e−z/β dz− e−s/β

(n− 1)! βn

∫ ∞

0
(z + s)n−1 e(R−1/β)z dz

=
e−s/β

(n− 1)! βn−1

∫ ∞

0
(βy + s)n−1 e−y dy− e−s/β

(n− 1)! βn−1(1− βR)

∫ ∞

0

(
βy

1− βR
+ s
)n−1

e−y dy.
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Next, using properties of the standard gamma function, for all s > 0, we obtain

∫ ∞

s

(
1− eR(y−s))dFY(y)ds =

e−s/β

(n− 1)! βn−1

∫ ∞

0

(n−1

∑
i=0

(
n− 1

i

)
(βy)i sn−i−1

)
e−y dy

− e−s/β

(n− 1)! βn−1(1− βR)

∫ ∞

0

(n−1

∑
i=0

(
n− 1

i

)(
βy

1− βR

)i
sn−i−1

)
e−y dy

=
e−s/β

(n− 1)! βn−1

n−1

∑
i=0

(
n− 1

i

)
βi sn−i−1 i!− e−s/β

(n− 1)! βn−1(1− βR)

n−1

∑
i=0

(
n− 1

i

)(
β

1− βR

)i
sn−i−1 i!

= e−s/β
n−1

∑
i=0

1
(n− i− 1)!

(
s
β

)n−i−1 (
1− 1

(1− βR)i+1

)
.

Hence, from (23), for all x > 0, we have

ψ(x) 6 e−Rx

+
λ

d
e−(λ+λ̂)x/d

∫ x

0
e(λ+λ̂)s/d e−s/β

n−1

∑
i=0

1
(n− i− 1)!

(
s
β

)n−i−1 (
1− 1

(1− βR)i+1

)
ds

= e−Rx +
λ

d
e−(λ+λ̂)x/d

(n−1

∑
i=0

1
(n− i− 1)! βn−i−1

(
1− 1

(1− βR)i+1

)
×
∫ x

0
e((λ+λ̂)/d−1/β)s sn−i−1 ds

)
.

(31)

By using integration by parts i times, it is not difficult derive that

∫ x

0
eαs si ds = eαs

(
xi

α
− ixi−1

α2 +
i(i− 1)xi−2

α3 − i(i− 1)(i− 2)xi−3

α4 + . . . +
(−1)i i!

αi+1

)
− (−1)i i!

αi+1

= eαs γ(x, α, i)− (−1)i i!
αi+1

for all x > 0, α ∈ R and i ∈ N. Therefore, from (31), for x > 0, we get

ψ(x) 6 e−Rx +
λ

d
e−(λ+λ̂)x/d

(n−1

∑
i=0

1
(n− i− 1)! βn−i−1

(
1− 1

(1− βR)i+1

)

×
(

e((λ+λ̂)/d−1/β)x γ

(
x,

λ + λ̂

d
− 1

β
, n− i− 1

)
− (−1)n−i (n− i− 1)!(

(λ + λ̂)/d− 1/β
)n−i

)
,

which yields (30).

In particular case n = 2, for all x > 0, the estimate (30) takes the form

ψ(x) 6 e−Rx +
λ

d
e−x/β

(
1
β

(
1− 1

1− βR

)(
x

(λ + λ̂)/d− 1/β
− 1(

(λ + λ̂)/d− 1/β
)2

)

+

(
1− 1

(1− βR)2

)
1

(λ + λ̂)/d− 1/β

+
λ

d
e−(λ+λ̂)x/d

((
1− 1

1− βR

)
1

β
(
(λ + λ̂)/d− 1/β

)2

−
(

1− 1
(1− βR)2

)
1

(λ + λ̂)/d− 1/β

)
.
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4.2. Model with a Multi-Layer Dividend Strategy

Let now we deal with the general case where k > 1. For k = 1, the bound from Theorem 7 is
tighter than the bound given in Theorem 8 below.

Theorem 8. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions, and let there
be R > 0 satisfying (6). Then for any 1 6 j 6 k, we have

ψ(x) 6
λ
(
1− FY(x)

)
λ + λ̂

+

(
λ + λ̂− dmaxR

λ + λ̂− djR
− λ

λ + λ̂− djR

∫ ∞

x
eRy dFY(y)

)
e−Rx

+

(
(λ + λ̂− dmaxR)(dj−1 − dj)R

(λ + λ̂− dj−1R)(λ + λ̂− djR)
+

λ
(

FY(x)− FY(bj−1)
)

eRbj−1

λ + λ̂

+
λ

λ + λ̂− djR

∫ ∞

x
eRy dFY(y)−

λ

λ + λ̂− dj−1R

∫ ∞

bj−1

eRy dFY(y)
)

e−(λ+λ̂) aj(x)−Rbj−1

+
j−1

∑
i=2

(
(λ + λ̂− dmaxR)(di−1 − di)R
(λ + λ̂− di−1R)(λ + λ̂− diR)

+
λ
(

FY(bi)− FY(bi−1)
)

eRbi−1

λ + λ̂

+
λ

λ + λ̂− diR

∫ ∞

bi

eRy dFY(y)−
λ

λ + λ̂− di−1R

∫ ∞

bi−1

eRy dFY(y)
)

e−(λ+λ̂) ai(x)−Rbi−1

+

(
(dmax − d1)R
(λ + λ̂− d1R)

+
λ
(

FY(b1)− 1)
)

λ + λ̂

+
λ

λ + λ̂− d1R

∫ ∞

b1

eRy dFY(y)
)

e−(λ+λ̂) a1(x), x ∈ [bj−1, bj].

(32)

Proof. We now fix any j such that 1 6 j 6 k and deal with x ∈ [bj−1, bj]. Since there is R > 0
satisfying (6), by (7), for the functions Ij(x), Ij−1(x), . . ., I1(x) from Theorem 2, we have

Ij(x) 6
1
dj

e−(λ+λ̂)x/dj

∫ x

bj−1

e(λ+λ̂)s/dj g(s)ds,

Ij−1(x) 6
1

dj−1
e−(λ+λ̂)(aj(x)+bj−1/dj−1)

∫ bj−1

bj−2

e(λ+λ̂)s/dj−1 g(s)ds,

. . .

I1(x) 6
1
d1

e−(λ+λ̂)(a2(x)+b1/d1)
∫ b1

b0

e(λ+λ̂)s/d1 g(s)ds,

where the function g(s) is defined by the representation (26). Therefore, taking into account (4) we
conclude that

ψ(x) 6 I1(x) + I2(x), x ∈ [bj−1, bj], (33)

where

I1(x) =
1
dj

e−(λ+λ̂)x/dj

∫ x

bj−1

e(λ+λ̂)s/dj g1(s)ds

+
j

∑
i=2

1
di−1

e−(λ+λ̂)(ai(x)+bi−1/di−1)
∫ bi−1

bi−2

e(λ+λ̂)s/di−1 g1(s)ds + e−(λ+λ̂) a1(x)
(34)
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and

I2(x) =
1
dj

e−(λ+λ̂)x/dj

∫ x

bj−1

e(λ+λ̂)s/dj g2(s)ds

+
j

∑
i=2

1
di−1

e−(λ+λ̂)(ai(x)+bi−1/di−1)
∫ bi−1

bi−2

e(λ+λ̂)s/di−1 g2(s)ds.
(35)

Substituting g1(s) into (34), we derive that

I1(x) =
λ + λ̂− dmaxR

dj
e−(λ+λ̂)x/dj

∫ x

bj−1

e(λ+λ̂)s/dj−Rs g1(s)ds

+
j

∑
i=2

λ + λ̂− dmaxR
di−1

e−(λ+λ̂)(ai(x)+bi−1/di−1)
∫ bi−1

bi−2

e(λ+λ̂)s/di−1−Rs g1(s)ds + e−(λ+λ̂) a1(x)

=
λ + λ̂− dmaxR

λ + λ̂− djR

(
e−Rx − e−(λ+λ̂)(bj−1−x)/dj−Rbj−1

)
+

j

∑
i=2

λ + λ̂− dmaxR
λ + λ̂− di−1R

(
e−(λ+λ̂) ai(x)−Rbi−1 − e−(λ+λ̂) ai(x)−(λ+λ̂)(bi−1−bi−2)/di−Rbi−2

)
+ e−(λ+λ̂) a1(x).

(36)

Taking into account definitions of the functions a1(x), . . ., aj(x) and rearranging the terms in (36),
we obtain

I1(x) =
λ + λ̂− dmaxR

λ + λ̂− djR

(
e−Rx − e−(λ+λ̂) aj(x)−Rbj−1

)
+

j

∑
i=2

λ + λ̂− dmaxR
λ + λ̂− di−1R

(
e−(λ+λ̂) ai(x)−Rbi−1 − e−(λ+λ̂) ai−1(x)−Rbi−2

)
+ e−(λ+λ̂) a1(x)

=
λ + λ̂− dmaxR

λ + λ̂− djR
e−Rx +

j

∑
i=2

(λ + λ̂− dmaxR)(di−1 − di)R
(λ + λ̂− di−1R)(λ + λ̂− diR)

e−(λ+λ̂) ai(x)−Rbi−1

+
(dmax − d1)R
λ + λ̂− d1R

e−(λ+λ̂) a1(x).

(37)

For the first integral in (35), we have

∫ x

bj−1

e(λ+λ̂)s/dj g2(s)ds =
∫ x

bj−1

e(λ+λ̂)s/dj

(
λ
(
1− FY(s)

)
+ λe−Rs

∫ ∞

s
eRy dFY(y)

)
ds

6
∫ x

bj−1

e(λ+λ̂)s/dj

(
λ
(
1− FY(x)

)
+ λe−Rs

∫ ∞

x
eRy dFY(y)

)
ds

=
λdj
(
1− FY(x)

)
λ + λ̂

(
e(λ+λ̂)x/dj − e(λ+λ̂)bj−1/dj

)
−

λdj

λ + λ̂− djR

(
e((λ+λ̂)/dj−R)x − e((λ+λ̂)/dj−R)bj−1

) ∫ ∞

x
eRy dFY(y).

Hence, definitions of functions aj(x) imply that

1
dj

e−(λ+λ̂)x/dj

∫ x

bj−1

e(λ+λ̂)s/dj g2(s)ds =
λ
(
1− FY(x)

)
λ + λ̂

(
1− e−(λ+λ̂) aj(x))

− λ

λ + λ̂− djR

(
e−Rx − e−(λ+λ̂) aj(x)−Rbj−1

) ∫ ∞

x
eRy dFY(y).

(38)
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Similarly, for 2 6 i 6 j, we get

∫ bi−1

bi−2

e(λ+λ̂)s/di−1 g2(s)ds =
∫ bi−1

bi−2

e(λ+λ̂)s/di−1

(
λ
(
1− FY(s)

)
+ λe−Rs

∫ ∞

s
eRy dFY(y)

)
ds

6
∫ bi−1

bi−2

e(λ+λ̂)s/di−1

(
λ
(
1− FY(bi−1)

)
+ λe−Rs

∫ ∞

bi−1

eRy dFY(y)
)

ds

=
λdi−1

(
1− FY(bi−1)

)
λ + λ̂

(
e(λ+λ̂)bi−1/di−1 − e(λ+λ̂)bj−2/di−1

)
− λdi−1

λ + λ̂− di−1R

(
e((λ+λ̂)/di−1−R)x − e((λ+λ̂)/di−1−R)bi−2

) ∫ ∞

bi−1

eRy dFY(y)

and, consequently,

1
di−1

e−(λ+λ̂)(ai(x)+bi−1/di−1)
∫ bi−1

bi−2

e(λ+λ̂)s/di−1 g2(s)ds

=
λ
(
1− FY(bi−1)

)
λ + λ̂

(
e−(λ+λ̂) ai(x) − e−(λ+λ̂) ai−1(x))

− λ

λ + λ̂− di−1R

(
e−(λ+λ̂) ai(x)−Rbi−1 − e−(λ+λ̂) ai−1(x)−Rbi−2

) ∫ ∞

bi−1

eRy dFY(y).

(39)

Substituting (38) and (39) into (35) and rearranging the terms yield

I2(x) = − λ

λ + λ̂

(
FY(x)

(
1− e−(λ+λ̂) aj(x))+ j

∑
i=2

FY(bi−1)
(
e−(λ+λ̂) ai(x) − e−(λ+λ̂) ai−1(x))

+
(
e−(λ+λ̂) a1(x) − 1

))
− λ

λ + λ̂− djR

(
e−Rx − e−(λ+λ̂) aj(x)−Rbj−1

) ∫ ∞

x
eRy dFY(y)

−
j

∑
i=2

λ

λ + λ̂− di−1R

(
e−(λ+λ̂) ai(x)−Rbi−1 − e−(λ+λ̂) ai−1(x)−Rbi−2

) ∫ ∞

bi−1

eRy dFY(y).

(40)

Finally, we obtain (32) by substituting (37) and (40) into (33).

We denote the non-exponential bound (32) by ψnon−exp(x) for all x > 0. We will also use the
notation ψnon−exp(x) in Section 6 for the non-exponential bound (23) when we deal with the case k = 1.

We now show that the non-exponential bound from Theorem 8 is tighter than the exponential one
given by (7) if j = 1, i.e., the initial surplus is in the first layer.

Proposition 5. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions, and let
there be R > 0 such that (6) holds. Then ψnon−exp(x) < e−Rx for all x ∈ (0, b1], where ψnon−exp(x) is given
by (32).

Proof. We now deal with the case j = 1. From the proof of Theorem 8 we have ψnon−exp(x) =

I1(x) + I2(x) for all x ∈ [0, b1]. Moreover, from (35) it follows that I2(x) < 0 for all x ∈ (0, b1] because
g2(s) < 0 for all s > 0. Thus, it is enough to prove that I1(x) < e−Rx.

Since λ + λ̂− dmaxR > 0 due to (6), we conclude that (λ + λ̂)/d1 > R. Therefore, by (37) written
for j = 1, for all x ∈ (0, b1], we have

I1(x) =
λ + λ̂− dmaxR

λ + λ̂− d1R
e−Rx +

(dmax − d1)R
λ + λ̂− d1R

e−(λ+λ̂) x/d1

<
λ + λ̂− dmaxR

λ + λ̂− d1R
e−Rx +

(dmax − d1)R
λ + λ̂− d1R

e−Rx = e−Rx,
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which is the desired conclusion.

Remark 2. In particular, if k = 2 and the premium and claim sizes are exponentially distributed with means µ̂

and µ, respectively, then applying Theorem 8 yields

ψ(x) 6
λ + λ̂− dmaxR

λ + λ̂− d1R
e−Rx +

(dmax − d1)R
λ + λ̂− d1R

e−(λ+λ̂) x/d1

+
λe−x/µ

λ + λ̂

(
1− e−(λ+λ̂)x/d1

)
− λe(R−1/µ)x

(λ + λ̂− d1R)(1− µR)

(
e−Rx − e−(λ+λ̂)x/d1

)
, x ∈ [0, b1],

and

ψ(x) 6
λe−x/µ

λ + λ̂
+

(
λ + λ̂− dmaxR

λ + λ̂− d2R
− λe(R−1/µ)x

(λ + λ̂− d2R)(1− µR)

)
e−Rx

+

(
(λ + λ̂− dmaxR)(d1 − d2)R
(λ + λ̂− d1R)(λ + λ̂− d2R)

+
λeRb1

(
e−b1/µ − e−x/µ)

)
λ + λ̂

+
λe(R−1/µ)x

(λ + λ̂− d2R)(1− µR)
− λe(R−1/µ)b1

(λ + λ̂− d1R)(1− µR)

)
e−(λ+λ̂)(x−b1)/d2−Rb1

+

(
(dmax − d1)R
(λ + λ̂− d1R)

− λe−b1/µ

λ + λ̂
+

λe(R−1/µ)b1

(λ + λ̂− d1R)(1− µR)

)
e−(λ+λ̂)((x−b1)/d2+b1/d1), x ∈ [b1, ∞).

We use these bounds in Section 6.

5. Explicit Formulas for the Ruin Probability

In this section, we obtain explicit formulas for the ruin probability when the premium and
claim sizes have either the hyperexponential or the Erlang distributions. We use those formulas in
Section 6 to investigate how tight the bounds constructed in Sections 3 and 4 are based on some
numerical examples. We restrict ourselves to the case k = 1, i.e., the model with a constant dividend
strategy, and also impose certain restrictions on the distribution parameters. Nonetheless, the same
considerations are also applicable to the general case.

5.1. Hyperexponential Distributions for the Premium and Claim Sizes

We suppose that the premium and claim sizes have the hyperexponential distributions described
in Section 3.3 with n̂ = 1 and n > 2, which implies that the premium sizes are exponentially distributed
with mean µ̂. The case n̂ = 1 and n = 1 is considered in [62] for k = 1 and in [36] for k > 2.

Lemma 2. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions with k = 1, and let
the premium sizes be exponentially distributed with mean µ̂, whereas the claim sizes have the hyperexponential
distribution described in Section 3.3 with n > 2. Then for all x > 0, ψ(x) is a solution to the differential equation

An+2
(n+2)ψ

(n+2)(x) + A(n+2)
n+1 ψ(n+1)(x) + . . . + A(n+2)

1 ψ′(x) + A(n+2)
0 ψ(x) = 0, (41)

where ψ(i)(x), 0 6 i 6 n + 2, denotes the i-th derivative of ψ(x) and the coefficients A(n+2)
i are calculated

recursively using Formulas (42)–(44):

A(m+1)
m+1 = µn+2−m A(m)

m , (42)

A(m+1)
i = A(m)

i + µn+2−m A(m)
i−1, 1 6 i 6 m, (43)

A(m+1)
0 = A(m)

0 − µn+2−m

n+2−m

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=n+3−m

(
1− µl

µi

))
. (44)



Mathematics 2020, 8, 1885 19 of 35

Proof. By Theorem 1, ψ(x) satisfies the integro-differential equation

dψ′(x) + (λ + λ̂)ψ(x) =
λ̂

µ̂
ex/µ̂

∫ ∞

x
ψ(u) e−u/µ̂ du

+
n

∑
i=1

λpi
µi

e−x/µi

∫ x

0
ψ(u) eu/µi du +

n

∑
i=1

λpi e−x/µi , x > 0.
(45)

To get the differential Equation (41), we need to successively eliminate the integral terms from (45).
This approach is also applied, e.g., in [24,36,62]. It is easily seen that the right-hand side of (45) is
differentiable for all x > 0. Hence, ψ(x) is twice differentiable on [0, ∞). Differentiating (45) yields

dψ′′(x) + (λ + λ̂)ψ′(x) +
(

λ̂

µ̂
−

n

∑
i=1

λpi
µi

)
ψ(x) =

λ̂

µ̂2 ex/µ̂
∫ ∞

x
ψ(u) e−u/µ̂ du

−
n

∑
i=1

λpi

µ2
i

e−x/µi

∫ x

0
ψ(u) eu/µi du−

n

∑
i=1

λpi
µi

e−x/µi , x > 0.

(46)

Multiplying (46) by µn and adding (45) we get

dµnψ′′(x) +
(
d + µn(λ + λ̂)

)
ψ′(x) +

(
λ + λ̂ + µn

(
λ̂

µ̂
−

n

∑
i=1

λpi
µi

))
ψ(x)

=
λ̂

µ̂

(
1 +

µn

µ̂

)
ex/µ̂

∫ ∞

x
ψ(u) e−u/µ̂ du

+
n−1

∑
i=1

λpi
µi

(
1− µn

µi

)
e−x/µi

∫ x

0
ψ(u) eu/µi du +

n−1

∑
i=1

λpi

(
1− µn

µi

)
e−x/µi , x > 0.

(47)

Thus, we have eliminated one integral term from (45), but now (47) involves ψ′′(x). Similarly,
from (47) we conclude that ψ(x) has the third derivative on [0, ∞). Moreover, differentiating (47) gives

dµnψ′′′(x) +
(
d + µn(λ + λ̂)

)
ψ′′(x) +

(
λ + λ̂ + µn

(
λ̂

µ̂
−

n

∑
i=1

λpi
µi

))
ψ′(x)

+

(
λ̂

µ̂

(
1 +

µn

µ̂

)
−

n

∑
i=1

λpi
µi

(
1− µn

µi

))
ψ(x) =

λ̂

µ̂2

(
1 +

µn

µ̂

)
ex/µ̂

∫ ∞

x
ψ(u) e−u/µ̂ du

−
n−1

∑
i=1

λpi

µ2
i

(
1− µn

µi

)
e−x/µi

∫ x

0
ψ(u) eu/µi du−

n−1

∑
i=1

λpi
µi

(
1− µn

µi

)
e−x/µi , x > 0.

(48)

Multiplying (48) by (−µ̂) and adding (47) we obtain

− dµnµ̂ψ′′′(x) +
(
d(µn − µ̂)− µnµ̂(λ + λ̂)

)
ψ′′(x) +

(
d + λµn − µ̂(λ + λ̂− λpn)

+ µnµ̂
n−1

∑
i=1

λpi
µi

)
ψ′(x) +

(
λ− λpn −

n−1

∑
i=1

λpi
µi

(
µn − µ̂ +

µnµ̂

µi

))
ψ(x)

=
n−1

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)(
1− µn

µi

)
e−x/µi

∫ x

0
ψ(u) eu/µi du

+
n−1

∑
i=1

λpi

(
1 +

µ̂

µi

)(
1− µn

µi

)
e−x/µi , x > 0.

(49)

Thus, we have eliminated one more integral term, but now ψ′′′(x) is involved in (49). Note that if
n = 1, then the right-hand side of (49) is equal to 0. It is obvious that if we proceed in a similar way,
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we will get Equation (41) with some coefficients A(n+2)
i , 0 6 i 6 n + 2, as soon as we have excluded all

integral terms. To this end, we have to repeat the same procedure n− 1 times more.
Now our aim is to find the coefficients A(n+2)

i in (41) recursively on the basis of the coefficients in
the intermediate integro-differential equations. Here and subsequently, we use upper indices in the
notation A(n+2)

i to differentiate equations and lower indices to differentiate coefficients in the same

equation. To be more precise, the upper index in A(n+2)
i coincides with the highest derivative in the

equation, whereas the lower index coincides with the order of the derivative of ψ(x) before which it
appears. For instance, from (49) we deduce that

A(3)
3 = −dµnµ̂, A(3)

2 = d(µn − µ̂)− µnµ̂(λ + λ̂),

A(3)
1 = d + λµn − µ̂(λ + λ̂− λpn) + µnµ̂

n−1

∑
i=1

λpi
µi

, A(3)
0 = λ− λpn −

n−1

∑
i=1

λpi
µi

(
µn − µ̂ +

µnµ̂

µi

)
.

We now suppose that we have the equation of order m, where 3 6 m 6 n + 2, i.e.,

A(m)
m ψ(m)(x) + A(m)

m−1ψ(m−1)(x) + . . . + A(m)
1 ψ′(x) + A(m)

0 ψ(x)

=
n+2−m

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=n+3−m

(
1− µl

µi

))
e−x/µi

∫ x

0
ψ(u) eu/µi du

+
n+2−m

∑
i=1

λpi

(
1 +

µ̂

µi

)( n

∏
l=n+3−m

(
1− µl

µi

))
e−x/µi , x > 0,

(50)

and we want to calculate the coefficients of the equation of order m + 1, i.e., A(m+1)
i , 0 6 i 6 m + 1.

Note that if m = n + 2, then the right-hand side of (50) is equal to 0 and we have (41).
Differentiating (50) yields

A(m)
m ψ(m+1)(x) + A(m)

m−1ψ(m)(x) + . . . + A(m)
1 ψ′′(x) + A(m)

0 ψ′(x)

−
n+2−m

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=n+3−m

(
1− µl

µi

))
ψ(x)

= −
n+2−m

∑
i=1

λpi

µ2
i

(
1 +

µ̂

µi

)( n

∏
l=n+3−m

(
1− µl

µi

))
e−x/µi

∫ x

0
ψ(u) eu/µi du

−
n+2−m

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=n+3−m

(
1− µl

µi

))
e−x/µi , x > 0.

(51)

Multiplying (51) by µn+2−m and adding (50) we get

µn+2−m A(m)
m ψ(m+1)(x) + (A(m)

m + µn+2−m A(m)
m−1)ψ

(m)(x) + . . . + (A(m)
1 + µn+2−m A(m)

0 )ψ′(x)

+

(
A(m)

0 − µn+2−m

n+2−m

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=n+3−m

(
1− µl

µi

)))
ψ(x)

=
n+1−m

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=n+2−m

(
1− µl

µi

))
e−x/µi

∫ x

0
ψ(u) eu/µi du

+
n+1−m

∑
i=1

λpi

(
1 +

µ̂

µi

)( n

∏
l=n+2−m

(
1− µl

µi

))
e−x/µi , x > 0.

(52)

Therefore, from (52) we conclude that (42)–(44) hold. Thus, we know coefficients A(3)
i , 0 6

i 6 3, and calculate recursively other coefficients using Formulas (42)–(44) until we get A(n+2)
i ,

0 6 i 6 n + 2.
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Lemma 3. If conditions of Lemma 2 hold, then A(n+2)
0 = 0 in (41).

Proof. Since

A(3)
0 = λ− λpn −

n−1

∑
i=1

λpi
µi

(
µn − µ̂ +

µnµ̂

µi

)
,

by (44), we get

A(4)
0 = A(3)

0 − µn−1

n−1

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=n

(
1− µl

µi

))

= λ− λpn −
n−1

∑
i=1

λpi
µi

(
µn − µ̂ +

µnµ̂

µi

)
− µn−1

n−1

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)(
1− µn

µi

)
.

Proceeding in a similar way, we obtain

A(n+2)
0 = λ− λpn −

n−1

∑
i=1

λpi
µi

(
µn − µ̂ +

µnµ̂

µi

)
− µn−1

n−1

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)(
1− µn

µi

)
− . . .

− µ2

2

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=3

(
1− µl

µi

))
− µ1

1

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=2

(
1− µl

µi

))
.

(53)

Grouping the last two terms in (53) together gives

A(n+2)
0 = λ− λpn −

n−1

∑
i=1

λpi
µi

(
µn − µ̂ +

µnµ̂

µi

)
− µn−1

n−1

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)(
1− µn

µi

)
− . . .

− µ3

3

∑
i=1

λpi
µi

(
1 +

µ̂

µi

)( n

∏
l=4

(
1− µl

µi

))
−

2

∑
i=1

λpi

(
1 +

µ̂

µi

)( n

∏
l=3

(
1− µl

µi

))
.

Proceeding in a similar way, i.e., grouping the last two terms together again and again, we get

A(n+2)
0 = λ− λpn −

n−1

∑
i=1

λpi
µi

(
µn − µ̂ +

µnµ̂

µi

)
−

n−1

∑
i=1

λpi

(
1 +

µ̂

µi

)(
1− µn

µi

)
,

from which it follows that

A(n+2)
0 = λ− λpn −

n−1

∑
i=1

λpi

(
µn − µ̂

µi
+

µnµ̂

µ2
i
−
(

1 +
µ̂

µi

)(
1− µn

µi

))
= λ− λpn −

n−1

∑
i=1

λpi = 0.

Lemma is proved.

Theorem 9. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions with k = 1,
and let the premium sizes be exponentially distributed with mean µ̂, whereas the claim sizes have the
hyperexponential distribution described in Section 3.3 with n > 2. If the net profit condition (2) holds
and all n + 1 roots of the equation

A(n+2)
n+2 zn+1 + A(n+2)

n+1 zn + . . . + A(n+2)
2 z + A(n+2)

1 = 0, (54)

which we denote by z1, z2, . . ., zn+1, are negative real and pairwise distinct, then

ψ(x) =
n+1

∑
i=1

Ci ezix, x > 0, (55)
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where the constants Ci, 1 6 i 6 n + 1, are determined from the system of linear Equations (56)–(60):

n+1

∑
i=1

Ci = 1, (56)

n+1

∑
i=1

Ci

(
dzi +

λ̂

µ̂zi − 1

)
= −λ̂, (57)

n+1

∑
i=1

Ci

(
dµnz2

i +
(
d + µn(λ̂ + λ)

)
zi +

λ̂(1 + µn/µ̂)

µ̂zi − 1

)
= −λ̂− λ̂µn

µ̂
, (58)

n+1

∑
i=1

Ci

(
−dµnµ̂z3

i +
(
d(µn − µ̂)− µnµ̂(λ̂ + λ)

)
z2

i

+

(
d + λµn − µ̂(λ̂ + λ− λpn) + µnµ̂

n−1

∑
i=1

λpi
µi

)
zi

)
= 0,

(59)

n+1

∑
i=1

Ci

(
A(m)

m zm
i + A(m)

m−1 zm−1
i + . . . + A(m)

1 zi

)
= 0, 4 6 m 6 n, (60)

provided that its determinant is not equal to 0.

Remark 3. In Theorem 9, we make the additional assumption that all n + 1 roots of (54) are negative real
and pairwise distinct without proving this in the general case. Nonetheless, the numerical examples we have
considered suggest that this assumption is true, even if not always, but very often. In addition, if n = 2, we can
provide some sufficient conditions for that. Indeed, in this case (54) takes the form h(z) = 0, where

h(z) = −dµ1µ2µ̂z3 +
(
d(µ1µ2 − µ̂(µ1 + µ2))− µ1µ2µ̂(λ̂ + λ)

)
z2

+
(
d(µ1 + µ2 − µ̂) + λµ1µ2 − λ̂µ̂(µ1 + µ2)− λµµ̂

)
z + d + λµ− λ̂µ̂.

Considering the function h(z) on (−∞, ∞) we deduce that limz→−∞ h(z) = ∞, limz→∞ h(z) = −∞ and
h(0) = d + λµ− λ̂µ̂ < 0 because the net profit condition (2) holds. Next, without loss of generality, we can
assume that µ1 < µ2, which implies that µmax = µ2 and µ1 < µ < µ2. Hence, we have

h
(
− 1

µmax

)
= h

(
− 1

µ2

)
= λ(µ− µ1)

(
µ̂

µ2
+ 1
)
> 0

and

h
(
− 1

µ̂

)
=

2dµ1µ2

µ̂2 − 2d(µ1 + µ2) + µ1µ2(2λ + λ̂)

µ̂
+ λ̂(µ1 + µ2) + 2d + 2λµ− λ̂µ̂.

If µ̂ < µmax, which seems to be a natural assumption, and h(−1/µ̂) < 0, then all 3 roots z1, z2 and z3 of the
equation h(z) = 0 are negative real and pairwise distinct because z1 < −1/µ̂, z2 ∈ (−1/µ̂,−1/µmax) and
z3 ∈ (−1/µmax, 0).

Proof. By Lemma 2, ψ(x) is a solution to (41) for all x > 0. The corresponding characteristic equation
has n + 2 roots. Since An+2

0 = 0 in (41) by Lemma 3, we conclude that n + 1 of these roots coincide
with the roots of (54) z1, z2, . . ., zn+1, and one more root zn+2 = 0. Next, if we assume that the roots
of (54) are all negative real and pairwise distinct, then

ψ(x) =
n+1

∑
i=1

Ci ezix + Cn+2, x > 0,
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with some constants Ci, 1 6 i 6 n + 2. To find them we use Remark 1 and the intermediate
integro-differential equations. First of all, if the net profit condition (2) holds, then limx→∞ ψ(x) = 0.
Consequently, Cn+2 = 0 and we get (55). To determine n + 1 constants Ci, 1 6 i 6 n + 1, we need
n + 1 equations.

Substituting (55) into the equality ψ(0) = 1, we obtain (56). Letting x = 0 in (45), (47), (49) and (50)
for 4 6 m 6 n and simplifying the expressions yield

dψ′(0)− λ̂

µ̂

∫ ∞

0
ψ(u) e−u/µ̂ du = −λ̂, (61)

dµnψ′′(0) +
(
d + µn(λ + λ̂)

)
ψ′(0)− λ̂

µ̂

(
1 +

µn

µ̂

) ∫ ∞

0
ψ(u) e−u/µ̂ du = −λ̂− λ̂µn

µ̂
, (62)

− dµnµ̂ψ′′′(0) +
(
d(µn − µ̂)− µnµ̂(λ + λ̂)

)
ψ′′(0)

+

(
d + λµn − µ̂(λ + λ̂− λpn) + µnµ̂

n−1

∑
i=1

λpi
µi

)
ψ′(0) = 0

(63)

and
A(m)

m ψ(m)(0) + A(m)
m−1ψ(m−1)(0) + . . . + A(m)

1 ψ′(0) = 0, 4 6 m 6 n, (64)

respectively. Thus, we have n + 1 equations, namely (56) and (61)–(64) for 4 6 m 6 n, to find the
constants. Since

ψ(l)(x) =
n+1

∑
i=1

Ci zl
i ezix, x > 0, l > 1,

and
1
µ̂

∫ ∞

0
ψ(u) e−u/µ̂ du = −

n+1

∑
i=1

Ci
µ̂zi − 1

,

Equations (61)–(64) take the form

d
n+1

∑
i=1

Ci zi + λ̂
n+1

∑
i=1

Ci
µ̂zi − 1

= −λ̂,

dµn

n+1

∑
i=1

Ci z2
i +

(
d + µn(λ + λ̂)

) n+1

∑
i=1

Ci zi + λ̂

(
1 +

µn

µ̂

) n+1

∑
i=1

Ci
µ̂zi − 1

= −λ̂− λ̂µn

µ̂
,

− dµnµ̂
n+1

∑
i=1

Ci z3
i +

(
d(µn − µ̂)− µnµ̂(λ + λ̂)

) n+1

∑
i=1

Ci z2
i

+

(
d + λµn − µ̂(λ + λ̂− λpn) + µnµ̂

n−1

∑
i=1

λpi
µi

) n+1

∑
i=1

Ci zi = 0

and

A(m)
m

n+1

∑
i=1

Ci zm
i + A(m)

m−1

n+1

∑
i=1

Ci zm−1
i + . . . + A(m)

1

n+1

∑
i=1

Ci zi = 0, 4 6 m 6 n,

respectively, which gives (57)–(60).
The system of linear Equations (56)–(60) has a unique solution provided that its determinant

is not equal to 0. Therefore, (41) has a unique solution satisfying certain conditions, which is given
by (55).

5.2. Erlang Distributions for the Premium and Claim Sizes

Now let us consider the case when the premium and claim sizes have the Erlang distributions
described in Section 3.4 with n̂ = 2 and n = 2.
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Lemma 4. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions with k = 1,
and let the premium and claim sizes have the Erlang distributions described in Section 3.4 with n̂ = 2 and
n = 2. Then for all x > 0, ψ(x) is a solution to the differential equation

dβ2 β̂2ψ(V)(x) +
(
2dββ̂(β̂− β) + β2 β̂2(λ + λ̂)

)
ψ(IV)(x)

+
(
d(β2 − 4ββ̂ + β̂2) + 2ββ̂(β̂− β)(λ + λ̂)

)
ψ′′′(x)

+
(
2d(β− β̂)− 4ββ̂(λ + λ̂) + (λβ2 + λ̂β̂2)

)
ψ′′(x) +

(
d + 2λβ− 2λ̂β̂

)
ψ′(x) = 0.

(65)

Proof. By Theorem 1, ψ(x) satisfies the integro-differential equation

dψ′(x) + (λ + λ̂)ψ(x) = λ̂
∫ ∞

x
ψ(u)

1
β̂2

(u− x) e−(u−x)/β̂ du

+ λ
∫ x

0
ψ(u)

1
β2 (x− u) e−(x−u)/β du + λ

(
1 +

x
β

)
e−x/β, x > 0.

(66)

As in Lemma 2, to get the differential Equation (65), we need to eliminate the integral terms
from (66). Since the right-hand side of (66) is differentiable for all x > 0, ψ(x) is twice differentiable on
[0, ∞), and differentiating (66), we obtain

dψ′′(x) + (λ + λ̂)ψ′(x) = λ̂
∫ ∞

x
ψ(u)

1
β̂2

(
1
β̂
(u− x)− 1

)
e−(u−x)/β̂ du

+ λ
∫ x

0
ψ(u)

1
β2

(
− 1

β
(x− u) + 1

)
e−(x−u)/β du + λ

(
− 1

β

(
1 +

x
β

)
+

1
β

)
e−x/β, x > 0.

(67)

Multiplying (67) by β and adding (66), we get

dβψ′′(x) +
(
d + β(λ + λ̂)

)
ψ′(x) + (λ + λ̂)ψ(x)

= λ̂
∫ ∞

x
ψ(u)

1
β̂2

((
1 +

β

β̂

)
(u− x)− β

)
e−(u−x)/β̂ du

+ λ
∫ x

0
ψ(u)

1
β

e−(x−u)/β du + λe−x/β, x > 0.

(68)

Similarly, differentiating (68), multiplying the result by (−β̂) and adding (68), we obtain

− dββ̂ψ′′′(x) +
(
d(β− β̂)− ββ̂(λ + λ̂)

)
ψ′′(x) +

(
d + (β− β̂)(λ + λ̂)

)
ψ′(x)

+

(
λ + λ̂ +

λβ̂

β
+

λ̂β

β̂

)
ψ(x) = λ̂

∫ ∞

x
ψ(u)

1
β̂

(
1 +

β

β̂

)
e−(u−x)/β̂ du

+ λ
∫ x

0
ψ(u)

(
1
β
+

β̂

β2

)
e−(x−u)/β du +

(
λ +

λβ̂

β

)
e−x/β, x > 0.

(69)

Now we can successively eliminate the integral terms from (69). Differentiating (69), multiplying
the result by β and adding (69) yield

− dβ2 β̂ψ(IV)(x) +
(
dβ(β− 2β̂)− β2 β̂(λ + λ̂)

)
ψ′′′(x) +

(
d(2β− β̂) + β(β− 2β̂)(λ + λ̂)

)
ψ′′(x)

+

(
d + 2β(λ + λ̂)− λ̂β̂ +

λ̂β2

β̂

)
ψ′(x) +

(
λ̂ +

λ̂β

β̂

(
2 +

β

β̂

))
ψ(x)

= λ̂
∫ ∞

x
ψ(u)

1
β̂

(
1 +

β

β̂

)2

e−(u−x)/β̂ du, x > 0.

(70)

Finally, differentiating (70), multiplying the result by (−β̂) and adding (70) give (65).
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Theorem 10. Let the surplus process {Xt(x)}t>0 be defined by (1) under the above assumptions with k = 1,
and let the premium and claim sizes have the Erlang distributions described in Section 3.4 with n̂ = 2 and

n = 2. If the net profit condition (2) holds and β̂
β <

√
5−1
4 , then

ψ(x) =
3

∑
i=1

Ci ezix, x > 0, (71)

where zi, 1 6 zi 6 3, are negative and pairwise distinct roots of the equation

dβ2 β̂2R4 +
(
2dββ̂(β̂− β) + β2 β̂2(λ + λ̂)

)
R3

+
(
d(β2 − 4ββ̂ + β̂2) + 2ββ̂(β̂− β)(λ + λ̂)

)
R2

+
(
2d(β− β̂)− 4ββ̂(λ + λ̂) + (λβ2 + λ̂β̂2)

)
R + d + 2λβ− 2λ̂β̂ = 0,

(72)

and the constants Ci, 1 6 Ci 6 3, are determined from the system of linear Equations (73)–(75):

3

∑
i=1

Ci = 1, (73)

3

∑
i=1

Ci

(
dzi −

λ̂

(1− β̂zi)2

)
= −λ̂, (74)

3

∑
i=1

Ci

(
dβz2

i +
(
d + β(λ̂ + λ)

)
zi − λ̂

((
1 +

β

β̂

)
1

(1− β̂zi)2
− β

β̂
· 1

1− β̂zi

))
= −λ̂, (75)

provided that its determinant is not equal to 0.

Proof. By Lemma 4, ψ(x) is a solution to (65) for all x > 0. It is obvious that the corresponding
characteristic equation has 5 roots, one of which is equal to 0, and the others 4 coincide with the roots
of (72). Comparing Equations (22) and (72) we conclude that if z is a root of (22), then−z is a root of (72),

and vice versa. Therefore, since the net profit condition (2) holds and β̂
β <

√
5−1
4 , by Proposition 1,

we deduce that (72) has 4 distinct real roots, one of which is positive, and the others 3 are negative.
Thus, the characteristic equation corresponding to (65) has 5 real distinct roots zi, 1 6 zi 6 5, and for
definiteness, we suppose that z1 < 0, z2 < 0, z3 < 0, z4 > 0 and z5 = 0. Consequently, we have

ψ(x) =
4

∑
i=1

Ci ezix + C5, x > 0,

with some constants Ci, 1 6 i 6 5. Since the net profit condition (2) holds, then limx→∞ ψ(x) = 0
by Remark 1. Hence, C4 = 0 and C5 = 0, from which (71) follows. To determine the constants Ci,
1 6 i 6 3, we need 3 equations.

Substituting (71) into the equality ψ(0) = 1 gives (73). Letting x = 0 in (66) and (68) yields

dψ′(0) + λ̂ = λ̂
∫ ∞

0
ψ(u)

u
β̂2

e−u/β̂ du (76)

and

dβψ′′(0) +
(
d + β(λ + λ̂)

)
ψ′(0) + λ̂ = λ̂

∫ ∞

0
ψ(u)

1
β̂2

((
1 +

β

β̂

)
u− β

)
e−u/β̂ du, (77)

respectively. Thus, we have Equations (73), (76) and (77) to find the constants. Since

ψ(l)(x) =
n+1

∑
i=1

Ci zl
i ezix, x > 0, l > 1,
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∫ ∞

0
ψ(u)

1
β̂

e−u/β̂ du =
1
β̂

3

∑
i=1

Ci

∫ ∞

0
e(zi−1/β̂) du =

3

∑
i=1

Ci

1− β̂zi

and

∫ ∞

0
ψ(u)

u
β̂2

e−u/β̂ du =
1
β̂2

3

∑
i=1

Ci

∫ ∞

0
u e(zi−1/β̂) du =

1
β̂2

3

∑
i=1

Ci

(1/β̂− zi)2

∫ ∞

0
v e−v dv

=
Γ(2)
β̂2

3

∑
i=1

Ci

(1/β̂− zi)2
=

3

∑
i=1

Ci

(1− β̂zi)2

from (76) and (77) we get

d
3

∑
i=1

Ci zi − λ̂
3

∑
i=1

Ci

(1− β̂zi)2
= −λ̂

and

dβ
3

∑
i=1

Ci z2
i +

(
d + β(λ + λ̂)

) 3

∑
i=1

Ci zi − λ̂
3

∑
i=1

Ci

((
1 +

β

β̂

)
1

(1− β̂zi)2
− β

β̂
· 1

1− β̂zi

)
= −λ̂,

respectively, which gives (74) and (75).
Thus, ψ(x) given by (71) is a unique solution to (65) satisfying certain conditions provided that

the determinant of the system of linear Equations (73)–(75) is not equal to 0.

6. Numerical Illustrations

To analyze the results obtained in Sections 3–5, we consider a few numerical examples. In all of
them, we set λ̂ = 2.3, µ̂ = 0.2, λ = 0.1 and µ = 3. All calculations are carried out using R software.

Example 1. Let k = 1, i.e., we consider the model with a constant dividend strategy, and let d = 0.05.
We suppose that the premium and claim sizes are exponentially distributed with means µ̂ = 0.2 and µ = 3.

By Theorems 3 and 4, we get ψexp(x) = e−0.08478126x for all x > 0, and we use Proposition 2 to
calculate ψnon−exp(x). Moreover, by [62] (Theorem 2), we obtain

ψ(x) = 0.747121e−0.084781x + 0.252879e−43.248552x, x > 0.

Note that the exponent in the expression for ψexp(x) coincides with one of the exponents in the exact
formula for ψ(x). The results of computations are presented in Table 1 for some values of x.

From Table 1 we conclude that the relative errors ψexp(x)/ψ(x)− 1 are approximately equal for
all values of x, which is also easily seen if we compare formulas for ψexp(x) and ψ(x). Moreover, in this
case, the non-exponential bound ψnon−exp(x) turns out to be much tighter when the initial surplus is
not so large and is becoming closer to ψexp(x) with increasing x (see also Figure 1).
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Table 1. Results of computations for the model considered in Example 1.

x ψ(x) ψexp(x) ψexp(x)
ψ(x) − 1 ψnon−exp(x) ψnon−exp(x)

ψ(x) − 1

0.2 0.734604 0.983187 0.3384 0.891300 0.2133
0.3 0.728359 0.974886 0.3385 0.886006 0.2164
0.7 0.704072 0.942380 0.3385 0.864594 0.2280
1 0.686390 0.918713 0.3385 0.848330 0.2359
2 0.630595 0.844034 0.3385 0.793602 0.2585
3 0.579336 0.775425 0.3385 0.739289 0.2761
5 0.488980 0.654485 0.3385 0.635932 0.3005
7 0.412715 0.552408 0.3385 0.542882 0.3154

10 0.320030 0.428351 0.3385 0.424847 0.3275
15 0.209455 0.280349 0.3385 0.279687 0.3353
20 0.137085 0.183485 0.3385 0.183359 0.3376
30 0.058721 0.078596 0.3385 0.078591 0.3384
50 0.010774 0.014421 0.3385 0.014421 0.3385
70 0.001977 0.002646 0.3385 0.002646 0.3385

(a) (b)

Figure 1. Comparison of the results for the model considered in Example 1: (a) Ruin probability given
by the explicit formula as well as the exponential and non-exponential bounds for it. (b) Relative errors
of the exponential and non-exponential bounds.

Example 2. Let k = 2, b1 = 5, d1 = 0.05 and d2 = 0.1, and let the premium and claim sizes be exponentially
distributed with means µ̂ = 0.2 and µ = 3.

By Theorems 3 and 4, we get ψexp(x) = e−0.05186327x for all x > 0, and Theorem 8 and Remark 2
enable us to calculate ψnon−exp(x). Explicit formulas are found in [36] (Theorem 3 and Remark 6).
Thus, we have

ψ(x) = 0.530821e−0.084781x + 0.179668e−43.248552x + 0.289512, x ∈ [0, 5],

ψ(x) = 0.826718e−0.051863x − 7.043723 · 1038e−19.28147x, x ∈ [5, ∞).

We can notice that the exponent in the expression for ψexp(x) coincides with one of the exponents
in the exact formula for ψ(x) for x > 5. The results of computations are given in Table 2 for some
values of x.

From Table 2 we see that the difference between the relative errors ψexp(x)/ψ(x) − 1 and
ψnon−exp(x)/ψ(x)− 1 is not so significant as in Example 1 and also vanishes with increasing x (see
also Figure 2). This can be explained, in particular, by the fact that to calculate ψnon−exp(x), we use
Proposition 2 in Example 1 and Theorem 8 together with Remark 2 in Example 2.
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Table 2. Results of computations for the model considered in Example 2.

x ψ(x) ψexp(x) ψexp(x)
ψ(x) − 1 ψnon−exp(x) ψnon−exp(x)

ψ(x) − 1

0.2 0.811439 0.989681 0.2197 0.981379 0.2094
0.3 0.807002 0.984561 0.2200 0.976501 0.2100
0.7 0.789746 0.964347 0.2211 0.957182 0.2120
1 0.777184 0.949459 0.2217 0.942892 0.2132
2 0.737542 0.901472 0.2223 0.896528 0.2156
3 0.701123 0.855910 0.2208 0.852140 0.2154
5 0.636926 0.771579 0.2114 0.769284 0.2078
7 0.575029 0.695557 0.2096 0.694802 0.2083

10 0.492173 0.595334 0.2096 0.595056 0.2090
15 0.379750 0.459347 0.2096 0.459295 0.2095
20 0.293007 0.354423 0.2096 0.354413 0.2096
30 0.174437 0.211000 0.2096 0.211000 0.2096
50 0.061825 0.074783 0.2096 0.074783 0.2096
70 0.021912 0.026505 0.2096 0.026505 0.2096

(a) (b)

Figure 2. Comparison of the results for the model considered in Example 2: (a) Ruin probability given
by the explicit formula as well as the exponential and non-exponential bounds for it. (b) Relative errors
of the exponential and non-exponential bounds.

Example 3. Let now the conditions of Example 2 hold with the difference that d1 = 0.1 and d2 = 0.05.

In this case, the exponential bound is the same as that given in Example 2, and ψnon−exp(x) is also
calculated using Theorem 8 and Remark 2. By [36] (Theorem 3 and Remark 6), we have

ψ(x) = 1.204304e−0.051863x + 0.218067e−19.28147x − 0.422371, x ∈ [0, 5],

ψ(x) = 0.077253e−0.084781x + 1.012903 · 1091e−43.248552x, x ∈ [5, ∞),

and the results of computations are presented in Table 3.
In this case, the exponent in the expression for ψexp(x) coincides with one of the exponents in

the exact formula for ψ(x) for x ∈ [0, 5]. From Table 3 we deduce that the difference between the
relative errors ψexp(x)/ψ(x)− 1 and ψnon−exp(x)/ψ(x)− 1 is also not significant and vanishes with
increasing x (see also Figure 3). In contrast to Example 2, in this case, the relative errors of both the
exponential and non-exponential bounds are acceptable for relatively small values of the initial surplus
and are becoming extremely large with increasing x. This follows immediately from the fact that we
use only the value of dmax to get the exponential bound, but dividends are actually paid with intensity
dmax only when x ∈ [0, 5].
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Table 3. Results of computations for the model considered in Example 3.

x ψ(x) ψexp(x) ψexp(x)
ψ(x) − 1 ψnon−exp(x) ψnon−exp(x)

ψ(x) − 1

0.2 0.774117 0.989681 0.2785 0.982463 0.2691
0.3 0.764011 0.984561 0.2887 0.977524 0.2795
0.7 0.738996 0.964347 0.3050 0.958183 0.2966
1 0.721066 0.949459 0.3167 0.943881 0.3090
2 0.663275 0.901472 0.3591 0.897475 0.3531
3 0.608405 0.855910 0.4068 0.853047 0.4021
5 0.506845 0.771579 0.5223 0.770109 0.5194
7 0.426750 0.695557 0.6299 0.694055 0.6264

10 0.330912 0.595334 0.7991 0.594414 0.7963
15 0.216577 0.459347 1.1209 0.458798 1.1184
20 0.141747 0.354423 1.5004 0.354029 1.4976
30 0.060717 0.210100 2.4751 0.210771 2.4714
50 0.011141 0.074783 5.7126 0.074702 5.7054
70 0.002044 0.026505 11.9662 0.026476 11.9522

(a) (b)

Figure 3. Comparison of the results for the model considered in Example 3: (a) Ruin probability given
by the explicit formula as well as the exponential and non-exponential bounds for it. (b) Relative errors
of the exponential and non-exponential bounds.

Example 4. Let k = 1 and d = 0.05. We suppose that the premium sizes are exponentially distributed with
mean µ̂ = 0.2, and claim sizes have the hyperexponential distribution described in Section 3.3 with n = 3,
p1 = 0.1, p2 = 0.4, p3 = 0.5, µ1 = 1, µ2 = 2.7 and µ3 = 3.64.

By Theorems 3 and 5, we get ψexp(x) = e−0.07859704x for all x > 0 since R = 0.07859704 is the only
root of (13) on (0, 1/3.64). To calculate ψnon−exp(x), we apply Proposition 3. In addition, by Theorem 9,
we get

ψ(x) = 0.736579e−0.078597x + 0.006399e−0.336382x + 0.004177e−0.978789x + 0.252845e−43.251328x, x > 0,

and the results of computations are presented in Table 4.
We can notice again that the exponent in the expression for ψexp(x) coincides with one of the

exponents in the exact formula for ψ(x). As in Example 1, ψnon−exp(x) is much tighter than ψexp(x)
for relatively small values of the initial surplus and is becoming closer to it with increasing x (see
also Figure 4).
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Table 4. Results of computations for the model considered in Example 4.

x ψ(x) ψexp(x) ψexp(x)
ψ(x) − 1 ψnon−exp(x) ψnon−exp(x)

ψ(x) − 1

0.2 0.734553 0.984403 0.3401 0.894135 0.2173
0.3 0.728314 0.976697 0.3410 0.889691 0.2216
0.7 0.704311 0.946468 0.3438 0.871147 0.2369
1 0.687044 0.924412 0.3455 0.856609 0.2468
2 0.633290 0.854538 0.3494 0.806126 0.2729
3 0.584412 0.789946 0.3517 0.754893 0.2917
5 0.498441 0.675039 0.3543 0.656260 0.3166
7 0.425505 0.576846 0.3557 0.566634 0.3317

10 0.335864 0.455677 0.3567 0.451513 0.3443
15 0.226613 0.307600 0.3574 0.306636 0.3531
20 0.152952 0.207642 0.3576 0.207412 0.3561
30 0.069694 0.094618 0.3576 0.094604 0.3574
50 0.014471 0.019647 0.3576 0.019647 0.3576
70 0.003005 0.004079 0.3576 0.004079 0.3576

(a) (b)

Figure 4. Comparison of the results for the model considered in Example 4: (a) Ruin probability given
by the explicit formula as well as the exponential and non-exponential bounds for it. (b) Relative errors
of the exponential and non-exponential bounds.

Example 5. Let k = 1 and d = 0.05. We suppose that the premium and claim sizes have the Erlang distributions
described in Section 3.4 with n̂ = 2, β̂ = 0.1, n = 2 and β = 1.5.

In this case, R = 0.1165578 is the only root of (17) on (0, 1/1.5). Hence, Theorems 3 and 6 give
that ψexp(x) = e−0.1165578x for all x > 0. To calculate ψnon−exp(x), we apply Proposition 4. In addition,
by Theorem 10, we get

ψ(x) = 0.77443e−0.116558x − 0.030942e−0.983004x + 0.256513e−46.561732x, x > 0,

and the results of computations are presented in Table 5.
Here, we can also see that the exponent in the expression for ψexp(x) coincides with one of

the exponents in the exact formula for ψ(x), and ψnon−exp(x) is becoming closer to ψexp(x) with
increasing x. In contrast to Examples 1 and 4, ψnon−exp(x) is not much tighter than ψexp(x) for
relatively small values of the initial surplus (see also Figure 5).
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Table 5. Results of computations for the model considered in Example 5.

x ψ(x) ψexp(x) ψexp(x)
ψ(x) − 1 ψnon−exp(x) ψnon−exp(x)

ψ(x) − 1

0.2 0.731189 0.976958 0.3361 0.958695 0.3111
0.3 0.724778 0.965637 0.3323 0.948061 0.3081
0.7 0.698203 0.921649 0.3200 0.906691 0.2986
1 0.677648 0.889979 0.3133 0.876812 0.2939
2 0.609064 0.792062 0.3005 0.783729 0.2868
3 0.544288 0.704918 0.2951 0.699832 0.2858
5 0.432167 0.558339 0.2920 0.556572 0.2879
7 0.342451 0.442239 0.2914 0.441661 0.2897

10 0.241421 0.311742 0.2913 0.311641 0.2909
15 0.134796 0.174058 0.2913 0.174053 0.2912
20 0.075262 0.097183 0.2913 0.097183 0.2913
30 0.023462 0.030296 0.2913 0.030296 0.2913
50 0.002280 0.002944 0.2913 0.002944 0.2913
70 0.000222 0.000286 0.2913 0.000286 0.2913

(a) (b)

Figure 5. Comparison of the results for the model considered in Example 5: (a) Ruin probability given
by the explicit formula as well as the exponential and non-exponential bounds for it. (b) Relative errors
of the exponential and non-exponential bounds.

7. Conclusions

In this article, we obtained an exponential bound for the ruin probability in the risk model with
stochastic premiums and a multi-layer dividend strategy and investigated conditions, under which it
holds for the exponential, hyperexponential and Erlang distributions of the premium and claim sizes.
Using this exponential bound we constructed non-exponential upper bounds, which turn out to be
tighter in a number of cases. Moreover, we derived explicit formulas for the ruin probability when the
premium and claim sizes have either the hyperexponential or the Erlang distributions and used the
formulas to investigate how tight the bounds are.

On the basis of the numerical examples considered above, we can make the following conclusions.
First of all, in all the examples considered above, the exponent in the expression for ψexp(x) coincides
with one of the exponents in the exact formula for ψ(x).

Next, if k = 1, which implies a constant dividend strategy, then the relative errors of the
exponential bound are acceptable. If the premium and claim sizes have the exponential and
hyperexponential distributions, ψnon−exp(x) is much tighter than ψexp(x) when the initial surplus is
not so large, whereas this difference is not so significant if the premium and claim sizes have the
Erlang distributions with n̂ = 2 and n = 2. Moreover, ψnon−exp(x) is becoming closer to ψexp(x) with
increasing x.
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If k = 2, then the results are acceptable provided that d2 = dmax. If d1 = dmax, the relative errors
of both the exponential and non-exponential bounds are acceptable for relatively small values of the
initial surplus and are becoming extremely large with increasing x. In addition, if k = 2, the difference
between the relative errors ψexp(x)/ψ(x)− 1 and ψnon−exp(x)/ψ(x)− 1 is not so significant, although
ψnon−exp(x) is still somewhat tighter. This can be explained, in particular, by the fact that we use
Theorem 8 and Remark 2 to calculate ψnon−exp(x) in this case, whereas Propositions 2–4 are applied to
this end if k = 1.

Finally, from all the examples considered above, we conclude that when the relative errors of
the exponential bound are large, so are the relative errors of the non-exponential bound because it is
constructed using the exponential one.
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