Article

Universality in Short Intervals of the Riemann Zeta-Function Twisted by Non-Trivial Zeros

Antanas Laurinčikas ${ }^{1,+(\text { © }}$ and Darius Šiaučiūnas ${ }^{2, *,+(\mathbb{D})}$
1 Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania; antanas.laurincikas@mif.vu.lt
${ }^{2}$ Regional Development Institute, Šiauliai University, P. Višinskio str. 25, LT-76351 Šiauliai, Lithuania
* Correspondence: darius.siauciunas@su.lt
\dagger These authors contributed equally to this work.

Received: 3 October 2020; Accepted: 20 October 2020; Published: 3 November 2020

Abstract

Let $0<\gamma_{1}<\gamma_{2}<\cdots \leqslant \gamma_{k} \leqslant \cdots$ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function $\zeta(s)$. Using a certain estimate on the pair correlation of the sequence $\left\{\gamma_{k}\right\}$ in the intervals $[N, N+M]$ with $N^{1 / 2+\varepsilon} \leqslant M \leqslant N$, we prove that the set of shifts $\zeta\left(s+i h \gamma_{k}\right), h>0$, approximating any non-vanishing analytic function defined in the strip $\{s \in \mathbb{C}: 1 / 2<\operatorname{Res}<1\}$ with accuracy $\varepsilon>0$ has a positive lower density in $[N, N+M]$ as $N \rightarrow \infty$. Moreover, this set has a positive density for all but at most countably $\varepsilon>0$. The above approximation property remains valid for certain compositions $F(\zeta(s))$.

Keywords: Montgomery pair correlation conjecture; non-trivial zeros; Riemann zeta-function; universality

MSC: 11M06; 11M26

1. Introduction

The Riemann zeta-function $\zeta(s), s=\sigma+i t$, is defined, for $\sigma>1$, by

$$
\zeta(s)=\sum_{m=1}^{\infty} \frac{1}{m^{s}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

where the infinite product is taken over all prime numbers, and has analytic continuation over the whole complex plane, except for the point $s=1$ which is a simple pole with residue 1 . The function $\zeta(s)$ and its value distribution play an important role not only in analytic number theory but in mathematics in general.

It is well known by a Bohr and Courant work [1] that the set of values of $\zeta(\sigma+i t)$ with any fixed $\sigma \in(1 / 2,1]$ is dense in \mathbb{C}. Voronin obtained [2] the infinite-dimensional version of the Bohr-Courant theorem, proving the so-called universality of $\zeta(s)$. This means that every non-vanishing analytic function in the strip $D=\{s \in \mathbb{C}: 1 / 2<\sigma<1\}$ can be approximated by shifts $\zeta(s+i \tau)$. We recall the modern version of the Voronin theorem. Denote by \mathcal{K} the class of compact subsets of the strip D with connected complements, and by $H_{0}(K)$ with $K \in \mathcal{K}$ the class of continuous non-vanishing functions on K that are analytic in the interior of K. Then, for $K \in \mathcal{K}, f(s) \in H_{0}(K)$ and every $\varepsilon>0$, the inequality

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+i \tau)-f(s)|<\varepsilon\right\}>0
$$

is true; see, for example, [3-6]. Thus, we have that there are infinitely many shifts $\zeta(s+i \tau)$ approximating a given function $f(s) \in H_{0}(K)$.

The above theorem is of continuous type because τ in shifts $\zeta(s+i \tau)$ can take arbitrary real values. If τ runs over a certain discrete set, then we have the discrete universality that was proposed in [7]. Denote by \# A the cardinality of a set A, and suppose that N runs over the set of non-negative integers. If K and $f(s)$ are as above, then we have, for $h>0$ and $\varepsilon>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{N+1} \#\left\{0 \leqslant k \leqslant N: \sup _{s \in K}|\zeta(s+i k h)-f(s)|<\varepsilon\right\}>0 .
$$

Approximations of analytic functions by more general discrete shifts were considered in [8-10].
Denote by $\gamma_{1}<\gamma_{2}<\cdots \leqslant \gamma_{k} \leqslant \cdots$ the positive imaginary parts of non-trivial zeros $\rho_{k}=\beta_{k}+i \gamma_{k}$ of the function $\zeta(s)$. Discrete universality theorems with shifts $\zeta\left(s+i h \gamma_{k}\right)$ were obtained in [11,12]. In [11], for this the Riemann hypothesis was used, while in [12], the weak form of the Montgomery pair correlation conjecture [13] was involved. More precisely, the estimate, for $c>0$,

$$
\begin{equation*}
\sum_{\substack{0<\gamma_{k}, \gamma_{l} \leqslant T \\\left|\gamma_{k}-\gamma_{l}\right|<c / \log T}} 1<_{c} T \log T, \quad T \rightarrow \infty \tag{1}
\end{equation*}
$$

was required. Analogical results for more general functions were given in [14,15].
On the other hand, all above theorems are non-effective in the sense that any concrete shift approximating a given analytic function is not known. This shortcoming leads to the idea of universality in intervals as short as possible containing τ with approximating property. The first result in this direction was obtained in [16].

Theorem 1. Suppose that $T^{1 / 3}(\log T)^{26 / 15} \leqslant H \leqslant T, K \in \mathcal{K}$ and $f(s) \in H_{0}(K)$. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{H} \text { meas }\left\{\tau \in[T, T+H]: \sup _{s \in K}|\zeta(s+i \tau)-f(s)|<\varepsilon\right\}>0
$$

The aim of this paper is the universality of the function $\zeta(s)$ in short intervals with shifts $\zeta\left(s+i h \gamma_{k}\right)$. In this case, the estimate (1) is not sufficient. Therefore, for $N^{1 / 2+\varepsilon} \leqslant M \leqslant N$ with $\varepsilon>0$, we use the following hypothesis:

$$
\begin{equation*}
\sum_{\substack{k=N \\\left|\gamma_{k}-\gamma_{l}\right|<c / \log N}}^{N+M} \sum_{l=N}^{N+M} 1<_{c} M, \tag{2}
\end{equation*}
$$

which, as estimate (1), also gives a certain information on the pair correlation of non-trivial zeros, differently from estimate (1), however, in short intervals.

Theorem 2. Suppose that $N^{1 / 2+\varepsilon} \leqslant M \leqslant N$, and estimate (2) are true. Let $K \in \mathcal{K}$ and $f(s) \in H_{0}(K)$. Then, for every $\varepsilon>0$ and $h>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{M+1} \#\left\{N \leqslant k \leqslant N+M: \sup _{s \in K}\left|\zeta\left(s+i h \gamma_{k}\right)-f(s)\right|<\varepsilon\right\}>0
$$

Moreover, "lim inf" can be replaced by "lim" for all but at most countably many $\varepsilon>0$.
Theorem 2 has a generalization for certain compositions $F(\zeta(s))$. Denote by $H(D)$ the space of analytic functions on the strip D endowed with the topology of uniform convergence on compacta. Moreover, let

$$
S=\{g \in H(D): \text { either } g(s) \neq 0 \text { for all } s \in D, \text { or } g(s) \equiv 0\}
$$

and, for the operator $F: H(D) \rightarrow H(D)$ and distinct complex numbers a_{1}, \ldots, a_{r},

$$
H_{a_{1}, \ldots, a_{r} ; F}(D)=\left\{g \in H(D): g(s) \neq a_{j} \text { for all } s \in D, j=1, \ldots, r\right\} \cup\{F(0)\}
$$

Then we have
Theorem 3. Suppose that estimate (2) is true, $N^{1 / 2+\varepsilon} \leqslant M \leqslant N$, and $F: H(D) \rightarrow H(D)$ is a continuous operator such that $F(S) \supset H_{a_{1}, \ldots, a_{r} ; F}(D)$. For $r=1$, let $K \in \mathcal{K}$ and $f(s)$ be a continuous $\neq a_{1}$ function on K, and analytic in the interior of K. For $r \geqslant 2$, let K be an arbitrary compact subset of D, and $f(s) \in H_{a_{1}, \ldots, a_{r} ; F}(D)$. Then, for every $\varepsilon>0$ and $h>0$,

$$
\liminf _{N \rightarrow \infty} \frac{1}{M+1} \#\left\{N \leqslant k \leqslant N+M: \sup _{s \in K}\left|F\left(\zeta\left(s+i h \gamma_{k}\right)\right)-f(s)\right|<\varepsilon\right\}>0
$$

Moreover "lim inf" can be replaced by "lim" for all but at most countably many $\varepsilon>0$.
For example, the operators $F(g)=\sin g$ and $F(g)=\sinh g$ satisfy the hypotheses of Theorem 3 with $a_{1}=-1$ and $a_{2}=1$.

The proofs of Theorems 2 and 3 use probabilistic limit theorems for measures in the space $H(D)$. Denote by $\mathcal{B}(\mathbb{X})$ the Borel σ-field of the space \mathbb{X}. The main limit theorem will be proved for

$$
P_{N, M, h}(A)=\frac{1}{M+1} \#\left\{N \leqslant k \leqslant N+M: \zeta\left(s+i h \gamma_{k}\right) \in A\right\}, A \in \mathcal{B}(H(D))
$$

as $N \rightarrow \infty$. We divide its proof into four sections.

2. A Limit Theorem on the Torus

Denote by γ the unit circle on the complex plane, by \mathbb{P} the set of all prime numbers, and define the set

$$
\Omega=\prod_{p \in \mathbb{P}} \gamma_{p}
$$

where $\gamma_{p}=\gamma$ for all $p \in \mathbb{P}$. With the product topology and pointwise multiplication, the torus Ω is a compact topological Abelian group. Therefore, on $(\Omega, \mathcal{B}(\Omega))$, the probability Haar measure m_{H} can be defined, and we have the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$. Denote by $\omega(p)$ the p th component of an element $\omega \in \Omega, p \in \mathbb{P}$.

In this section, we will prove a limit theorem for

$$
Q_{N, M, h}(A)=\frac{1}{M+1} \#\left\{N \leqslant k \leqslant N+M:\left(p^{-i h \gamma_{k}}: p \in \mathbb{P}\right) \in A\right\}, A \in \mathcal{B}(\Omega)
$$

as $N \rightarrow \infty$.
Before the statement of a limit theorem for $Q_{N, M, h}$ as $N \rightarrow \infty$, we will recall some useful results that will be used in its proof. Denote by $N(T)$ the number of non-trivial zeros of $\zeta(s)$ in the region $\{s \in \mathbb{C}: 0<t<T\}$.

Lemma 1 (von Mongoldt formula). For $T \rightarrow \infty$,

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi \mathrm{e}}+O(\log T)
$$

For the proof, see, for example, [17].
Denote by $N(\sigma, T)$ the number of zeros $\boldsymbol{\rho}=\beta+\boldsymbol{i} \gamma$ of $\zeta(s)$ with $\beta>\sigma$ and $|\gamma|<T$.

Lemma 2. Suppose that $H \geqslant T^{\alpha}$ with $\alpha>27 / 82$. Then, for $1 / 2<\sigma<1$, uniformly in σ,

$$
N(\sigma, T+H)-N(\sigma, T)=O\left(\frac{H}{\sigma-1 / 2}\right)
$$

Proof of the lemma can be found in [18].
For positive $u \neq 1$, denote by $\Lambda(u)$ the von Mongoldt function if $u \in \mathbb{N} \backslash\{1\}$, and zero, otherwise.
Lemma 3. For positive $x \neq 1$ and $T \rightarrow \infty$,

$$
\sum_{0<\gamma_{k}<T} x^{\rho_{k}}=\left(\Lambda(x)-x \Lambda\left(\frac{1}{x}\right)\right) \frac{T}{2 \pi}+O\left(T^{(1 / 2)+\varepsilon}\right)
$$

with every $\varepsilon>0$.
Proof. The lemma is Theorem 2 of [19] with $a=0$.
Lemma 4. Suppose that $N^{1 / 2+\varepsilon} \leqslant M \leqslant N$ with $\varepsilon>0$. Then, for positive $x \neq 1$, as $N \rightarrow \infty$,

$$
\sum_{k=N}^{N+M} x^{\rho_{k}} \ll x \frac{M}{\sqrt{\log M}}
$$

Proof. Since

$$
\frac{N}{\log N} \ll \gamma_{N} \ll \frac{N}{\log N}
$$

in view of Lemma 3,

$$
\begin{equation*}
\sum_{\gamma_{N}<\gamma \leqslant \gamma_{N+M}} x^{\rho}=\left(\Lambda(x)-x \Lambda\left(\frac{1}{x}\right)\right) \frac{\gamma_{N+M}-\gamma_{N}}{2 \pi}+O\left(\frac{N^{1 / 2+\varepsilon}}{\sqrt{\log N}}\right) \tag{3}
\end{equation*}
$$

An application of Lemma 1 gives

$$
N+M=\sum_{\gamma \leqslant \gamma_{N+M}} 1=\frac{\gamma_{N+M}}{2 \pi} \log \frac{\gamma_{N+M}}{2 \pi \mathrm{e}}+O(\log N)
$$

and

$$
N=\sum_{\gamma \leqslant \gamma_{N}} 1=\frac{\gamma_{N}}{2 \pi} \log \frac{\gamma_{N}}{2 \pi \mathrm{e}}+O(\log N)
$$

Therefore,

$$
\gamma_{N+M}=\frac{2 \pi(N+M)}{\log \left(\gamma_{N+M} /(2 \pi \mathrm{e})\right)}+O(1)
$$

and

$$
\gamma_{N}=\frac{2 \pi N}{\log \left(\gamma_{N} /(2 \pi \mathrm{e})\right)}+O(1)
$$

Hence,

$$
\begin{equation*}
\gamma_{N+M}-\gamma_{N} \leqslant \frac{2 \pi(N+M)}{\log \left(\gamma_{N} /(2 \pi \mathrm{e})\right)}-\frac{2 \pi N}{\log \left(\gamma_{N} /(2 \pi \mathrm{e})\right)}+O(1) \ll \frac{M}{\log N}+O(1) \ll \frac{M}{\log M} \tag{4}
\end{equation*}
$$

This together with Equation (3) proves the lemma.
Now, we state the limit theorem for $Q_{N, M, h}$.

Theorem 4. Suppose that, for any $\varepsilon>0, N^{1 / 2+\varepsilon} \leqslant M \leqslant N$. Then $Q_{N, M, h}$ converges weakly to the Haar measure m_{H} as $N \rightarrow \infty$.

Proof. Denote by $g_{N, M, h}(\underline{k}), \underline{k}=\left(k_{p}: k_{p} \in \mathbb{Z}, p \in \mathbb{P}\right)$, the Fourier transform of $Q_{N, M, h}$, i.e.,

$$
g_{N, M, h}(\underline{k})=\int_{\Omega}\left(\prod_{p \in \mathbb{P}}^{*} \omega^{k_{p}}(p)\right) \mathrm{d} Q_{N, M, h}
$$

where the star " $*$ " means that only a finite number of integers k_{p} are distinct from zero. Thus, by the definition of $Q_{N, M, h}$,

$$
\begin{equation*}
g_{N, M, h}(\underline{k})=\frac{1}{M+1} \sum_{k=N}^{N+M} \exp \left\{-i h \gamma_{k} \sum_{p \in \mathbb{P}}^{*} k_{p} \log p\right\} \tag{5}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
g_{N, M, h}(\underline{0})=1 . \tag{6}
\end{equation*}
$$

Now, suppose that $k \neq \underline{0}$. Since the set $\{\log p: p \in \mathbb{P}\}$ is linearly independent within the field of rational numbers \mathbb{Q}, in that case we have

$$
a \stackrel{\text { def }}{=} \sum_{p \in \mathbb{P}}^{*} k_{p} \log p \neq 0
$$

Thus, we will estimate the sum

$$
\sum_{k=N}^{N+M} \exp \left\{i h a \gamma_{k}\right\}
$$

It is easily seen that

$$
\begin{align*}
\sum_{k=N}^{N+M}\left(\exp \left\{h a \beta_{k}\right\}-\exp \left\{\frac{1}{2} h a\right\}\right) & \lll h, a \sum_{k=N}^{N+M}\left|\exp \left\{h a\left(\beta_{k}-\frac{1}{2}\right)\right\}-1\right| \\
& \ll h, a^{\sum_{k=N}^{N+M}\left|\beta_{k}-\frac{1}{2}\right|=\sum_{k=N}^{\prime}\left|\beta_{k}-\frac{1}{2}\right|+\sum_{k=N}^{N+M}\left|\beta_{k}-\frac{1}{2}\right|,} \tag{7}
\end{align*}
$$

where $\left|\beta_{k}-1 / 2\right| \leqslant 1 / \log \log M$ in \sum^{\prime}, and $\left|\beta_{k}-1 / 2\right|>1 / \log \log M$ in $\sum^{\prime \prime}$. Obviously,

$$
\begin{equation*}
\sum_{k=N}^{N+M}\left|\beta_{k}-\frac{1}{2}\right| \leqslant \frac{M}{\log \log M} \tag{8}
\end{equation*}
$$

Therefore, by Lemma 2 and estimate (2),

$$
\sum_{k=N}^{N+M}\left|\beta_{k}-\frac{1}{2}\right| \ll \sum_{\gamma_{N}<\gamma \leqslant \gamma_{N+M}}^{\prime \prime} 1 \ll \frac{M \log \log M}{\log M}
$$

This, and estimates (7) and (8) show that

$$
\begin{equation*}
\sum_{k=N}^{N+M} \exp \left\{\left(\beta_{k}+i \gamma_{k}\right) h a\right\}-\sum_{k=N}^{N+M} \exp \left\{\left(\frac{1}{2}+i \gamma_{k}\right) h a\right\}<_{h, a} \frac{M}{\log \log M} \tag{9}
\end{equation*}
$$

Lemma 4 with $x=\exp \{h a\}$ implies

$$
\sum_{k=N}^{N+M} \exp \left\{\left(\beta_{k}+i \gamma_{k}\right) h a\right\}<_{h, a} \frac{M}{\sqrt{\log M}} .
$$

Therefore, in view of estimate (9),

$$
\sum_{k=N}^{N+M} \exp \left\{i h a \gamma_{k}\right\}<_{h, a} \sum_{k=N}^{N+M} \exp \left\{\left(\frac{1}{2}+i \gamma_{k}\right) h a\right\}<_{h, a} \frac{M}{\log \log M}
$$

Thus, by Equation (5),

$$
g_{N, M, h}(\underline{k}) \ll_{h, a} \frac{1}{\log \log M}
$$

This together with Equation (6) shows that

$$
\lim _{N \rightarrow \infty} g_{N, M, h}(\underline{k})= \begin{cases}1 & \text { if } \underline{k}=\underline{0} \\ 0 & \text { if } \underline{k} \neq \underline{0}\end{cases}
$$

and the lemma is proved because the right-hand side of the latter equality is the Fourier transform of the measure m_{H}.

3. A Limit Theorem for Absolutely Convergent Series

Let $\theta>1 / 2$ be a fixed number, and $v_{n}(m)=\exp \left\{-(m / n)^{\theta}\right\}$ for $m, n \in \mathbb{N}$. Extend the function $\omega(p)$ to the set \mathbb{N} by setting

$$
\omega(m)=\prod_{\substack{p^{l} \mid m \\ p^{l+1} \nmid m}} \omega^{l}(p)
$$

and define

$$
\zeta_{n}(s)=\sum_{m=1}^{\infty} \frac{v_{n}(m)}{m^{s}}
$$

and

$$
\zeta_{n}(s, \omega)=\sum_{m=1}^{\infty} \frac{\omega(m) v_{n}(m)}{m^{s}}
$$

Then the latter series are absolutely convergent for $\sigma>1 / 2$ [5]. Consider the function $u_{n}: \Omega \rightarrow$ $H(D)$ defined by

$$
u_{n}(\omega)=\zeta_{n}(s, \omega)
$$

The absolute convergence of the series $\zeta_{n}(s, \omega)$ implies the continuity of u_{n}.
For $A \in \mathcal{B}(H(D))$, define

$$
P_{N, M, n, h}(A)=\frac{1}{M+1} \#\left\{N \leqslant k \leqslant N+M: \zeta_{n}\left(s+i h \gamma_{k}\right) \in A\right\}
$$

Theorem 5. Suppose that $N^{1 / 2+\varepsilon} \leqslant M \leqslant N$. Then $P_{N, M, n, h}$ converges weakly to the measure $m_{H} u_{n}^{-1} \stackrel{\text { def }}{=} V_{n}$.
Proof. The theorem follows from the equality

$$
P_{N, M, n, h}(A)=Q_{N, M, h}\left(u_{n}^{-1} A\right)=Q_{N, M, h} u_{n}^{-1}(A), \quad A \in \mathcal{B}(H(D))
$$

continuity of the function u_{n}, Theorem 4 and Theorem 5.1 of [20].
The weak convergence of $P_{N, M, h}$ is closely connected to that of V_{n} as $n \rightarrow \infty$. Define

$$
\zeta(s, \omega)=\prod_{p \in \mathbb{P}}\left(1-\frac{\omega(p)}{p^{s}}\right)^{-1}
$$

Then $\zeta(s, \omega)$ is an $H(D)$-valued random element on the probability space $\left(\Omega, \mathcal{B}(\Omega), m_{H}\right)$ [5]. We recall that the latter infinite product, for almost all ω, is uniformly convergent on compact subsets $K \subset D$. Denote by P_{ζ} the distribution of the random element $\zeta(s, \omega)$, i.e.,

$$
P_{\zeta}(A)=m_{H}\{\omega \in \Omega: \zeta(s, \omega) \in A\}, \quad A \in \mathcal{B}(H(D))
$$

The following statement is very important.
Proposition 1. The probability measure V_{n} converges weakly to measure P_{ζ} as $n \rightarrow \infty$.
Proof. For $A \in \mathcal{B}(H(D))$, define

$$
R_{T}(A)=\frac{1}{T} \operatorname{meas}\{\tau \in[0, T]: \zeta(s+i \tau) \in A\}
$$

It is known that R_{T}, as $T \rightarrow \infty$, converges weakly to P_{ζ} [5]. Moreover, R_{T}, as $T \rightarrow \infty$, and V_{n}, as $n \rightarrow \infty$, converge weakly to the same probability measure on $(H(D), \mathcal{B}(H(D)))$. Thus, V_{n} converges weakly to P_{ζ} as $n \rightarrow \infty$.

4. Mean Square Estimates in Short Intervals

To derive the weak convergence of $P_{N, M, h}$ from that of $P_{N, M, n, h}$ as $N \rightarrow \infty$, the estimate for

$$
\sum_{k=N}^{N+M}\left|\zeta\left(\sigma+i h \gamma_{k}+i t\right)\right|^{2}
$$

with $t \in \mathbb{R}$ is needed.
We will use the following mean square estimate in short intervals.
Lemma 5. Suppose that $\sigma, 1 / 2<\sigma<1$, is fixed and $T^{1 / 3}(\log T)^{26 / 15} \leqslant H \leqslant T$. Then, uniformly in H,

$$
\int_{T-H}^{T+H}|\zeta(\sigma+i t)|^{2} \ll_{\sigma} H
$$

The lemma follows from Theorem 7.1 of [21], and was used in [16].
Lemma 6. Suppose that $N^{1 / 2+\varepsilon} \leqslant M \leqslant N$ and estimate (2) is true. Then, for every fixed $\sigma, 1 / 2<\sigma<1$, $h>0$ and $t \in \mathbb{R}$,

$$
\sum_{k=N}^{N+M}\left|\zeta\left(\sigma+i h \gamma_{k}+i t\right)\right|<_{\sigma, h} M(1+|t|)
$$

Proof. We will apply the Gallagher lemma connecting discrete mean squares with those continuous of some functions; for the proof, see Lemma 1.4 of [22]. Let $T_{0}, T \geqslant \delta>0$ be real numbers, $\mathcal{T} \neq \varnothing$ be a finite set in the interval $\left[T_{0}+\delta / 2, T_{0}+T-\delta / 2\right]$,

$$
N_{\delta}(x)=\sum_{\substack{t \in \mathcal{T} \\|t-x|<\delta}} 1
$$

and let $S(x)$ be a complex-valued continuous function on $\left[T_{0}, T+T_{0}\right]$ having a continuous derivative on $\left(T_{0}, T+T_{0}\right)$. Then the Gallagher lemma asserts that

$$
\begin{equation*}
\sum_{t \in \mathcal{T}} N_{\delta}^{-1}(t)|S(t)|^{2} \leqslant \frac{1}{\delta} \int_{T_{0}}^{T_{0}+T}|S(x)|^{2} \mathrm{~d} x+\left(\int_{T_{0}}^{T_{0}+T}|S(x)|^{2} \mathrm{~d} x \int_{T_{0}}^{T_{0}+T}\left|S^{\prime}(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2} \tag{10}
\end{equation*}
$$

We apply the Gallagher lemma for the function $\zeta\left(s+i k h \gamma_{k}+i t\right)$. In our case $\delta=c / \log N$, $T_{0}=h \gamma_{N}-\delta / 2, T=h \gamma_{N+M}-h \gamma_{N}+\delta / 2$ and $\mathcal{T}=\left\{h \gamma_{N}, h \gamma_{N+1}, \ldots, h \gamma_{N+M}\right\}$. By estimate (2), we have

$$
\begin{equation*}
\sum_{k=N}^{N+M} N_{\delta}\left(h \gamma_{k}\right)=\sum_{\substack{k=N \\\left|\gamma_{k}-\gamma_{l}\right|<c /(h \log N)}}^{N+M} \sum_{\substack{l=N}}^{N+M} 1<_{h} M \tag{11}
\end{equation*}
$$

Now, an application of the Gallagher lemma gives

$$
\begin{align*}
& \sum_{k=N}^{N+M}\left|\zeta\left(\sigma+i h \gamma_{k}+i t\right)\right|= \sum_{k=N}^{N+M} \sqrt{N_{\delta}\left(h \gamma_{k}\right) N^{-1}\left(h \gamma_{k}\right)}\left|\zeta\left(\sigma+i h \gamma_{k}+i t\right)\right| \\
& \leqslant\left(\sum_{k=N}^{N+M} N_{\delta}\left(h \gamma_{k}\right) \sum_{k=N}^{N+M} N^{-1}\left(h \gamma_{k}\right)\left|\zeta\left(\sigma+i h \gamma_{k}+i t\right)\right|^{2}\right)^{1 / 2} \\
& \lll h \sqrt{M} \sqrt{\log N}\left(\int_{h \gamma_{N}-\delta / 2}^{h \gamma_{N+M}}|\zeta(\sigma+i \tau+i t)|^{2} \mathrm{~d} \tau\right. \\
&\left.+\left(\int_{h \gamma_{N}-\delta}^{h \gamma_{N+M}}|\zeta(\sigma+i \tau+i t)|^{2} \mathrm{~d} \tau \int_{h \gamma_{N}-\delta}^{h \gamma_{N+M}}\left|\zeta^{\prime}(\sigma+i \tau+i t)\right|^{2} \mathrm{~d} \tau\right)^{1 / 2}\right)^{1 / 2} . \tag{12}
\end{align*}
$$

The estimate (4) gives with certain $c_{h}>0$

$$
\begin{equation*}
\int_{h \gamma_{N}-\delta}^{h \gamma_{N+M}}|\zeta(\sigma+i \tau+i t)|^{2} \mathrm{~d} t \ll \int_{h \gamma_{N}-\delta-|t|}^{h \gamma_{N}+c_{h}(M / \log M)+|t|}|\zeta(\sigma+i \tau)|^{2} \mathrm{~d} \tau \tag{13}
\end{equation*}
$$

If $c_{h}(M / \log M)+|t| \leqslant h \gamma_{N}$, then, in view of Lemma 5, the right-hand side of (13) is

$$
<_{\sigma, h} \frac{M}{\log M}+|t|<_{\sigma, h} \frac{M}{\log M}(1+|t|) .
$$

If $c_{h}(M / \log M)+|t|>h \gamma_{N}$, then

$$
h \gamma_{N}+c_{h} \frac{M}{\log M}+|t|<2\left(c_{h} \frac{M}{\log M}+|t|\right)
$$

and

$$
h \gamma_{N}-\delta>h \gamma_{N}-2 c_{h} \frac{M}{\log M}-2|t|>-h \gamma_{N} c_{h} \frac{M}{\log M}-|t|>-2\left(c_{h} \frac{M}{\log M}+|t|\right)
$$

Thus, in this case,

$$
\int_{h \gamma_{N}-\delta}^{h \gamma_{N+M}}|\zeta(\sigma+i \tau+i t)|^{2} \mathrm{~d} \tau \ll{ }_{h} \int_{-2\left(c_{h}(M / \log M)+|t|\right)}^{2\left(c_{h}(M / \log M)+|t|\right)}|\zeta(\sigma+i \tau)|^{2} \mathrm{~d} \tau \lll \sigma, h \frac{M}{\log M}(1+|t|)
$$

This together with estimate (13) shows that

$$
\begin{equation*}
\int_{h \gamma_{N}-\delta}^{h \gamma_{N+M}}|\zeta(\sigma+i \tau+i t)|^{2} \mathrm{~d} \tau \ll_{\sigma, h} \frac{M}{\log M}(1+|t|) \tag{14}
\end{equation*}
$$

Estimate (14) and an application of the Cauchy integral formula lead to the bound

$$
\int_{h \gamma_{N}-\delta}^{h \gamma_{N+M}}\left|\zeta^{\prime}(\sigma+i \tau+i t)\right|^{2} \mathrm{~d} \tau \ll_{\sigma, h} \frac{M}{\log M}(1+|t|)
$$

This, estimate (14) and (12) prove the lemma.
Now, we are ready to state an approximation lemma.

5. Approximation in the Mean

Denote by ρ the metric in $H(D)$ which induces the topology of uniform convergence on compacta. More precisely, for $g_{1}, g_{2} \in H(D)$,

$$
\rho\left(g_{1}, g_{2}\right)=\sum_{l=1}^{\infty} 2^{-l} \frac{\sup _{s \in K_{l}}\left|g_{1}(s)-g_{2}(s)\right|}{1+\sup _{s \in K_{l}}\left|g_{1}(s)-g_{2}(s)\right|}
$$

where $\left\{K_{l}: l \in \mathbb{N}\right\} \subset D$ is a sequence of compact subsets such that

$$
D=\bigcup_{l=1}^{\infty} K_{l},
$$

$K_{l} \subset K_{l+1}$ for all $l \in \mathbb{N}$, and every compact $K \subset D$ lies in a certain K_{l}.
Lemma 7. Suppose that $N^{1 / 2+\varepsilon} \leqslant M \leqslant N$ and (2) is true. Then, for every $h>0$,

$$
\lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{M+1} \sum_{k=N}^{N+M} \rho\left(\zeta\left(s+i h \gamma_{k}\right), \zeta_{n}\left(s+i h \gamma_{k}\right)\right)=0
$$

Proof. In view of the definition of the metric ρ, it suffices to show that, for every compact $K \subset D$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{M+1} \sum_{k=N}^{N+M} \sup _{s \in K}\left|\zeta\left(s+i h \gamma_{k}\right)-\zeta_{n}\left(s+i h \gamma_{k}\right)\right|=0 \tag{15}
\end{equation*}
$$

Thus, let $K \subset D$ be a fixed compact set. Denote the points of K by $s=\sigma+i v$, and fix $\varepsilon>0$ such that $\mathbf{1} / \mathbf{2}+\mathbf{2} \varepsilon \leqslant \sigma \leqslant \mathbf{1}-\varepsilon$ for $s \in K$. It is known [5] that

$$
\zeta_{n}(s)=\frac{1}{2 \pi i} \int_{\theta-i \infty}^{\theta+i \infty} \zeta(s+z) l_{n}(z) \frac{\mathrm{d} z}{z}
$$

where

$$
l_{n}(s)=\frac{s}{\theta} \Gamma(s / \theta) n^{s}
$$

$\Gamma(s)$ is the Euler gamma-function, and θ comes from the definition of $v_{n}(m)$. Let $\theta_{1}>0$. From this, we have

$$
\zeta(s)-\zeta_{n}(s)=\frac{1}{2 \pi i} \int_{-\theta-i \infty}^{-\theta+i \infty} \zeta(s+z) l_{n}(z) \frac{\mathrm{d} z}{z}+R_{n}(s)
$$

with

$$
R_{n}(s)=\frac{l_{n}(1-s)}{1-s}
$$

Therefore, as in the proof of Lemma 12 of [16], we find that

$$
\begin{align*}
\frac{1}{M+1} & \sum_{k=N}^{N+M} \sup _{s \in K}\left|\zeta\left(s+i h \gamma_{k}\right)-\zeta_{n}\left(s+i h \gamma_{k}\right)\right| \\
& \ll \int_{-\infty}^{\infty} \frac{1}{M} \sum_{k=N}^{N+M}\left|\zeta\left(\frac{1}{2}+\varepsilon+i\left(h \gamma_{k}+t\right)\right)\right| \sup _{s \in K} \frac{\left|l_{n}(1 / 2+\varepsilon-s+i t)\right|}{|1 / 2+\varepsilon-s+i t|} \mathrm{d} t \\
& \quad+\frac{1}{M} \sum_{k=N}^{N+M} \sup _{s \in K}\left|R_{n}\left(s+i h \gamma_{k}\right)\right| \stackrel{\text { def }}{=} I_{1}+I_{2} . \tag{16}
\end{align*}
$$

Denote by c_{1}, c_{2}, \ldots positive constants. In view of the well-known estimate

$$
\begin{equation*}
\Gamma(\sigma+i t) \ll \exp \left\{-c_{1}|t|\right\} \tag{17}
\end{equation*}
$$

we find that

$$
\frac{\left|l_{n}(1 / 2+\varepsilon-s+i t)\right|}{|1 / 2+\varepsilon-s+i t|} \ll n^{-\varepsilon} \exp \left\{-c_{2}|t-v|\right\} \ll K_{K, \varepsilon} n^{-\varepsilon} \exp \left\{-c_{3}|t|\right\}
$$

Therefore, by Lemma 5,

$$
\begin{equation*}
I_{1}<_{K, \varepsilon} n^{-\varepsilon} \int_{-\infty}^{\infty}(1+|t|) \exp \left\{-c_{3}|t|\right\} \mathrm{d} t<_{K, \varepsilon} n^{-\varepsilon} \tag{18}
\end{equation*}
$$

Similarly, taking into account inequality (17), we find

$$
\begin{aligned}
I_{2} & \ll \frac{n^{1 / 2-2 \varepsilon}}{M} \sum_{k=N}^{N+M} \exp \left\{-c_{4}\left|h \gamma_{k}-v\right|\right\}<_{K} \frac{n^{1 / 2-2 \varepsilon}}{M} \sum_{k=N}^{N+M} \exp \left\{-c_{5} h \gamma_{k}\right\} \\
& \ll K \frac{n^{1 / 2-2 \varepsilon}}{M} \sum_{k=N}^{N+M} \exp \left\{-c_{6} h(k / \log k)\right\}<_{K, h} \frac{n^{1 / 2-2 \varepsilon}}{M}
\end{aligned}
$$

This, Equations (18) and (16) prove (15).

6. A Limit Theorem for $\zeta(s)$

Using the results of Sections 3 and 4 leads to a limit theorem for $P_{N, M, h}$.
Theorem 6. Suppose that $N^{1 / 2+\varepsilon} \leqslant M \leqslant N$ and estimate (2) is true. Then $P_{N, M, h}$ converges weakly to P_{ζ} as $N \rightarrow \infty$.

Proof. In a certain probability space with measure μ define the random variable $\theta_{N, M, h}$ with the distribution

$$
\mu\left\{\theta_{N, M, h}=h \gamma_{k}\right\}=\frac{1}{M+1}, \quad k=N, N+1, \ldots, N+M
$$

and consider the $H(D)$-valued random element

$$
X_{N, M, n, h}=X_{N, M, n, h}(s)=\zeta_{n}\left(s+i \theta_{N, M, h}\right)
$$

Moreover, let $X_{n}=X_{n}(s)$ be the $H(D)$-valued random element with the distribution V_{n}. Then, by Theorem 5,

$$
\begin{equation*}
X_{N, M, n, h} \xrightarrow[N \rightarrow \infty]{\mathcal{D}} X_{n} \tag{19}
\end{equation*}
$$

where $\xrightarrow{\mathcal{D}}$ denotes the convergence in distribution. Moreover, by Proposition 1,

$$
\begin{equation*}
X_{n} \xrightarrow[n \rightarrow \infty]{\mathcal{D}} P_{\zeta} \tag{20}
\end{equation*}
$$

Define one more $H(D)$-valued random element

$$
X_{N, M, h}=X_{N, M, h}(s)=\zeta\left(s+i \theta_{N, M, h}\right)
$$

Then, using Lemma 7, we find that, for every $\varepsilon>0$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \mu\left\{\rho\left(X_{N, M, h}, X_{N, M, n, h}\right) \geqslant \varepsilon\right\} \\
& \quad \leqslant \lim _{n \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{\varepsilon(M+1)} \sum_{k=N}^{N+M} \rho\left(\zeta\left(s+i h \gamma_{k}\right), \zeta_{n}\left(s+i h \gamma_{k}\right)\right)=0
\end{aligned}
$$

Now, this, Equations (19) and (20) together with Theorem 4.2 of [20] show that

$$
X_{N, M, h} \xrightarrow[n \rightarrow \infty]{\mathcal{D}} P_{\zeta}
$$

and theorem is proved.
For $A \in \mathcal{B}(H(D))$, define

$$
P_{N, M, h, F}(A)=\frac{1}{M+1} \#\left\{N \leqslant k \leqslant N+M: F\left(\zeta\left(s+i h \gamma_{k}\right)\right) \in A\right\}
$$

Corollary 1. Suppose that $F: H(D) \rightarrow H(D)$ is a continuous operator, and (2) is true. Then $P_{N, M, h, F}$ converges weakly to $P_{\zeta} F^{-1}$ as $N \rightarrow \infty$.

Proof. The corollary follows from Theorem 5, continuity of F, equality

$$
P_{N, M, h, F}=P_{N, M, h} F^{-1}
$$

and Theorem 5.1 of [20].

7. Proof of Universality

Theorems 2 and 3 are derived from Theorem 6 and Corollary 1, respectively, by using the Mergelyan theorem on the approximation of analytic functions by polynomials [23].

Proof of Theorem 2. We recall that

$$
S=\{g \in H(D): \text { either } g(s) \neq 0 \text { for all } s \in D, \text { or } g(s) \equiv 0\}
$$

It is well known, see, for example, [5], that the support of the measure P_{ζ} is the set S. Define the set

$$
G_{\varepsilon}=\left\{g \in H(D): \sup _{s \in K}\left|g(s)-\mathrm{e}^{p(s)}\right|<\frac{\varepsilon}{2}\right\}
$$

where $p(s)$ is a polynomial. Obviously, $\mathrm{e}^{p(s)} \in S$. Therefore, G_{ε} is an open neighbourhood of an element of the support of the measure P_{ζ}. Thus, by a property of the support,

$$
\begin{equation*}
P_{\zeta}\left(G_{\varepsilon}\right)>0 . \tag{21}
\end{equation*}
$$

This, Theorem 6 and the equivalent of weak convergence in terms of open sets show that

$$
\liminf _{N \rightarrow \infty} P_{N, M, h}\left(G_{\varepsilon}\right) \geqslant P_{\zeta}\left(G_{\varepsilon}\right)>0
$$

Hence, by the definition of $P_{N, M, h}$ and G_{ε},

$$
\begin{equation*}
\liminf _{N \rightarrow \infty} \frac{1}{M+1} \#\left\{N \leqslant k \leqslant N+M: \sup _{s \in K}\left|\zeta\left(s+i h \gamma_{k}\right)-\mathrm{e}^{p(s)}\right|<\frac{\varepsilon}{2}\right\}>0 \tag{22}
\end{equation*}
$$

Now, we apply the Mergelyan theorem and choose the polynomial $p(s)$ satisfying

$$
\begin{equation*}
\sup _{s \in K}\left|f(s)-\mathrm{e}^{p(s)}\right|<\frac{\varepsilon}{2} \tag{23}
\end{equation*}
$$

This and inequality (22) prove the first part of the theorem.

To prove the second part of the theorem, define the set

$$
\hat{G}_{\varepsilon}=\left\{g \in H(D): \sup _{s \in K}|g(s)-f(s)|<\varepsilon\right\}
$$

Then the set \hat{G}_{ε} is a continuity set of the measure P_{ζ} for all but at most countably many $\varepsilon>0$. This remark, Theorem 6 and the equivalent of weak convergence of probability measures in terms of open sets show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} P_{N, M, h}\left(\hat{G}_{\varepsilon}\right)=P_{\zeta}\left(\hat{G}_{\varepsilon}\right) \tag{24}
\end{equation*}
$$

for all but at most countably many $\varepsilon>0$. Inequality (23) implies the inclusion $G_{\varepsilon} \subset \hat{G}_{\varepsilon}$. Therefore, in view of inequality (21), we have $P_{\zeta}\left(\hat{G}_{\varepsilon}\right)>0$. This, Equation (24) and the definitions of $P_{N, M, h}$ and \hat{G}_{ε} prove the second part of the theorem.

Proof of Theorem 3. Denote by S_{F} the support of the measure $P_{\zeta} F^{-1}$. We observe that S_{F} contains the closure of the set $H_{a_{1}, \ldots, a_{r} ; F}(D)$. Actually, let $g \in H_{a_{1}, \ldots, a_{r} ; F}(D)$ and G be any open neighborhood of g. Then the set $F^{-1} G$ is open as well, and lies in S. Hence, $P_{\zeta}\left(F^{-1} G\right)>0$ because S is the support of P_{ζ}. Therefore,

$$
P_{\zeta} F^{-1}(G)=P_{\zeta}\left(F^{-1} G\right)>0
$$

This shows that S_{F} contains the set $H_{a_{1}, \ldots, a_{r} ; F}(D)$ and its closure.
Case $r=1$. By the Mergelyan theorem, there exists a polynomial $p(s)$ such that

$$
\begin{equation*}
\sup _{s \in K}|f(s)-p(s)|<\frac{\varepsilon}{2} \tag{25}
\end{equation*}
$$

Then, $p(s) \neq a_{1}$ for all $s \in K$ if ε is small enough. Therefore, by the Mergelyan theorem again, we find a polynomial $q(s)$ such that

$$
\begin{equation*}
\sup _{s \in K}\left|\left(p(s)-a_{1}\right)-\mathrm{e}^{q(s)}\right|<\frac{\varepsilon}{4} \tag{26}
\end{equation*}
$$

Since $g_{1}(s) \stackrel{\text { def }}{=} \mathrm{e}^{q(s)}+a_{1} \in H_{a_{1} ; F}(D)$, the set

$$
\mathcal{G}_{\varepsilon}=\left\{g \in H(D): \sup _{s \in K}\left|g(s)-g_{1}(s)\right|<\frac{\varepsilon}{2}\right\}
$$

is an open subset of S_{F}. Hence,

$$
\begin{equation*}
P_{\zeta} F^{-1}\left(\mathcal{G}_{\varepsilon}\right)>0 \tag{27}
\end{equation*}
$$

This inequality together with Corollary 1, inequalities (25) and (26) prove the theorem in the case of the lower density.

In the case of density, consider the set \hat{G}_{ε} defined in the proof of Theorem 2 which is a continuity set of the measure $P_{\zeta} F^{-1}$ for all but at most countably many $\varepsilon>0$. Therefore, by Corollary 1,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} P_{N, M, h, F}\left(\hat{G}_{\varepsilon}\right)=P_{\zeta} F^{-1}\left(\hat{G}_{\varepsilon}\right) \tag{28}
\end{equation*}
$$

Inequalities (25) and (26) show that $\mathcal{G}_{\varepsilon} \subset \hat{G}_{\varepsilon}$. Thus, by inequality (27), $P_{\zeta} F^{-1}\left(\hat{G}_{\varepsilon}\right)>0$. This, Equation (28) and the definitions of $P_{N, M, h, F}$ and \hat{G}_{ε} prove the theorem in the case of density.

Case $r \geqslant 2$. In this case, the function $f(s)$ lies in S_{F}. Therefore, the Mergelyan theorem is not needed, and the theorem follows immediately from Corollary 1.

Author Contributions: Conceptualization, A.L. and D.Š.; methodology, A.L. and D.Š.; investigation, A.L. and D.S..; writing-original draft preparation, A.L. and D.S..; writing—review and editing, A.L. and D.Š. All authors have read and agreed to the published version of the manuscript.
Funding: The research of the first author is funded by the European Social Fund (project number 09.3.3-LMT-K-712-01-0037) under grant agreement with the Research Council of Lithuania (LMT LT).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bohr, H.; Courant, R. Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion. J. Reine Angew. Math. 1914, 144, 249-274.
2. Voronin, S.M. Theorem on the "universality" of the Riemann zeta-function. Izv. Ross. Akad. Nauk. 1975, 9, 443-453. [CrossRef]
3. Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981.
4. Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975.
5. Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996.
6. Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877.
7. Reich, A. Werteverteilung von Zetafunktionen. Arch. Math. 1980, 34, 440-451. [CrossRef]
8. Laurinčikas, A. Discrete universality of the Riemann zeta-function and uniform distribution modulo 1. Petersb. Math. J. 2019, 30, 103-110. [CrossRef]
9. Macaitienè, R. The discrete universality of the Riemann zeta-function with respect to uniformly distributed shifts. Arch. Math. 2017, 108, 271-281. [CrossRef]
10. Pańkowski, Ł. Joint universality for dependent L-functions. Ramanujan J. 2018, 45, 181-195. [CrossRef]
11. Garunkštis, R.; Laurinčikas, A. The Riemann hypothesis and universality of the Riemann zeta-function. Math. Slovaca 2018, 68, 741-748. [CrossRef]
12. Garunkštis, R.; Laurinčikas, A.; Macaitiené, R. Zeros of the Riemann zeta-function and its universality. Acta Arith. 2017, 181, 127-142. [CrossRef]
13. Montgomery, H.L. The pair correlation of zeros of the zeta-function. In Analytic Number Theory; Diamond, H.G., Ed.; American Mathematical Society: Providence, RI, USA, 1973; pp. 181-193.
14. Balčiūnas, A.; Garbaliauskienè, V.; Karaliūnaitè, J.; Macaitienė, R.; Petuškinaitè, J.; Rimkevičienè, A. Joint discrete approximation of a pair of analytic functions by periodic zeta-functions. Math. Modell. Anal. 2020, 25, 71-87. [CrossRef]
15. Laurinčikas, A.; Petuškinaitè, J. Universality of Dirichlet L-functions and non-trivial zeros of the Riemann zeta-function. Sb. Math. 2019, 210, 1753-1773. [CrossRef]
16. Laurinčikas, A. Universality of the Riemann zeta-function in short intervals. J. Number Theory 2019, 204, 279-295. [CrossRef]
17. Titchmarsh, E.C. The Theory of the Riemann zeta-Function, 2nd ed.; Heath-Brown, D.R., Ed.; Clarendon Press: Oxford, UK, 1986.
18. Karatsuba, A.A.; Voronin, S.M. The Riemann Zeta-Function; Walter de Gruiter: New York, NY, USA; Berlin, Germany, 1992.
19. Steuding, J. The roots of the equation $\zeta(s)=a$ are uniformly distributed modulo one. In Anal. Probab. Methods Number Theory; Laurinčikas, A., Ed.; TEV: Vilnius, Lithuania, 2012; pp. 243-249.
20. Billingsley, P. Convergence of Probability Measures; Willey: New York, NY, USA, 1968.
21. Ivič, A. The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications; John Wiley \& Sons: New York, NY, USA, 1985.
22. Montgomery, H.L. Topics in Multiplicative Number Theory; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 227.
23. Mergelyan, S.N. Uniform Approximations to Functions of a Complex Variable; Series and Approximation; American Mathematical Society: Providence, RI, USA, 1969; pp. 294-391.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
 article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

