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Preface

Aims and problems

The aim of this dissertation is to analyse autoregressive integer-valued
time series models, where the joint innovation distribution is described
via a copula. Our objective is the following:

• analyse existing estimation methods for a first-order bivariate
integer-valued autoregressive process with copula-joint innova-
tions, and present a two-step estimation method, which allows
for a separate estimation of the model parameters from the copula
dependence parameter,

• introduce a generalized univariate integer-valued autoregressive
process for seasonality, where the innovations can be intra-
seasonally dependent, which can then be represented in a mul-
tivariate form that is used for parameter estimation.

Novelty

The results obtained in this thesis extend models in existing literature
on integer-valued time series. To the best of our knowledge, as of the
writing of this thesis and the resulting publications, the two-step param-
eter estimation for the model in Chapter 4 and the univariate seasonal
specification and its multivariate representation in Chapter 5 were not
considered in other papers dealing with integer-valued autoregressive
time series. The aforementioned results allowed for faster model param-
eter estimation, which made estimating such models feasible in empirical
applications, which were presented in those chapters. Furthermore, in
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Chapter 5 we have introduced a flexible seasonal autoregressive model
which allows estimating the seasonal effects in a count data series.

Dissertation structure

This thesis consists of five Chapters, as well as Conclusions, Bibliography
and Appendix chapters.

The introduction to integer-valued autoregressive time series models
is given in Chapter 1. Existing model specifications are presented.

Chapter 2 presents the main properties of the binomial thinning
operator. For the reader’s convenience (and because the proofs of some
of these properties are not readily available in existing literature), the
proofs of these properties are derived and provided in Appendix A.

In Chapter 3 we present the definition of copulas and their applica-
bility to discrete-valued random variables. Four copulas, which are used
in this thesis to describe the joint distribution of the model innovations,
are provided.

In Chapter 4 we consider bivariate integer-valued autoregressive time
series models with copula-joint innovations. Model properties are exam-
ined, with proofs provided in Appendix B, and existing parameter esti-
mation methods are considered. We also introduce a two-step parameter
estimation method, where the copula parameter is estimated in a sepa-
rate step. We then compare the accuracy of this method to other existing
methods via Monte Carlo simulation. Additional inference on the esti-
mate bias from the simulation is discussed in Appendix C. Futhermore,
an empirical application on defaulted and non-defaulted loan counts is
carried out.

In Chapter 5 we consider a univariate integer-valued autoregres-
sive process for seasonality with intra-seasonally dependent innovations,
where the dependence structure is described via a copula. The speci-
fied model allows the autoregressive parameter to vary with the season.
Model properties are derived and the proofs are provided in Appendix D.
Furthermore, we show that the univariate process can be represented by
a multivariate specification, which allows for an efficient parameter esti-
mation in terms of computational speed. Parameter estimation methods
are compared via Monte Carlo simulation. Finally, an empirical applica-
tion is carried out on Chicago crime data to capture the seasonal effects
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in the series.
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Chapter 1

Introduction

Integer-valued time series comprising count observations at regular time
intervals can be observed in various applications, such as the number
of stock trades per day, the amount of crimes committed in a city per
hour, the number of worker strikes in a country per month, the amount
of insurance claims in a firm per year, the number of defaulted loans
issued by a bank per week, the number of infected people per day, etc.

Usually a company’s methods for evaluating loan risk are not publicly
available, however, one way to measure whether insolvent clients are
adequately separated from responsible clients would be to look at the
quantity of defaulted and non-defaulted issued loans each day. The
adequacy of a firms rules for issuing loans can be analysed by modelling
the dependence between the number of loans which have defaulted and
number of loans that have not defaulted via copulas.

The advantage of such approach is that copulas allow to model the
marginal distributions (possibly from different distribution families) and
their dependence structure (which is described via a copula) separately.
Because of this feature, copulas were applied to many different fields,
including survival analysis, hydrology, insurance risk analysis as well as
finance (for examples of copula applications, see Brigo et al. (2010) or
Cherubini et al. (2011)), which also included the analysis of loans and
their default rates.

The dependence between the default rate of loans between different
credit risk categories were analysed in Crook and Moreira (2011). In
order to model the dependence, copulas from ten different families were
applied and three model selection tests were carried out. Because of the
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small sample size (24 observations per risk category) most of the copula
families were not rejected and a single best copula model was not se-
lected. To analyse whether dependence is affected by time, Fenech et al.
(2015) estimated the dependence between four different loan default in-
dexes before the global financial crisis and after. They have found that
the dependence was different in these periods. Four copula families were
used to estimate the dependence between the default index pairs.

While these studies were carried out for continuous data, there is less
developed literature on discrete models created with copulas: Genest
and Nešlehová (2007) discussed the differences and challenges of using
copulas for discrete data compared to continuous data. Note that the
previously mentioned studies assumed that the data does not depend on
its own previous values.

One of the simplest models for individual evolution is the integer-
valued autoregressive model of order one (INAR(1)), independently pro-
posed by Al-Osh and Alzaid (1987) and McKenzie (1986), which is de-
fined as

Yt = ϕ ◦Yt−1 + εt , t ∈ Z, (1.0.1)

where ϕ ◦Yt−1 = ∑Yt−1
i=1 Bi,t , where, for all t ∈ Z, {Bi,t , i ∈ Z} is a sequence

of i.i.d. Bernoulli random variables (r.v.s) with mean ϕ ∈ [0,1], such
that these sequences are mutually independent and independent of the
sequence of i.i.d. nonnegative integer-valued r.v.s {εt , t ∈Z}. εt are inde-
pendent of Yt−k for k > 0. The popular choices for distribution of εt are
Poisson or negative-binomial.

By using bivariate integer-valued autoregressive models (BINAR) it
is possible to account for both the discreteness and autocorrelation of
the data when analysing a pair of time series count data. Further-
more, copulas can be used to model the dependence of innovations in
the BINAR(1) models: Karlis and Pedeli (2013) used the Frank copula
and normal copula to model the dependence of the innovations of the
BINAR(1) model.

On the other hand, many such time series observations display a sea-
sonal phenomenon, which may arise from various periodic (daily, weekly,
yearly, etc.) factors. The apparent seasonal patterns can be described
by using, e.g., explanatory variables. Brännäs (1995) introduced ex-
planatory variables to the INAR(1) process by allowing the parameters
in (1.0.1) to be time-varying. The INAR(1) process with explanatory
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process can be written as

Yt = ϕt ◦Yt−1 + εt , t ∈ Z, εt ∼ Pois(λt), (1.0.2)

where ϕt represents the survival probability and, in economic context,
can be thought of as the survival probability of a firm and thus depends
on the business cycle phase. λt represents the mean entry of a random
shock in the time series, which could be interpreted as the mean number
of firms entering the market at each period t. Brännäs (1995) assumed
that ϕt is the logistic function (thus 0 < ϕt < 1) and λt is the exponential
function:

ϕt =
1

1+ exp(X⊤
t β )

, λt = exp(Z⊤
t γ),

where Xt , Zt are fixed explanatory variable vectors and β , γ are unknown
parameter vectors. This specification allows to specify the seasonality
and trend as explanatory variables, which are introduced through the
autoregressive coefficient and the mean coefficient of the random com-
ponent distribution. Ding and Wang (2016) proposed the maximum em-
pirical likelihood estimator for the parameters of the INAR(1) process
with explanatory variables and demonstrated, via a simulation study,
the latter to be slightly better than the conditional least squares esti-
mation method introduced by Brännäs (1995). The model in eq. (1.0.2)
was later expanded to a higher order INAR process by Enciso-Mora et al.
(2009).

An INAR process with a periodic structure was proposed by Monteiro
et al. (2010). They defined a periodic INAR(1) process with period d
(PINAR(1)d) as

Yt = ϕt ◦Yt−1 + εt , t ∈ N, εt ∼ Pois(vt), (1.0.3)

where ϕt = α j ∈ (0,1) and vt = λ j for t = j+ kd, j = 1, . . . ,d, k ∈ N0 :=
{0,1,2, . . .} and ϕt ◦Yt−1 = ∑Yt−1

i=1 Bi,t , where {Bi,t = Bi,t(ϕt), t ∈ Z} is a pe-
riodic sequence of Bernoulli random variables independent of Yt and εt ,
with P(Bi,t(ϕt) = 1) = ϕt . Furthermore, in Monteiro et al. (2010) the εt

are assumed to be a periodic sequence of independent Poisson random
variables, independent of Yt−1 and ϕt ◦Yt−1. In eq. (1.0.3) the periodic
structure was introduced through both the autoregressive and the shock
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components of the model. Because of this structure, a dimensionality re-
duction in the number of parameters is mentioned as one of the possible
challenges.

A seasonal structure for an INAR(1) Poisson process was imposed by
Bourguignon et al. (2016), who introduced a first-order seasonal INAR
process with seasonality d (INAR(1)d) of the following form

Yt = ϕ ◦Yt−d + εt , t ∈ Z, (1.0.4)

where ϕ ∈ [0,1]. εt and ϕ ◦Yt−d are defined in the same way as in (1.0.1).
The INAR(1)d process consists of mutually independent INAR(1) pro-
cesses.

Furthermore, there exist various extensions, which replace the bi-
nomial thinning operator in eq. (1.0.1) with a more general thinning
operator. Such thinning operators are presented in Section 2.3. Al-
ternatively, Barreto-Souza (2017) proposed a Mixed Poisson INAR(1)
process for modelling overdispersed count time series. Overdispersion is
commonly observed in count time series and can be caused by an excess
of zeros or unobserved significant covariates. The proposed process is
defined via the binomial thinning operator if Yt ∼ MP(µ,ϕ), ∀t ∈ Z and:

Yt = α ◦Yt−1 + εt , t ∈ Z, (1.0.5)

where α ∈ [0,1) and {εt , t ∈ Z} is a sequence of i.i.d. r.v.s, independent
of Ys, for s < t, ∀t ∈ Z. Unlike the process defined in eq. (1.0.1), Yt

is now assumed to follow a mixed Poisson distribution. In general, a
random variable Y follows a mixed Poisson distribution, if it satisfies
the stochastic representation Y |W = w ∼ Pois(µw) for µ > 0, where W is
some non-negative random variable.

Barreto-Souza (2017) indicated that one of the challenges of
analysing the process in eq. (1.0.5) is that it is very difficult to obtain an
explicit form for the probability function of the innovations, εt , and in
their specific case, the innovations satisfy the stochastic representation
of ε|W = w ∼ Pois(µw), where W has the distribution of an innovation
of an inverse-Gaussian AR(1) process, which does not have an explicit
density function.

Consequently, we focus on integer-valued autoregressive processes,
defined with the binomial thinning operator.
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Chapter 2

Properties of the binomial
thinning operator

We present the main properties of the binomial thinning operator, which
will be used when defining BINAR(1) and SINAR(1)d processes in Chap-
ter 4 and Chapter 5. Denote by ’ d

=’ the equality of distributions.
The aforementioned binomial thinning operator was introduced by

Steutel and van Harn (1979). A survey of various thinning operators,
which generalize the binomial thinning operator is presented in Weiß
(2008). In this thesis, we focus on models with the binomial thinning
operator and leave the analysis of other thinning operators as future
extensions for these models.

2.1 Binomial thinning operator properties for
the univariate case

A number of binomial thinning operator properties are provided in
Pedeli (2011) and Silva (2005). Along with the main thinning opera-
tor properties, we also define some additional properties in the following
theorem.

Theorem 2.1.1. Binomial thinning operator properties. Let
X ,X1,X2 be non-negative integer-valued random variables, such that
E(Z2) < ∞, Z ∈ {X ,X1,X2}, α,α1,α2 ∈ [0,1) and let ’◦’ be the binomial
thinning operator, such that β ◦Z = ∑Z

i=1 Bi for any β ∈ {α,α1,α2} and
Z, where Bi are independent Bernoulli random variables, independent of
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Z, with P(Bi = 1) = β . Then the following properties hold:

(a) α1 ◦ (α2 ◦X)
d
= (α1α2)◦X ;

(b) α ◦ (X1 +X2)
d
= α ◦X1 +α ◦X2;

(c) E(α ◦X) = αE(X);

(d) Var(α ◦X) = α2Var(X)+α(1−α)E(X);

(e) E(X p
2 (α ◦X1)) = αE(X1X p

2 ), with p ≥ 0, assuming E(X1X p
2 )< ∞;

(f) E(X p(α ◦X)) = αE(X p+1), with p ≥ 0, assuming E(X p+1)< ∞;

(g) Cov(α ◦X1,X2) = αCov(X1,X2);

(h) E((α1 ◦X1)(α2 ◦X2)) = α1α2E(X1X2);

(i) E(X p(α ◦X)2) = α2E(X p+2)+α(1−α)E(X p+1), with p ≥ 0, assum-
ing E(X p+2)< ∞.

Complete proofs are derived and provided in Appendix A.1.

2.2 Binomial thinning operator properties for
the multivariate case

The univariate binomial thinning operator can be generalized to the
multivariate setting with the following theorem.

Theorem 2.2.1. Binomial thinning operator properties in the
multivariate setting. Let X j = [X1, j, ...,Xk, j]

⊤, j = 1,2 be non-negative
integer-valued random k-vectors and let A j = (αi1,i2, j)i1,i2=1,...,k, with
αi1,i2, j ∈ [0,1), ∀i1, i2 = 1, ...,k and j = 1,2. In the multivariate setting
the binomial thinning operator also acts as a matrix multiplication and
is defined by

A j ◦X j =
[
∑k

s=1 α1,s, j ◦Xs, j , . . . , ∑k
s=1 αk,s, j ◦Xs, j

]⊤
with the following properties:

(a) E[A j ◦X j] = A jE[X j];

17



(b) E[Ai ◦Xi][A j ◦X j]
⊤ = AiE[XiX⊤

j ]A⊤
j +1{i= j}diag(BiE[Xi]),

where Bi = (αm1,m2,i(1−αm1,m2,i))m1,m2=1,...,k is the covariance
matrix of the independent Bernoulli random variables from
αm,m,i ◦Xm,i = ∑Xm,i

l=1 Bm,m,i,l, ∀m = 1, ...,k, independent of Xm,i, with
E(Bm,m,i,l) = αm,m,i, Var(Bm,m,i,l) = αm,m,i(1−αm,m,i), ∀m ∈ {1, ...,k},
and i, j = 1,2;

(c) E[Ai ◦Xi][A jX j]
⊤ = AiE[XiX⊤

j ]A⊤
j ;

(d) E[AiXi][A j ◦X j]
⊤ = AiE[XiX⊤

j ]A⊤
j .

The proofs of properties (a) and (b) are provided in Latour (1997).
Complete proofs are derived in Appendix A.2.

2.3 Other thinning operators

The focus of this thesis is on models based on the binomial thinning
operator, however, alternative thinning operators are available. In this
section we will briefly present a select few alternative thinning opera-
tors to highlight the various different ways that the binomial thinning
operator is generalized in literature.

One possible extension of the binomial thinning operator is the gen-
eralized thinning operator, which was proposed by Latour (1998) and is
defined for a non-negative integer-valued r.v. X as:

α •β X :=
X

∑
j=1

Z j, α ∈ [0,1],

where Z j ∈N∪{0} are i.i.d. r.v.s and independent of X , with E(Z j) = α
and Var(Z j) = β . The properties of the generalized thinning opera-
tor are similar to the binomial thinning operator: E(α •β X) = αE(X),
Var(α •β X) = α2Var(X)+βE(X), Cov(α •β X ,X) = αVar(X).

Another modification of the binomial thinning operator, introduced
by Kim and Park (2006), generalizes to allow for both non-negative and
negative integers:

α ⊙X := sgn(α)sgn(X)
|X |

∑
j=1

B j, α ∈ (−1,1),
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where X ∈ Z. {B j, j ∈ Z} is a sequence of i.i.d. Bernoulli r.v.s with
P(B j = 1) = |α|, ∀ j = 1, ...,X , sgn(X) = 1, if X ≥ 0 and sgn(X) = −1
otherwise. If X ∈ N∪{0} and α ≥ 0, then the signed binomial thinning
is reduced to the binomial thinning.

The negative binomial thinning operator was introduced by Ristić
et al. (2009) and is defined as:

α ∗X :=
X

∑
j=1

Wj, α ∈ [0,1),

where {Wj, j ∈ Z} is a sequence of i.i.d. Geometric(α/(1+α)) r.v.s in-
dependent of X . The negative binomial thinning operator describes a
geometric counting series, which can help explain overdispersion.

In order to model count time series with equidispersion, underdiserp-
sion and overdispersion Bourguignon and Weiß (2017) defined the BiNB
thinning operator for a non-negative integer-valued r.v. X as:

(α,β )~X :=
X

∑
j=1

Wj, α +β ∈ [0,1),

where {Wj, j ∈ Z} is a sequence of i.i.d. BerG(α,β ), independent of X .
The BerG distribution is a convolution of the Bernoulli and geomet-
ric distribution, i.e. the sum W := Z1 + Z2, where Z1 ∼ Bern(α) and
Z2 ∼ Geometric(1/(1+β )) are independent with E(Z1) = α ∈ (0,1) and
E(Z2) = β > 0, has the following probability mass function is defined as:

P(W = w) =


1−α
1+β

, if w = 0,

(α +β )
β w−1

(1+β )w+1 , if w ∈ N,

so that E(W ) = α +β and Var(Z) = α(1−α)+β (1+β ).
Lastly, a new thinning operator based on the Gómez–Déniza–

Sarabia–Calderín-Ojeda (GSC) distribution was proposed by Kang et al.
(2020). The probability mass function of the GSC(α, θ) distribution is
defined as:

P(W = w) =
log(1−αθ w)− log(1−αθ w+1)

log(1−α)
,
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where α < 1, α ̸= 0 and 0 < θ < 1. The GSC thinning operator is defined
as:

α ⋄X :=
X

∑
j=1

Wj, α < 1, α ̸= 0,

where {Wj, j ∈ Z} is a sequence of i.i.d. GSC(α, exp{−|α|}) r.v.s, in-
dependent of X . This thinning operator can capture equidispersion,
overdispersion and underdispersion of the series, as well as zero-inflated,
zero-deflated, short-tailed and long-tailed characteristics of the count
data.

For a detailed survey of various thinning operators for discrete data
time series models, see Weiß (2008), Scotto et al. (2015), Davis et al.
(2016), Weiß (2018), Joe (2019) and the references therein.
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Chapter 3

Count random variable
dependence and copulas

In this section we review the definition and main properties of bivariate
copulas, mainly following Genest and Nešlehová (2007), Nelsen (2006)
and Trivedi and Zimmer (2007) for the continuous and discrete settings.

Copulas are used for modelling the dependence between several ran-
dom variables. The main advantage of using copulas is that they allow
to model the marginal distributions separately from their joint distribu-
tion. A two-dimensional copula, which is used in Chapter 4, is defined
below.

Definition 3.0.1. A 2-dimensional copula C : [0,1]2 → [0,1] is a function
with the following properties:

(i) for every u,v ∈ [0,1]:

C(u,0) =C(0,v) = 0; (3.0.1)

(ii) for every u,v ∈ [0,1]:

C(u,1) = u, C(1,v) = v; (3.0.2)

(iii) for any u1,u2,v1,v2 ∈ [0,1] such that u1 ≤ u2 and v1 ≤ v2:

C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)≥ 0 (3.0.3)
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(this is also called the rectangle inequality, 2-increasingness property, or
supermodularity of bivariate functions).

The theoretical foundation of copulas is given by Sklar’s theorem:

Theorem 3.0.1. [Sklar (1959)] Let H be a joint cumulative distribution
function (cdf) with marginal distributions F1,F2. Then there exists a
copula C such that for all (x1,x2) ∈ [−∞,∞]2:

H(x1,x2) =C(F1(x1),F2(x2)). (3.0.4)

If Fi is continuous for i = 1,2 then C is unique; otherwise C is uniquely
determined only on Range(F1)×Range(F2), where Range(F) denotes the
range of the cdf F. Conversely, if C is a copula and F1,F2 are distribution
functions, then the function H, defined by equation (3.0.4) is a joint cdf
with marginal distributions F1,F2.

If a pair of random variables (X1,X2) has continuous marginal cdfs
Fi(x), i = 1,2, then by applying the probability integral transformation
one can transform them into random variables (U1,U2) = (F1(X1),F2(X2))

with uniformly distributed marginals which can then be used when mod-
elling their dependence via a copula. More about Copula theory, prop-
erties and applications can be found in Nelsen (2006) and Joe (2015).

Copulas with discrete marginal distributions

Since the innovations of models in Chapter 4 and Chapter 5 are nonneg-
ative integer-valued random variables, one needs to consider copulas for
constructing multivariate distributions with discrete marginals F1 and F2

in eq. (3.0.4). In this section we will mention some of the key differences
when copula marginals are discrete rather than continuous.

Firstly, as mentioned in Theorem 3.0.1, if F1 and F2 are discrete
marginals then a unique copula representation exists only for values
in the range of Range(F1)×Range(F2). However, the lack of uniqueness
does not pose a problem in empirical applications because it implies that
there may exist more than one copula which describes the distribution
of the empirical data. Secondly, regarding concordance and discordance,
the discrete case has to allow for ties (i.e. when two variables have the
same value), so the concordance measures (Spearman’s rho and Kendal’s
tau) are margin-dependent, see Trivedi and Zimmer (2007). There are
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several modifications proposed for Spearman’s rho, however, none of
them are margin-free. Furthermore, Genest and Nešlehová (2007) state
that estimators of a copula family parameter based on Kendall’s tau
or its modified versions are biased and estimation techniques based on
maximum likelihood are recommended. As such, we will not examine
estimation methods based on concordance measures. Another difference
from the continuous case is the use of the probability mass function
(pmf) instead of the probability density function when estimating the
model parameters which will be seen in Section 4.2.

Finally, we note that in some cases biased estimators may be more
desirable if one can control the bias and has a computationally fast
procedure for the biased estimator (e.g. Kendal’s tau). For a discussion
on biased versus unbiased estimation, see Efron (1975). In addition to
the bias problem, Genest and Nešlehová (2007, Section 6.2) state that
rank-based methods do not always lead to a consistent estimator of the
copula parameter when the marginals are discrete.

Some concrete copulas

In this section we will present several bivariate copulas, which will be
used later when constructing and evaluating the BINAR(1) model in
Chapter 4. For all the copulas discussed, the following notation is used:
u1 := F1(x1), u2 := F2(x2), where F1,F2 are marginal cdfs of discrete ran-
dom variables and following Genest and Nešlehová (2007), the parameter
of a copula family, denoted θ , is referred to as the dependence param-
eter in the context of this thesis, if a corresponding copula family is
increasing in concordance order.

Farlie-Gumbel-Morgenstern copula

The Farlie-Gumbel-Morgenstern (FGM) copula has the following form:

C(u1,u2;θ) = u1u2(1+θ(1−u1)(1−u2)). (3.0.5)

The dependence parameter θ can take values from the interval [−1,1].
If θ = 0, then the FGM copula collapses to independence. Even though
the analytical form of the FGM copula is relatively simple, the FGM
copula can only model weak dependence between two marginals (see
Nelsen (2006)).
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Figure 3.0.1 shows the FGM copula, when the dependence parame-
ter is -1 and the marginal cdfs F1, F2 are either of continuous or discrete
random variables. The heat map is used to visualize the relationship
between two integer-valued series (for example, see Weiß (2018, Fig-
ure 2.4)). We can see that even when θ has the minimum value, the
dependence between the random variables isn’t strong.
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Figure 3.0.1: The FGM copula for the continuous marginal case and
the discrete marginal case.

Product copula

The copula when θ = 0 is called a product (or independence) copula:

C(u1,u2) = u1u2. (3.0.6)

Since the product copula corresponds to independence, it is important
as a benchmark.
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Figure 3.0.2: The product copula for the continuous marginal case
and the discrete marginal case.

Figure 3.0.2 provides the graphical representations of the product
copula for the continuous and the discrete cases. As we can see from
the plots, there does not seem to be any dependence between the two
random variables.

Frank copula

The Frank copula has the following form:

C(u1,u2;θ) =− 1
θ

log
(

1+
(exp(−θu1)−1)(exp(−θu2)−1)

exp(−θ)−1

)
.

The dependence parameter can take values from (−∞,∞) \ {0}. The
Frank copula allows for both positive and negative dependence1 between
the marginals.

1Let X= (X1,X2) be a bivariate random vector with cdf F. Then F, or X, is positive
(quadrant) dependent if P(X1 > a1,X2 > a2) ≥ P(X1 > a1)P(X2 > a2),∀a1,a2 ∈ R. If
the inequality is reversed, then F, or X, is negative (quadrant) dependent. Similar
conditions apply to the general multivariate case. See Joe (2015, Section 2.8).
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Figure 3.0.3: The Frank copula for the continuous marginal case and
the discrete marginal case.

Figure 3.0.3 shows the Frank copula for the continuous and discrete
marginal cases when θ = −5. We can see from the figures that the
negative dependence is clearer compared to the FGM copula case.

Clayton copula

The Clayton copula has the following form:

C(u1,u2;θ) = max{u−θ
1 +u−θ

2 −1,0}−
1
θ , (3.0.7)

with the dependence parameter θ ∈ [−1,∞) \ {0}. The marginals be-
come independent when θ → 0. It can be used when the correlation
between two random variables exhibits a strong left tail dependence – if
smaller values are strongly correlated and higher values are less corre-
lated 2. The Clayton copula can also account for negative dependence
when θ ∈ [−1,0). For more properties of this copula, see recent paper
Manstavičius and Leipus (2017).

2If a bivariate copula C is such that limu→1− C(u,u)/(1−u) = λU exists, then C has
upper tail dependence if λU ∈ (0,1]. Similarly, if limu→0+ C(u,u)/u = λL exists, then C
has lower tail dependence if λL ∈ (0,1]. Here C is the survival function of the copula.
See Joe (2015, Section 2.13).
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Figure 3.0.4: The Clayton copula for the continuous marginal case
and the discrete marginal case.

Figure 3.0.4 shows the Clayton copula for the continuous and discrete
marginal cases when the dependence parameter θ = 4. The positive
dependence between the two random variables can be seen from the
plots.
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Figure 3.0.5: The Clayton copula for the continuous marginal case
and the discrete marginal case with a negative dependence parameter.

We can see the strong left tail dependence and the weak right tail
dependence - smaller values are more correlated than large values. The
case when the dependence parameter is negative (θ =−0.5) is provided
in Figure 3.0.5.
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Furthermore, the above copulas can be extended to a higher di-
mension case. The joint distribution of [u1, . . . ,ud ]

⊤, denoted F(·),
is described by a d-dimensional copula C - a distribution function
C : [0,1]d → [0,1] with uniform margins, such that

F(a1, ...,ad) =C(F1(a1), ...,Fd(ad)),

where Fj(·) is the univariate marginal distribution of u j, j ∈ {1, ...,d}.
For discrete random variables, the copula is uniquely determined only on
Range(F1)× ...×Range(Fd). Below we present the multivariate versions
for copulas, which are used in Chapter 5.

d-variate Frank copula

The d-variate version of the Frank copula is given by

C(u1, ...,ud ;θ) =− 1
θ

log
(

1+
∏d

i=1[exp(−θui)−1]
[exp(−θ)−1]d−1

)
,

with θ > 0.

d-variate Clayton copula

The d-variate version of the Clayton copula is given by

C(u1, ...,ud ;θ) =

[
d

∑
i=1

u−θ
i −d +1

]− 1
θ

,

with θ > 0.
A compendium of various different copulas for both the bivariate and
d-variate cases can be found in Nadarajah et al. (2018).
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Chapter 4

A copula-based bivariate
integer-valued
autoregressive process

In this chapter we expand on using copulas in BINAR models by
analysing additional copula families for the innovations of the BINAR(1)
model and analyse different BINAR(1) model parameter estimation
methods. We also present a two-step estimation method for the param-
eters of the BINAR(1) model, where we estimate the model parameters
separately from the dependence parameter of the copula. These esti-
mation methods (including the one used in Karlis and Pedeli (2013))
are compared via Monte Carlo simulations. Finally, in order to analyse
the presence of autocorrelation and copula dependence in loan data, an
empirical application is carried out for empirical weekly loan data.

4.1 The bivariate INAR(1) process

The BINAR(1) process was introduced in Pedeli and Karlis (2011). In
this section we will provide the definition of the BINAR(1) model and
will formulate its properties.

Definition 4.1.1. Let εεε t = [ε1,t ,ε2,t ]
⊤, t ∈ Z, be a sequence of indepen-

dent identically distributed (i.i.d.) nonnegative integer-valued bivariate
random variables. A bivariate integer-valued autoregressive process of
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order 1 (BINAR(1)), Yt = [Y1,t ,Y2,t ]
⊤, t ∈ Z, is defined as:

Yt = A◦Yt−1 + εεε t =

[
α1 0
0 α2

]
◦

[
Y1,t−1

Y2,t−1

]
+

[
ε1,t

ε2,t

]
, t ∈ Z, (4.1.1)

where α j ∈ [0,1), j = 1,2, and the symbol ’◦’ is the thinning operator
which also acts as the matrix multiplication. So the jth ( j = 1,2) element
is defined as an INAR process of order 1 (INAR(1)):

Yj,t = α j ◦Yj,t−1 + ε j,t , t ∈ Z, (4.1.2)

where α j ◦Yj,t−1 := ∑Yj,t−1
i=1 B j,t,i and B j,t,1,B j,t,2, . . . is a sequence of i.i.d.

Bernoulli random variables with P(B j,t,i = 1) = α j = 1 − P(B j,t,i = 0),
α j ∈ [0,1), such that these sequences are mutually independent and in-
dependent of the sequence εεε t , t ∈ Z.

Consequently, for each t, εεε t is independent of Ys, s< t. Yj,t , defined in eq.
(4.1.2), has two random components: the survivors of the elements of
the process at time t −1, each with the probability of survival α j, which
is denoted by α j ◦Yj,t−1, and the elements which enter in the system in
the interval (t − 1, t], which are called arrival elements and denoted by
ε j,t . We can obtain an infinite series representation by substitutions and
the properties of the thinning operator as in Al-Osh and Alzaid (1987)
or Kedem and Fokianos (2002, p. 180):

Yj,t = α j ◦Yj,t−1 + ε j,t
d
=

∞

∑
k=0

αk
j ◦ ε j,t−k, j = 1,2, t ∈ Z, (4.1.3)

where convergence on the right-hand side holds a.s. The properties of
the binomial thinning operator are provided in Chapter 2.

Now we present some properties of the BINAR(1) model. They will
be used when analysing some of the parameter estimation methods.

Theorem 4.1.1. [Properties of the BINAR(1)) process] Let Yt =

[Y1,t ,Y2,t ]
⊤ be a nonnegative integer-valued time series given in Def. 4.1.1

and α j ∈ [0,1), j = 1,2. Let εεε t = [ε1,t ,ε2,t ]
⊤, t ∈Z, be nonnegative integer-

valued random variables with E(ε j,t) = µε, j and Var(ε j,t) = σ2
j , j = 1,2.

Then the following properties hold:

(a) EYj,t = µYj =
µε, j

1−α j
;
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(b) E(Yj,t |Yj,t−1) = α jYj,t−1 +µε, j;

(c) Var(Yj,t) = σ2
Y j
=

σ2
j +α jµε, j

1−α2
j

;

(d) Cov(Yi,t ,ε j,t) = Cov(εi,t ,ε j,t), i ̸= j;

(e) Cov(Yj,t ,Yj,t+h) = αh
j σ2

Y j
, h ≥ 0;

(f) Corr(Yj,t ,Yj,t+h) = αh
j , h ≥ 0;

(g) Cov(Yi,t ,Yj,t+h) =
αh

j

1−αiα j
Cov(εi,t ,ε j,t), i ̸= j, h ≥ 0;

(h) Corr(Yi,t+h,Yj,t) =
αh

i

√
(1−α2

i )(1−α2
j )

(1−αiα j)
√
(σ2

i +αiµε,i)(σ2
j +α jµε, j)

Cov(εi,t ,ε j,t),

i ̸= j, h ≥ 0;

The proofs for these properties can be easily derived and a number
of these are provided in Pedeli (2011). For the reader’s convenience, the
proofs of the above properties are also provided in Appendix B.1.

Similarly to (4.1.3), it holds that

Yt
d
=

∞

∑
k=0

Ak ◦ εεε t−k,

where convergence on the right-hand side holds a.s.
Hence, the distributional properties of the BINAR(1) process can be

studied in terms of εεε t values. Note also, that according to Latour (1997),
if α j ∈ [0,1), j = 1,2, then there exists a unique stationary nonnegative
integer-valued sequence Yt , t ∈ Z, satisfying (4.1.1).

From the covariance (g) and correlation (h) of the BINAR(1) pro-
cess we see that the dependence between Y1,t and Y2,t depends on the
joint distribution of the innovations ε1,t , ε2,t . Pedeli and Karlis (2011)
analysed BINAR(1) models when the innovations were joint by either
a bivariate Poisson or a bivariate negative binomial distribution, where
the covariance of the innovations can be easily expressed in terms of
their joint distribution parameters. Karlis and Pedeli (2013) analysed
two cases when the distributions of innovations of a BINAR(1) model
are linked by either a Frank copula or a normal copula with either Pois-
son or negative binomial marginal distributions. We will expand on
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their work by analysing additional copulas for the BINAR(1) model in-
novation distribution as well as estimation methods for the distribution
parameters.

4.2 Parameter estimation of the copula-based
BINAR(1) model

In this section we examine different BINAR(1) model parameter estima-
tion methods and provide a two-step estimation method for estimating
the copula dependence parameter separately from the other parame-
ters. Estimation methods are compared via Monte Carlo simulations.
Let Yt = [Y1,t ,Y2,t ]

⊤ be a non-negative integer-valued time series given
in Def. 4.1.1, where the joint distribution of [ε1,t ,ε2,t ]

⊤, with marginals
F1,F2, is linked by a copula C(·, ·):

P(ε1,t ≤ y1,ε2,t ≤ y2) =C(F1(y1),F2(y2))

and let C(u1,u2) =C(u1,u2;θ), where θ is a dependence parameter.

4.2.1 Conditional least squares estimation

The Conditional least squares (CLS) estimator minimizes the squared
distance between Yt and its conditional expectation. Similarly to the
method in Silva (2005) for the INAR(1) model, we construct the CLS
estimator in the case of the BINAR(1) model.
Using Theorem 2.1.1 we can write the vector of conditional means as

µµµ t|t−1 :=

[
E(Y1,t |Y1,t−1)

E(Y2,t |Y2,t−1)

]
=

[
α1Y1,t−1 +µε,1

α2Y2,t−1 +µε,2

]
, (4.2.1)

where µε, j := Eε j,t , j = 1,2. In order to calculate the CLS estimators
of (α1,α2,µε,1,µε,2), we define the vector of residuals as the difference
between the observations and their conditional expectation:

Yt −µµµ t|t−1 =

[
Y1,t −α1Y1,t−1 −µε,1

Y2,t −α2Y2,t−1 −µε,2

]
.

Then, given a sample of N observations, Y1, . . . ,YN , the CLS estimators
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of α j,µε, j, j = 1,2 are found by minimizing the sum

Q j(α j,µε, j) :=
N

∑
t=2

(Yj,t −α jYj,t−1 −µε, j)
2 −→ min

α j,µε, j
, j = 1,2.

By taking the derivatives with respect to α j and µε, j, j = 1,2 and equat-
ing them to zero we get:

α̂CLS
j =

∑N
t=2(Yj,t − Ȳj)(Yj,t−1 − Ȳ ∗

j )

∑N
t=2(Yj,t−1 − Ȳ ∗

j )
2

(4.2.2)

and

µ̂CLS
ε, j =

1
N −1

( N

∑
t=2

Yj,t − α̂CLS
j

N

∑
t=2

Yj,t−1

)
, (4.2.3)

where Ȳj := (N −1)−1 ∑N
t=2Yj,t and Ȳ ∗

j := (N −1)−1 ∑N
t=2Yj,t−1 (see Ispány

et al. (2003)). The asymptotic properties of the CLS estimators for
the INAR(1) model case are provided in Latour (1998), Silva (2005),
Barczy et al. (2010) and can be applied to the BINAR(1) parameter
estimates, specified via equations (4.2.2) and (4.2.3). By the fact that
the j-th component of the BINAR(1) process is an INAR(1) itself, we
can formulate the following theorem for the marginal parameter vector
distributions (see Barczy et al. (2010)):

Theorem 4.2.1. Let Yt = [Y1,t ,Y2,t ]
⊤ be defined in Def. 4.1.1 and let the

parameter vector of (4.1.2) be [α j,µε, j]
⊤. Assume that α̂CLS

j and µ̂CLS
ε, j

are the CLS estimators of α j and µε, j, j = 1,2. Then:

√
N

(
α̂CLS

j −α j

µ̂CLS
ε, j −µε, j

)
d−→ N (0002,B j) ,

where

B j =

[
EY 2

j,t EYj,t

EYj,t 1

]−1

A j

[
EY 2

j,t EYj,t

EYj,t 1

]−1

,

A j = α j(1−α j)

[
EY 3

j,t EY 2
j,t

EY 2
j,t EYj,t

]
+σ2

j

[
EY 2

j,t EYj,t

EYj,t 1

]
, j = 1,2.
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Here, the moments are derived in Barczy et al. (2010) as

EYj,t =
µε, j

1−α j
, EY 2

j,t =
σ2

j +α jµε, j

1−α2
j

+
µ2

ε, j

(1−α j)2 ,

EY 3
j,t =

Eε3
j,t −3σ2

j (1+µε, j)−µ3
ε, j +2µε, j

1−α3
j

+3
σ2

j +α jµε, j

1−α2
j

−2
µε, j

1−α j

+3
µε, j(σ2

j +α jµε, j)

(1−α j)(1−α2
j )

+
µ3

ε, j

(1−α j)3 .

For the Poisson marginal distribution case the asymptotic variance
matrix can be expressed as (see Freeland and McCabe (2005))

B j =


α j(1−α j)

2

µε, j
+1−α2

j −(1+α j)µε, j

−(1+α j)µε, j µε, j +
1+α j

1−α j
µ2

ε, j

 , j = 1,2.

Furthermore, for a more general case, Latour (1997) proved that the
CLS estimators of a multivariate generalized integer-valued autoregres-
sive process (GINAR) are asymptotically normally distributed.

Note that

E(Y1,t −α1Y1,t−1 −µε,1)(Y2,t −α2Y2,t−1 −µε,2) = Cov(ε1,t ,ε2,t), (4.2.4)

which follows from

E(Y1,t −α1Y1,t−1 −µε,1)(Y2,t −α2Y2,t−1 −µε,2)

= E(α1 ◦Y1,t−1 −α1Y1,t−1)(α2 ◦Y2,t−1 −α2Y2,t−1)

+E(α1 ◦Y1,t−1 −α1Y1,t−1)(ε2,t −µε,2)

+E(α2 ◦Y2,t−1 −α2Y2,t−1)(ε1,t −µε,1)

+E(ε1,t −µε,1)(ε2,t −µε,2)

since the first three summands are zeros.

Example 4.2.1. Assume that joint probability mass function of
[ε1,t ,ε2,t ] is given by a bivariate Poisson distribution:

P(ε1,t = k,ε2,t = l) =
min{k,l}

∑
i=0

(µε,1 −λ )k−i(µε,2 −λ )l−iλ i

(k− i)!(l − i)!i!
e−(µε,1+µε,2−λ ),
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where µε, j > 0, j = 1,2, 0 ≤ λ < min{µε,1,µε,2}. Then, for each j =
1,2, the marginal distribution of ε j,t is Poisson with parameter µε, j and
Cov(ε1,t ,ε2,t) = λ . If λ = 0 then the two variables are independent.

Example 4.2.2. Assume that joint probability mass function of
[ε1,t ,ε2,t ] is a bivariate negative binomial distribution given by

P(ε1,t = k,ε2,t = l) =
Γ(β + k+ l)

Γ(β )k!l!

( µε,1

µε,1 +µε,2 +β

)k( µε,2

µε,1 +µε,2 +β

)l

×
( β

µε,1 +µε,2 +β

)β
,

where µε, j > 0, j = 1,2, β > 0. Then, for each j = 1,2, the
marginal distribution of ε j,t is negative binomial with parameters β
and p j = β/(µε, j +β ) and Eε j,t = µε, j, Var(ε j,t) = µε, j(1 + β−1µε, j),
Cov(ε1,t ,ε2,t) = β−1µε,1µε,2. Thus, bivariate negative binomial distri-
bution is more flexible than bivariate Poisson due to overdispersion pa-
rameter β .

Assume now that the Poisson innovations ε1,t and ε2,t with param-
eters µε,1 and µε,2, respectively, are joint by a copula with dependence
parameter θ . Taking into account equality (4.2.4), we can estimate θ
by minimizing the sum of squared differences

S =
N

∑
t=2

(
εCLS

1,t εCLS
2,t − γ(µ̂CLS

ε,1 , µ̂CLS
ε,2 ;θ)

)2
, (4.2.5)

where

εCLS
j,t := Yj,t − α̂CLS

j Yj,t−1 − µ̂CLS
ε, j , j = 1,2

and

γ(µε,1,µε,2;θ) := Cov(ε1,t ,ε2,t)

=
∞

∑
k,l=1

kl c(F1(k; µε,1),F2(l; µε,2);θ)−µε,1µε,2. (4.2.6)
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Here, c(F1(k; µε,1),F2(l; µε,2);θ) is the joint probability mass function:

c(F1(k; µε,1),F2(l; µε,2);θ) = P(ε1,t = k,ε2,t = l)

=C(F1(k; µε,1),F2(l; µε,2);θ)

−C(F1(k−1; µε,1),F2(l; µε,2);θ)

− C(F1(k; µε,1),F2(l −1; µε,2);θ)

+ C(F1(k−1; µε,1),F2(l −1; µε,2);θ), (4.2.7)
k ≥ 1, l ≥ 1.

Our estimation method is based on the approximation of covariance
γ(µ̂CLS

ε,1 , µ̂CLS
ε,2 ;θ) by

γ(M1,M2)(µ̂CLS
ε,1 , µ̂CLS

ε,2 ;θ) =
M1

∑
k=1

M2

∑
l=1

kl c(F1(k; µ̂CLS
ε,1 ),F2(l; µ̂CLS

ε,2 );θ)− µ̂CLS
ε,1 µ̂CLS

ε,2 .

(4.2.8)

For example, if the marginals are Poisson with parameters µε,1 = µε,2 = 1
and their joint distribution is given by FGM copula in (3.0.5), then
the covariance γ(M1,M2)(1,1;θ) stops changing significantly after setting
M1 = M2 = M = 8, regardless of the selected dependence parameter θ .
We used this approximation methodology when carrying out a Monte
Carlo simulation in Section 4.3.

For the FGM copula, if we take the derivative of the sum

S(M1,M2) =
N

∑
t=2

(
εCLS

1,t εCLS
2,t − γ(M1,M2)(µ̂CLS

ε,1 , µ̂CLS
ε,2 ;θ)

)2
, (4.2.9)

equate it to zero and use equation (4.2.8), we get

θ̂ FGM =
∑N

t=2(Y1,t − α̂CLS
1 Y1,t−1 − µ̂CLS

ε,1 )(Y2,t − α̂CLS
2 Y2,t−1 − µ̂CLS

ε,2 )

(N −1)∑M1
k=1 k(F1,kF1,k −F1,k−1F1,k−1)∑M2

l=1 l(F2,lF2,l −F2,l−1F2,l−1)
,

(4.2.10)

where Fj,k := Fj(k; µ̂CLS
ε, j ), F j,k := 1−Fj,k, j = 1,2. The derivation of equa-

tion (4.2.10) is straightforward and is presented in Appendix B.2 for the
reader’s convenience.

Depending on the selected copula family, calculating (4.2.7) to get
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the analytical expression of estimator θ̂ may be difficult. However, we
can use the function optim in R to minimize (4.2.5). For other marginal
distribution cases, where the marginal distribution has parameters other
than expected value µε, j, equation (4.2.5) would need to be minimized
by those additional parameters. For example, in the case of negative
binomial marginals with corresponding mean µε, j and variance σ2

j , i.e.
if

P(ε j,t = k) =
Γ
(

k+
µ2

ε, j
σ2

j −µε, j

)
Γ
( µ2

ε, j
σ2

j −µε, j

)
k!

(µε, j

σ2
j

) µ2
ε, j

σ2
j −µε, j

(σ2
j −µε, j

σ2
j

)k
,

k = 0,1, . . . , j = 1,2, then the additional parameters are σ2
1 ,σ2

2 and min-
imization problem becomes

S(M1,M2) −→ min
σ2

1 ,σ
2
2 ,θ

.

4.2.2 Conditional maximum likelihood estimation

BINAR(1) models can be estimated via conditional maximum likelihood
(CML) (see Pedeli and Karlis (2011) and Karlis and Pedeli (2013)). The
conditional distribution of the BINAR(1) process is:

P(Y1,t = y1,t ,Y2,t = y2,t |Y1,t−1 = y1,t−1,Y2,t−1 = y2,t−1)

= P(α1 ◦ y1,t−1 + ε1,t = y1,t ,α2 ◦ y2,t−1 + ε2,t = y2,t)

=
y1,t

∑
k=0

y2,t

∑
l=0

P(α1 ◦ y1,t−1 = k)P(α2 ◦ y2,t−1 = l)P(ε1,t = y1,t − k,ε2,t = y2,t − l).

Here, α j ◦ y is the sum of y independent Bernoulli trials. Hence,

P(α j ◦ y j,t−1 = k) =
(

y j,t−1

k

)
αk

j (1−α j)
y j,t−1−k, k = 0, . . . ,y j,t−1, j = 1,2.

In the case of copula-based BINAR(1) model with Poisson marginals,

P(ε1,t = y1,t − k,ε2,t = y2,t − l) = c(F1(y1,t − k,µε,1),F2(y2,t − l,µε,2);θ).
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Thus, we obtain

P(Y1,t = y1,t ,Y2,t = y2,t |Y1,t−1 = y1,t−1,Y2,t−1 = y2,t−1)

=
y1,t

∑
k=0

y2,t

∑
l=0

(
y1,t−1

k

)
αk

1(1−α1)
y1,t−1−k

(
y2,t−1

l

)
α l

2(1−α2)
y2,t−1−l

× c(F1(y1,t − k,µε,1),F2(y2,t − l,µε,2);θ)

and the log conditional likelihood function, for estimating the marginal
distribution parameters µε,1,µε,2, the probabilities of the Bernoulli trial
successes α1,α2 and the dependence parameter θ , is

ℓ(α1,α2,µε,1,µε,2,θ)

=
N

∑
t=2

logP(Y1,t = y1,t ,Y2,t = y2,t |Y1,t−1 = y1,t−1,Y2,t−1 = y2,t−1)

for some initial values y1,1 and y2,1. In order to estimate the unknown
parameters we maximize the log conditional likelihood:

ℓ(α1,α2,µε,1,µε,2,θ)−→ max
α1,α2,µε,1,µε,2,θ

. (4.2.11)

Numerical maximization is straightforward with the optim function in
R statistical software.

As with the CLS estimator case, for other marginal distribution cases
where the marginal distribution has parameters other than µε, j, equa-
tion (4.2.11) would need to be maximized by those additional parame-
ters. The CML estimator is asymptotically normally distributed under
standard regularity conditions and its variance matrix is the inverse of
the Fisher information matrix (see Pedeli and Karlis (2011)).

4.2.3 Two-step estimation based on CLS and CML

Depending on the range of attainable values of the parameters and the
sample size, CML maximization might take some time to compute. On
the other hand, since CLS estimators of α j and µε, j are easily derived
(compared to the CLS estimator of θ , which depends on the copula
pmf form and needs to be numerically maximized), we can substitute
the parameters of the marginal distributions in eq. (4.2.11) with CLS
estimates from equations (4.2.2) and (4.2.3). Then we will only need
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to maximize ℓ with respect to a single dependence parameter θ for the
Poisson marginal distribution case.

In other words, the two-step approach for estimating the unknown
parameters consists of finding

(α̂CLS
j , µ̂CLS

ε, j ) = argminQ j(α j,µε, j), j = 1,2

in the first step and taking those values as given in the second step:

θ̂ CML = argmaxℓ(α̂CLS
1 , α̂CLS

2 , µ̂CLS
ε,1 , µ̂CLS

ε,2 ,θ).

For other marginal distribution cases, any additional parameters, other
than α j and µε, j would be estimated in the second step.

4.3 Estimation method comparison via Monte
Carlo simulation

We carried out a Monte Carlo simulation 1000 times to test the estima-
tion methods with sample size 50 and 500. The generated model was a
BINAR(1) with innovations joint by either an FGM, Frank or Clayton
copula with Poisson marginal distributions as well as the case when the
marginal distributions can be from different families: one is a Poisson
and the other – a negative binomial distribution. Note that for the
two-step method only the estimates of θ and σ2

2 are included because
estimated values of αCLS

1 ,αCLS
2 ,µCLS

ε,1 ,µCLS
ε,2 are used in order to estimate

the remaining parameters via CML.
The results for the Poisson marginal distribution case are provided

in Table 4.3.1. The results for the case when one innovation follows a
Poisson distribution and the other – a negative binomial distribution
are provided in Table 4.3.2. The lowest MSE values of θ̂ are highlighted
in bold. It is worth noting that CML estimation via numerical maxi-
mization depends heavily on the initial parameter values. If the initial
values are selected too low or too high from the actual value, then the
global maximum may not be found. In order to overcome this, we have
selected the starting values equal to the CLS parameter estimates.

As can be seen in Table 4.3.1, the estimated values of α j and µε, j,
j = 1,2 have a smaller bias and MSE when parameters are estimated via
CML. On the other hand, estimation of θ via CLS exhibits a smaller
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Table 4.3.1: Monte Carlo simulation results for a BINAR(1) model
with Poisson innovations linked by an FGM, Frank or Clayton copula.

Copula Sample Param. True CLS CML Two-Step
size value MSE Bias MSE Bias MSE Bias

FGM

α1 0.6 0.01874 -0.05823 0.00887 -0.01789 - -
α2 0.4 0.02033 -0.05223 0.01639 -0.02751 - -

N = 50 µε,1 1 0.12983 0.13325 0.06514 0.03366 - -
µε,2 2 0.25625 0.16029 0.19939 0.07597 - -
θ -0.5 0.29789 0.12568 0.33840 0.07568 0.3311 0.0876
α1 0.6 0.00147 -0.00432 0.00073 -0.00122 - -
α2 0.4 0.00184 -0.00505 0.00129 -0.00157 - -

N = 500 µε,1 1 0.01012 0.00968 0.00556 0.00215 - -
µε,2 2 0.02413 0.01843 0.01763 0.00678 - -
θ -0.5 0.04679 0.00668 0.04271 -0.00700 0.04265 -0.00443

Frank

α1 0.6 0.02023 -0.06039 0.00950 -0.01965 - -
α2 0.4 0.02005 -0.05251 0.01630 -0.02858 - -

N = 50 µε,1 1 0.13562 0.13536 0.06740 0.03625 - -
µε,2 2 0.25687 0.16392 0.19975 0.08291 - -
θ -1 1.83454 0.12394 2.05786 0.00860 1.97515 0.04216
α1 0.6 0.00153 -0.00595 0.00075 -0.00249 - -
α2 0.4 0.00181 -0.00582 0.00129 -0.00132 - -

N = 500 µε,1 1 0.01033 0.01269 0.00550 0.00421 - -
µε,2 2 0.02442 0.02129 0.01785 0.00629 - -
θ -1 0.22084 0.01746 0.20138 -0.01779 0.20070 -0.01342

Clayton

α1 0.6 0.01826 -0.05489 0.00799 -0.013295 - -
α2 0.4 0.01976 -0.05057 0.01585 -0.02427 - -

N = 50 µε,1 1 0.12679 0.12104 0.06080 0.01743 - -
µε,2 2 0.25725 0.15704 0.19934 0.06499 - -
θ 1 0.71845 0.02621 0.72581 0.22628 0.62372 0.13283
α1 0.6 0.00146 -0.00518 0.00070 0.00016 - -
α2 0.4 0.00189 -0.00350 0.00120 -0.00049 - -

N = 500 µε,1 1 0.00973 0.01137 0.00513 -0.00150 - -
µε,2 2 0.02447 0.01113 0.01707 0.00065 - -
θ 1 0.11578 0.03556 0.05864 0.04250 0.03199 -0.01342

MSE in the Frank copula case for smaller samples. For larger samples,
the estimates of θ via the Two-step estimation method are very close to
the CML estimates in terms of MSE and bias and are closer to the true
parameter values, compared to the CLS estimates. Furthermore, since
in the Two-step estimation numerical maximization is only carried out
via a single parameter θ , the initial parameter values have less of an
effect on the numerical maximization.
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Table 4.3.2: Monte Carlo simulation results for a BINAR(1) model
with one innovation following a Poisson distribution and the other – a
negative binomial distribution, where both innovations are linked by an
FGM, Frank or Clayton copula.

Copula Sample Param. True CLS CML Two-Step
size value MSE Bias MSE Bias MSE Bias

FGM

N = 50

α1 0.6 0.01895 -0.05858 0.00845 -0.01513 - -
α2 0.4 0.01936 -0.04902 0.00767 -0.01953 - -

µε,1 1 0.12940 0.12812 0.05424 0.01879 - -
µε,2 2 0.39724 0.15151 0.24138 0.04833 - -
θ -0.5 0.31467 0.14070 0.29415 0.06674 0.29949 0.09693

σ2
2 9 27.87327 1.15731 15.12863 -0.14888 21.68229 0.72326

N = 500

α1 0.6 0.00156 -0.00695 0.00076 -0.00153 - -
α2 0.4 0.00194 -0.00373 0.00053 0.00016 - -

µε,1 1 0.01041 0.01201 0.00543 0.00290 - -
µε,2 2 0.03882 0.01843 0.02362 -0.00057 - -
θ -0.5 0.06670 -0.02014 0.04298 -0.00268 0.04313 0.00562

σ2
2 9 6.24237 -1.99232 1.81265 0.00611 1.85222 -0.03506

Frank

N = 50

α1 0.6 0.02049 -0.06064 0.00912 -0.01594 - -
α2 0.4 0.01951 -0.04936 0.00772 -0.02070 - -

µε,1 1 0.13769 0.13467 0.05748 0.02280 - -
µε,2 2 0.40626 0.15408 0.23717 0.05534 - -
θ -1 1.81788 0.12516 1.75638 -0.01239 1.68019 0.06211

σ2
2 9 25.10400 0.49423 14.86812 -0.10034 21.92090 0.74026

N = 500

α1 0.6 0.00161 -0.00702 0.00075 -0.00239 - -
α2 0.4 0.00187 -0.00364 0.00050 -0.00046 - -

µε,1 1 0.01093 0.01652 0.00562 0.00501 - -
µε,2 2 0.03728 0.01217 0.02335 0.00203 - -
θ -1 0.31942 -0.05593 0.18960 -0.01481 0.1902 -0.0079

σ2
2 9 4.82620 -1.75765 1.83082 0.02144 1.85852 -0.02690

Clayton

N = 50

α1 0.6 0.01987 -0.06159 0.00903 -0.01671 - -
α2 0.4 0.01879 -0.04928 0.00632 -0.01644 - -

µε,1 1 0.13479 0.14072 0.06096 0.03052 - -
µε,2 2 0.40675 0.14807 0.23171 0.02871 - -
θ 1 0.78497 0.07464 0.67837 0.21235 0.57454 0.10972

σ2
2 9 24.40051 0.17321 15.29879 -0.08379 23.73506 0.73754

N = 500

α1 0.6 0.00153 -0.00722 0.00075 -0.00197 - -
α2 0.4 0.00196 -0.00385 0.00047 -0.00083 - -

µε,1 1 0.01036 0.01745 0.00517 0.00409 - -
µε,2 2 0.03999 0.01227 0.02304 0.00110 - -
θ 1 0.09927 0.04408 0.05557 0.03556 0.05559 0.02310

σ2
2 9 2.95995 -0.68733 1.79836 0.01348 1.87740 -0.02407

Table 4.3.2 demonstrates the estimation method results when one
innovation follows a Poisson and the other has a negative binomial dis-
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tribution.
With the inclusion of an additional variance parameter, CLS esti-

mation methods exhibit larger MSE and bias for both the dependence
and variance parameter estimates than the CML and Two-step estima-
tion methods. Furthermore, the MSE of σ̂2

2 is the smallest when using
CML estimation method. On the other hand, both Two-step and CML
estimation methods produce similar estimates of θ in terms of MSE,
regardless of sample size and copula function.

We can conclude that, while α̂ j, µ̂ε, j and σ̂2
2 are closer to the true pa-

rameter values via CML estimation method, it is possible to accurately
estimate the dependence parameter via CML while using CLS estimates
of α̂ j and µ̂ε, j. The resulting θ̂ will be closer to the actual value of
θ compared to θ̂ CLS and will not differ much from θ̂ CML. Additional
inference on the bias of the estimates can be found in Appendix C.

4.4 Application to default loan data

In this section we estimate a BINAR(1) model with the joint innovation
distribution modelled by a copula cdf for empirical data. The data set
consists of loan data which includes loans that have defaulted and loans
that were repaid without missing any payments. We will analyse and
model the dependence between defaulted and non-defaulted loans as well
as the presence of autocorrelation.

4.4.1 Loan default data

The data sample used is from an Estonian peer-to-peer lending company,
Bondora. In November of 2014 Bondora introduced a loan rating system
which assigns a loan to a different group based on its risk level. There
are a total of 8 groups ranging from the lowest risk – ’AA’ group, to
the highest risk – ’HR’ group. However, the loan rating system could
not be applied to most older loans due to a lack of data needed for
Bondoras rating model. Because Bondora issues loans in 4 different
countries: Estonia, Finland, Slovakia and Spain, we will only focus on
the loans issued in Spain. Since a new rating model indicates new rules
for accepting or rejecting loans, we have selected the data sample from
21 October 2013, because from that date forward all loans had a rating
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assigned to them, to 1 January 2016. The time series are displayed in
Figure 4.4.1. We are analysing data consisting of 115 weekly data.

• ’CompletedLoans’ – the number of loans that were issued each
week which are repaid and have never defaulted (a loan that is 60
or more days overdue is considered defaulted);

• ’DefaultedLoans’ – the number of loans that were issued each week
which have defaulted.

The loan statistics are provided in Table 4.4.1:

Table 4.4.1: Summary statistics of the weekly data of defaulted loans
and non-defaulted loans issued in Spain.

min max mean variance
DefaultedLoans 1.00 60.00 22.60 158.66
CompletedLoans 0.00 15.00 5.30 11.67

The mean, minimum, maximum and variance is higher for defaulted
loans compared to loans, which were repaid on time. As can be seen
from Figure 4.4.2, the loans might be correlated since they both exhibit
increase and decrease periods at the same times.
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Figure 4.4.1: Bondora loan data: non-defaulted and defaulted loans
by their issued date.
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The correlation between the two time series is 0.6684. We also note
that the mean and variance appears lower in the beginning of the time
series. This change could be due to a variety of reasons: the effect of the
new loan rating system, which was officially implemented in December
of 2014, the effect of advertising or the fact that the number of loans,
issued to people living outside of Estonia, increased. The analysis of the
significance of these effects is left for future research.

The sample autocorrelation function (ACF) and partial autocorre-
lation function (PACF) are displayed in Figure 4.4.2. We can see that
the ACF function is decaying over time and the PACF function has a
significant first lag which indicates that the non-negative integer-valued
time series could be autocorrelated.
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Figure 4.4.2: ACF and PACF plots of Bondora loan data.

We can also examine the heat map between the two series in Fig-
ure 4.4.3. We see that larger values of completed loans are associ-
ated with larger values of defaulted loans. However, when analysing
BINAR(1) models, the heat map represents the relationship between the
elements of Yt in eq. (4.1.1). Since we do not observe the innovations -
we cannot infer the underlying innovation copula as it is different from
the distribution of the BINAR(1) process itself, see (Karlis and Pedeli,
2013).
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Figure 4.4.3: Heat map of completed and defaulted loan data.

Another well-known tool to visualize the cross-dependency between
two time series is their cross-correlation plot (CCF), which is provided
in Figure 4.4.4. We see that there is a relationship between the defaulted
and completed loans. However, similarly to Figure 4.4.3, we cannot ver-
ify the underlying relationship of the innovations. An open question
remains for selecting appropriate empirical methods for relating the dis-
tribution of the BINAR(1) process to the distribution of the unobserved
innovations.
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Figure 4.4.4: CCF plot of completed and defaulted loan data.

45



In order to analyse whether the number of loans that have defaulted
depends on the number of loans which have not defaulted but were
issued on the same week, we will consider a BINAR(1) model with dif-
ferent copulas for the innovations. For the marginal distributions of
the innovations we will consider Poisson as well as negative binomial
distributions. Based on the Monte Carlo simulation results presented
in Section 4.3 and that our focus is the estimation of the dependence
parameter, we will use the Two-step estimation method.

4.4.2 Estimated models

We estimated a number of BINAR(1) models with different distributions
of innovations which include combinations of:

• different copula functions: FGM, Frank or Clayton;

• different combinations of Poisson and negative binomial distribu-
tions: both marginals are Poisson, both marginals are negative
binomial or a mix of both.

In the first step of the Two-step method, we estimated α̂1 and µ̂ε,1

for the non-defaulted loans, and α̂2 and µ̂ε,2 for the defaulted loans via
CLS. The results are provided in Table 4.4.2 with standard errors for
the Poisson case in parenthesis:

Table 4.4.2: Parameter estimates for BINAR(1) model via the Two-step
estimation method: parameter CLS estimates from the first step with
standard errors for the Poisson marginal distribution case in parenthesis.

α̂1 α̂2 µ̂ε,1 µ̂ε,2

0.53134 0.75581 2.52174 5.58940
(0.08151) (0.06163) (0.45012) (1.41490)

Because the CLS estimation method of parameters α j and µε, j, j =
1,2 does not depend on the selected copula and marginal distribution
family, these parameters will remain the same for each of the different
distribution combinations for innovations. We can see that the defaulted
loans exhibit a higher degree of autocorrelation, because of the larger
value of α̂2. The innovation mean parameter for defaulted loans is also
higher in defaulted loans which indicates that random shocks have a
larger effect on the number of defaulted loans.
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The estimated parameter results from the second-step are provided
in Table 4.4.3 with standard errors in parenthesis. σ̂2

1 is the innova-
tion variance estimate of non-defaulted loans and σ̂2

2 is the innovation
variance estimate of defaulted loans. According to Pawitan (2001), the
observed Fisher information is the negative Hessian matrix, evaluated
at the MLE. The asymptotic standard errors reported in Table 4.4.3 are
derived under the assumption that α j and µε, j, j = 1,2 are known, ig-
noring that the true values are substituted in the second step with their
CLS estimates.

Table 4.4.3: Parameter estimates for BINAR(1) model via Two-step
estimation method: parameter CML estimates from the second-step for
different innovation marginal and joint distribution combinations with
standard errors in parenthesis, derived under the assumption that the
values µ̂ε, j and α̂ j, j = 1,2 from the first step are true.

Marginals Copula θ̂ σ̂2
1 σ̂2

2 AIC Log-likelihood

Both Poisson

FGM 0.89270 - - 1763.48096 -880.74048
(0.18671)

Frank 2.38484 - - 1760.15692 -879.07846
(0.53367)

Clayton 0.39357 - - 1761.12369 -879.56185
(0.11697)

Negative binomial
and Poisson

FGM 1.00000 6.46907 - 1731.57339 -863.78670
(0.22914) (1.01114)

Frank 2.14329 6.10242 - 1731.95241 -863.97620
(0.45100) (1.15914)

Clayton 0.34540 5.73731 - 1736.47641 -866.23821
(0.12859) (0.52831)

Poisson and
negative binomial

FGM 1.00000 - 44.83107 1498.29563 -747.14782
(0.26357) (7.37423)

Frank 2.01486 - 44.10555 1498.81039 -747.40519
(0.61734) (7.33169)

Clayton 0.38310 - 43.42739 1503.55388 -749.77694
(0.17376) (7.29842)

Both negative
binomial

FGM 1.00000 6.55810 45.36834 1466.15418 -730.07709
(0.31675) (1.24032) (7.55217)

Frank 2.21356 6.58754 45.42601 1466.97947 -730.48973
(0.68192) (1.26126) (7.57743)

Clayton 0.55939 6.64478 45.78307 1470.73515 -732.36758
(0.24652) (1.25833) (7.66324)

From the results in Table 4.4.3 we see that, according to the AIC
and log-likelihood values, in most cases FGM copula most accurately
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describes the relationship between the innovations of defaulted and non-
defaulted loans with Frank copula being very close in terms of AIC value.
Clayton copula is the least accurate in describing the innovation joint
distribution, when compared to FGM and Frank copula cases, which
indicates that defaulted and non-defaulted loans do not exhibit strong
left tail dependence.

Since the summary statistics of the data sample showed that the vari-
ance of the data is larger than the mean, a negative binomial marginal
distribution may provide a better fit. Additionally, because copulas
can link different marginal distributions, it is interesting to see if cop-
ulas with different discrete marginal distributions would also improve
the model fit. BINAR(1) models where non-defaulted loan innovations
are modelled with negative binomial and defaulted loan innovations are
modelled with Poisson marginal distributions and vice versa were es-
timated. In general, changing one of the marginal distributions to a
negative binomial provides a better fit in terms of AIC compared to the
Poisson marginal distribution case. However, the smallest AIC value is
achieved when both marginal distributions are modelled with negative
binomial distributions, linked via an FGM copula. Furthermore, the es-
timated innovation variance is much larger for defaulted loans, σ̂2

2 , which
is similar to what we observed from the defaulted loan data summary
statistics.

Overall, both Frank and FGM copulas provide similar fit in terms
of log-likelihood, regardless of the selected marginal distributions. We
note, however, that for some FGM copula cases, the estimated value of
parameter θ is equal to the maximum attainable value of 1. Based on
copula descriptions from Section 3, the FGM copula is used to model
weak dependence. Given a larger sample size, a Frank copula might be
more appropriate because it can capture a stronger dependence than
that of an FGM copula. Looking at the negative binomial marginal
distribution case θ̂ ≈ 2.21356 for the Frank copula, which indicates that
there is a positive dependence between defaulted and non-defaulted loans
just as in the FGM copula case.
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4.5 Summary

The analysis via Monte Carlo simulations of different estimation meth-
ods shows that, although the estimates of BINAR(1) parameters via
CML has the smallest MSE and bias, estimates of the dependence pa-
rameter has smaller differences of MSE and bias compared to other esti-
mation methods, indicating that estimations of the dependence param-
eter via different estimation methods do not exhibit large differences.
While CML estimates exhibit the smallest MSE, their estimation via
numerical optimization relies on the selection of the initial parameter
values. These values can be selected via CLS estimation.

An empirical application of BINAR models for loan data shows that,
regardless of the selected marginal distributions, the FGM copula pro-
vides the best model fit in almost all cases with Frank copula being very
close in terms of AIC values. For some of these cases, the estimated
FGM copula dependence parameter value was equal to the maximum
that can be attained by an FGM copula. In such cases, a larger sample
size could help determine whether FGM or Frank copula is more appro-
priate to model the dependence between defaulted and non-defaulted
loan amounts.

Although selecting marginal distributions from different families
(Poisson or negative binomial) provided better models compared to
models with only Poisson marginal distributions, the models with both
marginal distributions modelled via negative binomial distributions pro-
vides the smallest AIC values which reflects overdispersion in both de-
faulted and non-defaulted loans. The FGM copula, which provides the
best model fit, models variables, which exhibit weak dependence. Fur-
thermore, the estimated copula dependence parameter indicates that the
dependence between defaulted and non-defaulted loans is positive.

Finally, one can apply some other copulas in order to analyse whether
the loan data exhibits different forms of dependence from the ones dis-
cussed in this paper. Lastly, the model can be extended by analysing
the presence of structural changes within the data, or checking the pres-
ence of seasonality as well as extending the BINAR(1) model with copula
joint innovations to account for the past values of other time series rather
than only itself.
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Chapter 5

An integer-valued
autoregressive process for
seasonality

In this chapter, we extend the INAR(1)d model in (1.0.4) by allowing
the autoregressive parameter to vary with season as well as allowing
the random shocks to be intra-seasonally dependent. In particular, we
show that this specification leads to a similar form as the multivariate
INAR(1) with dimension d. Also, we present the properties of the model
and discuss the parameter estimation methods. Furthermore, a Monte
Carlo simulation is carried out in order to compare parameter estimation
methods. Finally, an empirical application is carried out on crime data
in Chicago city.

5.1 SINAR(1)d process for seasonality

We propose a generalization of eq. (1.0.4) by allowing ϕ to vary based
on the season as well as imposing a intra-seasonal dependence on the
innovations. We define this INAR process as follows:

Definition 5.1.1. A sequence of nonnegative integer-valued random
variables {Yt , t ∈Z} is said to be an INAR(1) process for seasonality with
period d ∈ N (SINAR(1)d), if it satisfies the following equation:

Yt = ϕt ◦Yt−d + εt , t ∈ Z, (5.1.1)
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where ϕt =α j ∈ [0,1) for t = j+kd, k ∈Z and j ∈ {1, . . . ,d}, {εt , t ∈Z} is a
sequence of intra-seasonally-dependent nonnegative integer-valued r.v.s.
It is assumed that ϕt ◦Yt−d = ∑

Y j+(k−1)d
i=1 Bi, j,k−1, where Bi, j,k−1 are indepen-

dent Bernoulli random variables, independent of Yj+(k−1)d and ε j+(k−1)d

for all k ∈ Z, j ∈ {1, . . . ,d}, with P(Bi, j,k−1 = 1) = α j. It is also assumed
that [ε1+kd , . . . ,εd+kd ]

⊤ are independent of [Y1+(k−s)d , . . . ,Yd+(k−s)d ]
⊤ for

s ∈ {1,2, ...} and that the distribution of [ε1+kd , . . . ,εd+kd ]
⊤ can be de-

scribed by a joint multivariate distribution or, alternatively, by a copula.

Furthermore, we will assume that the marginal distributions for
ε j+kd , j ∈ {1, . . . ,d} from Def. 5.1.1 are such that E(ε j+kd) = µε, j and
Var(ε j+kd) = σε, j j < ∞ for all k, and εt are intra-seasonally-dependent
with

Cov(εi+kd ,ε j+ld) =

σε,i j, k = l,

0, k ̸= l,

i.e. vectors [ε1+kd −µε,1, . . . ,εd+kd −µε,d ]
⊤ form a white noise sequence.

A larger value of α j would indicate seasons where counts occur more
frequently, while lower values would indicate seasonal periods with a
lower frequency. Note that observations in (1.0.4) are driven by the
first period values Y1, . . . ,Yd , but the parameter ϕ indicates that the
binomial variables have the same success probability in each seasonal
period. By specifying the success probability to be different for each
season in (5.1.1), we allow for larger (or smaller) counts in seasons,
where they are more (or less) likely to occur, instead of averaging the
success probability across the season. Allowing εt to be intra-seasonally-
dependent, we account for possible dependence of the unobserved shocks
within the period.

The following proposition summarizes the main properties of the
defined SINAR(1)d process. For any j ∈ {1, . . . ,d} denote the lattice
j+Zd := { j+ kd,k ∈ Z}.
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Proposition 5.1.1. Let {Yt} be a process in Def. 5.1.1 and let t = j+kd
with j ∈ {1, . . . ,d}, k ∈ Z. Then:

(a) the unique stationary marginal distribution of process
{Yt , t ∈ j+Zd} has the form

Yt
d
=

∞

∑
l=0

α l
j ◦ εt−ld ; (5.1.2)

(b) E(Yt) =
µε, j

1−α j
;

(c) Var(Yt) =
σε, j j +α jµε, j

1−α2
j

;

(d) if s ∈ Z, then

Cov(Yt ,Yt−s) =


α |m|

j
σε, j j +α jµε, j

1−α2
j

, if s = md, m ∈ Z,
σε,i j

1−αiα j
, if s = j− i ̸= 0 with i ∈ {1, ...,d},

0, otherwise;

(e) the conditional mean is E(Yt |Yt−d) = ϕtYt−d +µε, j.

The proofs of these properties are provided in Appendix D.1. We
denote γ(t,s) := Cov(Yt ,Yt−s) and ρ(t,s) := Corr(Yt ,Yt−s).

Remark 1. It is assumed that the process defined in Def. 5.1.1 is such
that either E(Yj+kd) ̸= E(Yi+ld), or γ( j+kd,s) ̸= γ(i+ ld,s) for some i ̸= j
and ∀k, l ∈ Z.

Following Hurd and Miamee (2007, Def. 1.4), we restate here that
any process {Xt , t ∈ Z} with finite second moments is periodically cor-
related with some period T > 0 if T is the smallest value for which
E(Xt) = E(Xt+T ) and Cov(Xt ,Xs) = Cov(Xt+T ,Xs+T ) for any s, t ∈ Z. Tak-
ing into account Remark 1, we have that the series {Yt}, defined in Def.
5.1.1, is periodically correlated with period d.

Periodically correlated sequences, as defined in Def. 5.1.1, are
nonstationary. However, when the period is known, they are
equivalent to a multivariate stationary processes, as discussed in
Hurd and Miamee (2007). To better visualize this relationship, let
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j ∈ {1, ...,d}, k ∈ {1, ...,n}, Y ( j)
k := Yj+kd and ε( j)

k := ε j+kd . Then (5.1.1)
can be written as separate INAR(1) processes

Y ( j)
k = α j ◦Y ( j)

k−1 + ε( j)
k ,

where ε( j)
k and ε(i)

k are dependent r.v.s ∀i, j ∈ {1, ...,d}. Consequently, we
can obtain a multivariate INAR(1) process representation by blocking
the univariate process, defined by eq. (5.1.1). This is also visualized in
Table 5.1.1. We discuss this representation in the following section.

Table 5.1.1: A SINAR(1)d process, expressed as separate INAR(1) pro-
cesses, where Y ( j)

• represents Y ( j)
k ,∀k ∈ {1, ...,n}.

Period number (e.g. years)
1 2 ... k ... n

1 Y (1)
•

Pe
rio

d
el

em
en

ts
(e

.g
.

m
on

th
s)

2 Y (2)
•

...
...

j ( j,k) Y ( j)
•

...
...

d Y (d)
•

5.2 The multivariate representation of the
SINAR(1)d process

Let {Yt} be a process defined in Def. 5.1.1. We can write the Yt as a
multivariate INAR(1) process

Yk = A◦Yk−1 +Zk, k ∈ Z, (5.2.1)

where:

Yk = [Y1+kd , . . . ,Yd+kd ]
⊤, Zk = [ε1+kd , . . . ,εd+kd ]

⊤, A = diag(α1, . . . ,αd).

The properties of the binomial thinning operator are provided in Chapter
2.

Below we provide a number of properties of the multivariate INAR
process, specified via eq. (5.2.1).
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Proposition 5.2.1. Let {Yt} be a solution of eq. (5.1.1) as in Proposi-
tion 5.1.1 (a). Then {Yk} defined in eq. (5.2.1) is second-order stationary
process and the following properties hold:

(a) E(Yk) = µµµY :=
[ µε,1

1−α1
, ...,

µε,d

1−αd

]⊤
= (I−A)−1µµµε ,

where µµµε := E(Zk) = [µε,1, . . . ,µε,d ]
⊤;

(b) E(Yk|Yk−1) = AYk−1 +µµµε ;

(c) Cov(Zk,Zk−h) = E(Zk −E(Zk))(Zk−h −E(Zk−h))
⊤ =

ΣΣΣεεε , h = 0,

000, h > 0,
where ΣΣΣεεε := (σε,i j)i, j=1,...,d;

(d) ΓΓΓ(h) := Cov(Yk,Yk−h) = diag(αh
1 , . . . ,αh

d )ΓΓΓ(0), h ≥ 0,

where ΓΓΓ(0) =
(σε,i j +αiµε,i1{i= j}

1−αiα j

)
i, j=1,...,d

.

The proofs of these properties are provided in Appendix D.2.
If d = 2, the multivariate specification in eq. (5.2.1) is equivalent to

the bivariate INAR(1) model with copula-joint innovations, analysed in
Chapter 4.

5.3 Parameter estimation of the SINAR(1)d pro-
cess

Let Y1, . . . ,Yn be a sample drawn from a process satisfying eq. (5.2.1).
In this section we will discuss some methods to estimate the unknown
parameters α j,µε, j,σε, j j, j = 1, . . . ,d.

5.3.1 Parameter estimation via Restricted Estimated
Generalized CLS

Rewrite Y1, . . . ,Yn in the form of VAR(1) variables:

Yk = µµµε +AYk−1 + eeek, k = 1, ...,n, (5.3.1)

where eeek is the innovation vector

eeek = Yk −E(Yk|Yk−1) = A◦Yk−1 −AYk−1 +Zk −µµµε
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with mean vector E(eeek) = 000 and covariance matrix

ΣΣΣeee = diag(BµµµY)+ΣΣΣε =
(
σε,i j +αiµε,i1{i= j}

)
i, j=1,...,d . (5.3.2)

See Appendix D.3.
In order to estimate the parameters in (5.3.1), we introduce the fol-

lowing notations:

Y = [Y1, . . . ,Yn]
⊤, Xk = [Y⊤

k
... 1]⊤, 0 ≤ k ≤ n−1,

X = [X0, . . . ,Xn−1]
⊤, E = [eee1, . . . ,eeen]

⊤, B = [A
... µµµεεε ]

⊤.

Here, Y and E are n× d matrices, Xk is a (d + 1)× 1 vector, X is a
n× (d +1) matrix, B is a (d +1)×d matrix.

Then we can write (5.3.1) as

Y = XB+E. (5.3.3)

The conditional unrestricted least squares estimate of B is then:

B̃ =
(
X⊤X

)−1X⊤Y. (5.3.4)

The asymptotic normality of the CLS estimator can be found in Latour
(1997).

The multivariate INAR specification in eq. (5.2.1) restricts the co-
efficient matrix A, so that non-diagonal elements are zero, while the
coefficient estimate matrix in eq. (5.3.4) is unrestricted. To improve
the efficiency of our estimates we impose coefficient restrictions on the
non-diagonal elements. As in Lütkepohl (2007, Section 5.2), we impose
zero-value constraints for B with the proposition below.

Let, further, ’⊗’ and ’vec’ respectively denote the Kronecker product
and the vectorization of matrices.

Proposition 5.3.1. Let βββ := vec
(
B
)

= Rγγγ, where γγγ =

[α1,µε,1, . . . ,αd ,µε,d ]
⊤ is an unrestricted vector of unknown param-

eters and R⊤ = [R⊤
0 , ...,R⊤

d−1] is a known restriction matrix, where
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Rk =
(
r(k)i, j

)
, k = 0, ...,d −1 are (d +1)×2d matrices, with

r(k)i, j =


1, if either i = k+1 and j = 2k+1,

or i = d +1 and j = 2k+2,

0, otherwise.

(5.3.5)

Then the Restricted Estimated Generalized CLS (REG-CLS) estimator
has the following form

β̂ββ = Rγ̂γγ, γ̂γγ =
[
R⊤
(

Σ̃ΣΣ
−1
eee ⊗

(
X⊤X

))
R
]−1

R⊤
(

Σ̃ΣΣ
−1
eee ⊗X⊤

)
vec(Y) ,

(5.3.6)

where Σ̃ΣΣeee is calculated as

Σ̃ΣΣeee =
1

n−d −1
(Y−XB̃)⊤(Y−XB̃) (5.3.7)

and B̃ is an unrestricted estimator from eq. (5.3.4).

The proof is provided in Appendix D.4.

Example 5.3.1. Let d = 3, then βββ = [α1,0,0,µε,1,0,α2,0,µε,2,0,0,α3,µε,3]
⊤,

γ = [α1,µε,1,α2,µε,2,α3,µε,3]
⊤ and R⊤ = [R⊤

0
... R⊤

1
... R⊤

2 ]. We can verify
that with

R0 =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0

 , R1 =


0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

 ,

R2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


it holds true that βββ = Rγγγ.

Proposition 5.3.2. Let the process {Yk} be defined in eq. (5.2.1) with
independent white noise sequence {Zk} with bounded fourth moments.
Then the REG-CLS defined in eq. (5.3.6) is consistent and asymptotically
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normally distributed:

√
n
(

β̂ββ −βββ
)

d−−→ N

(
000, R

[
R⊤ (ΣΣΣ−1

eee ⊗ΓΓΓXXX(0)
)

R
]−1

R⊤
)
, (5.3.8)

where X⊤X
n

−→ ΓΓΓXXX(0) := E
(
X⊤

k Xk
)

in probability.

The proof is presented in Appendix D.5.
In order to make inferences on the model parameters, we substitute

ΣΣΣeee with (5.3.7) and ΓΓΓXXX(0) with

Γ̂ΓΓX(0) =
1
n

X⊤X. (5.3.9)

Furthermore, using (5.3.2) and (5.3.7), we can estimate Σε = (σε,i j),
the covariance matrix of Zk, as

Σ̂ΣΣε = Σ̂ΣΣeee −diag(α̂1µ̂ε,1, ..., α̂d µ̂ε,d) , (5.3.10)

where Σ̂ΣΣeee is calculated using REG-CLS estimates as

Σ̂ΣΣeee = (n−d −1)−1(Y−XB̂)⊤(Y−XB̂).

5.3.2 Parameter estimation via CML

We assume that the joint distribution of [ε1+kd , . . . ,εd+kd ]
⊤, denoted F(·),

is described by a d-dimensional copula C : [0,1]d → [0,1] with uniform
margins, such that

F(a1, ...,ad) =C(F1(a1), ...,Fd(ad)),

where Fj(·) is the univariate marginal distribution of ε j+kd , k ∈Z. As out-
lined in Chapter 3, for discrete random variables, the copula is uniquely
determined only on Range(F1)× ...×Range(Fd).

Following Nikoloulopoulos and Karlis (2009), the probability mass
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function of [ε1+kd , ...,εd+kd ] is calculated as

c(a1, . . . ,ad ;θθθ) := P(ε1+kd = a1, ...,εd+kd = ad)

= ∑
i1∈{0,1}

... ∑
id∈{0,1}

(−1)i1+...+idP(ε1+kd ≤ a1 − i1, ...,εd+kd ≤ ad − id)

= ∑
i1∈{0,1}

... ∑
id∈{0,1}

(−1)i1+...+idC(F1(a1 − i1), ...,Fd(ad − id);θθθ), (5.3.11)

where θθθ = [θ1, ...,θm]
⊤ is the vector of m unknown copula dependence

parameters and the marginal distribution of ε j+kd has unknown mean
µε, j and variance σε, j j.

Let the unknown parameter vector be

γγγ = [α1,µε,1,σε,11, . . . ,αd ,µε,d ,σε,dd ,θ1, . . . ,θm]
⊤.

Then, the conditional log likelihood function can be written as

ℓ(γγγ|y0) =
n

∑
k=1

log(PYk|Yk−1(yk|yk−1)), (5.3.12)

for some initial values y0 = [y1, . . . ,yd ]
⊤. Here PYk|Yk−1(yk|yk−1) is the

conditional probability of a process defined via eq. (5.2.1) with intra-
seasonally-dependent shocks

PYk|Yk−1(yk|yk−1) := P(Yk = yk|Yk−1 = yk−1) = P(A◦yk−1 +Zk = yk)

=
y1+kd

∑
j1=0

. . .
yd+kd

∑
jd=0

P(ε1+kd = j1, . . . ,εd+kd = jd)
d

∏
i=1

pi( ji,yi+(k−1)d),

where yk = [y1+kd , . . . ,yd+kd ]
⊤ and pi( ji,yi+(k−1)d) is defined as the prob-

ability of the sum of yi+(k−1)d independent Bernoulli trials with ji suc-
cesses:

pi( ji,yi+(k−1)d) : = P
(
αi ◦ yi+(k−1)d = yi+(k−1)d − ji

)
=

(
yi+(k−1)d

yi+(k−1)d − ji

)
αyi+(k−1)d− ji

i (1−αi)
ji (5.3.13)

with ji = 0, . . . ,yi+kd , i = 1, ...,d, k = 1, ...,n. If the marginal distribution
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of the i-th residual εi+kd is Poisson with mean µε,i (σε,ii = µε,i), then

P(εi+kd = ji) = e−µε,i
µ ji

ε,i

ji!
. (5.3.14)

If the marginal distribution of the i-th residual εi+kd is negative binomial
with mean µε,i and variance σε,ii, then

P(εi+kd = ji) =
( ji +

µε,i

σε,ii −µε,i
−1

ji

)( µε,i

σε,ii −µε,i

) ji( µε,i

σε,ii

) µ2
ε,i

σε,ii −µε,i .

(5.3.15)

In order to estimate the unknown parameters, we maximize eq.
(5.3.12):

ℓ(γγγ|y0)−→ max
γγγ

. (5.3.16)

Under some regularity conditions (see Franke and Seligmann (1993)),
it can be shown that the CML estimate of γγγ, obtained from (5.3.16) is
asymptotically normal:

√
n
(
γ̂γγ − γγγ

) d−−→ N
(
000,I−1(γγγ)

)
, (5.3.17)

where I(γγγ) is a (3d +m)× (3d +m) Fisher information matrix.
The drawback of estimating the model parameters by maximizing eq.

(5.3.12) is that depending on the seasonality d, marginal distributions
and copula function, the number of parameters to estimate may not
be feasible in practical applications. To remedy this, we may use the
inference function for margins (IFM) estimation method, which is a two-
step likelihood-based estimation method.

5.3.3 Parameter estimation via IFM

Parameter estimation of a multivariate copula for count data is possible
via IFM in two steps: (1) estimating parameters of the marginal distri-
butions; (2) estimating the copula dependence parameters of the joint
distribution using the marginal distribution parameters as fixed from
the first step.

Let the unknown parameter vector of the marginal distributions
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of Yj+kd be γγγ j = [α j,µε, j,σε, j j]
⊤, j = 1, ...,d. In the first step we in-

dependently maximize the conditional log-likelihood function for each
marginal distribution

ℓ j(γγγ j|y j) =
n

∑
k=1

log
(
PY j+kd |Yj+(k−1)d

(y j+kd |y j+(k−1)d)
)
→ max

γγγ j
(5.3.18)

with some initial value y j, j = 1, ...,d. Here, the conditional probability
is given by

PYj+kd |Y j+(k−1)d
(y j+kd |y j+(k−1)d) = P(Yj+kd = y j+kd |Yj+(k−1)d = y j+(k−1)d)

= P(α j ◦ y j+(k−1)d + ε j+kd = y j+kd)

=
y j+kd

∑
i=0

p j(i,y j+(k−1)d)P(ε j+kd = i),

(5.3.19)

j = 1, ...,d, where p j(i,y j+(k−1)d) is defined in eq. (5.3.13) and P(ε j+kd = i)
is either (5.3.14) (in the case of Poisson marginal distribution) or (5.3.15)
(in the case of negative binomial marginal distribution). In the sec-
ond step, we estimate the copula parameter vector θθθ by maximizing
eq. (5.3.12) with the marginal distribution parameters fixed from eq.
(5.3.18). For asymptotic efficiency and normality of the IFM, see Joe
(2005).

5.4 Estimation method comparison via Monte
Carlo simulation

In this section, we compare the performance of REG-CLS and IFM
estimation methods by a Monte Carlo simulation study. We have sim-
ulated 5000 samples for the case d = 2 and 1000 samples for the case
d = 4. The resulting mean squared errors (MSE) are presented in Ta-
bles 5.4.1, 5.4.2 and 5.4.3, where the Pois rows indicate the cases where
the innovation marginal distributions are all Poisson; the NB rows indi-
cate the cases where the innovation marginal distributions are all nega-
tive binomial; the Pois-NB rows indicate the cases where the innovation
marginal distributions alternate between Poisson and negative binomial.
In the case d = 2, the marginal distribution of ε1+2k follows a Poisson
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distribution with µε,1 and the marginal distribution of ε2+2k follows a
negative binomial distribution with parameters µε,2 and σε,22. For d = 4
the marginal distributions are ε1+2k ∼ Pois, ε2+2k ∼ NegBin, ε3+2k ∼ Pois
and ε4+2k ∼ NegBin with their respective mean and variance parameters,
which are indicated in Table 5.4.1, Table 5.4.2 and Table 5.4.3.

Table 5.4.1: MSE of the Monte Carlo simulation results for 5000 sim-
ulations of a SINAR(1)d model with different innovation marginal and
copula distributions.

d = 2 α1 α2 µε,1 µε,2 σε,11 σε,22 θ

Clayton

True values (Pois) 0.76 0.28 1 2 1 2 5
N = 240 REG-CLS 0.0040 0.0071 0.0681 0.0670 0.0742 0.1392 -

IFM 0.0013 0.0074 0.0232 0.0694 - - 20.3640
N = 540 REG-CLS 0.0015 0.0029 0.0267 0.0282 0.0318 0.0598 -

IFM 0.0006 0.0031 0.0102 0.0294 - - 7.6050

True values (NB) 0.76 0.28 1 2 2.25 4.50 5
N = 240 REG-CLS 0.0038 0.0067 0.0784 0.0884 0.5033 1.1514 -

IFM 0.0011 0.0054 0.0325 0.0783 0.4533 1.0487 10.0654
N = 540 REG-CLS 0.0016 0.003 0.0324 0.0374 0.2200 0.4876 -

IFM 0.0005 0.0023 0.0137 0.0318 0.1990 0.4503 4.1426

True values (Pois-NB) 0.76 0.28 1 2 1 4.50 5
N = 240 REG-CLS 0.0039 0.0071 0.0663 0.0899 0.0721 1.1433 -

IFM 0.0013 0.0053 0.0232 0.0749 - 1.0527 12.3026
N = 540 REG-CLS 0.0015 0.0031 0.0264 0.0389 0.0308 0.5061 -

IFM 0.0005 0.0022 0.0098 0.0326 - 0.4627 3.8763

Frank

True values (Pois) 0.76 0.28 1 2 1 2 10
N = 240 REG-CLS 0.0039 0.0067 0.0691 0.0655 0.0743 0.1422 -

IFM 0.0013 0.0074 0.0238 0.0695 - - 15.7747
N = 540 REG-CLS 0.0016 0.0030 0.0278 0.0290 0.0326 0.0626 -

IFM 0.0006 0.0032 0.0106 0.0301 - - 6.9576

True values (NB) 0.76 0.28 1 2 2.25 4.50 10
N = 240 REG-CLS 0.0039 0.0067 0.0793 0.0885 0.5205 1.1454 -

IFM 0.0011 0.0054 0.0314 0.0758 0.4804 1.0601 8.3183
N = 540 REG-CLS 0.0015 0.0031 0.0322 0.0378 0.2213 0.5084 -

IFM 0.0005 0.0023 0.0135 0.0317 0.1978 0.4655 2.9985

True values (Pois-NB) 0.76 0.28 1 2 1 4.50 10
N = 240 REG-CLS 0.0037 0.0070 0.0616 0.0870 0.0719 1.1266 -

IFM 0.0013 0.0051 0.0221 0.0722 - 1.0427 12.2461
N = 540 REG-CLS 0.0015 0.0031 0.0272 0.0395 0.0323 0.4879 -

IFM 0.0006 0.0023 0.0105 0.0316 - 0.4507 4.5451
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The IFM estimation method is carried out under the assumption
of correctly specified margins and copula function. As a result, the
estimates of the likelihood-based approach are more accurate and the
variance for the Poisson marginal distributions is not estimated. On the
other hand, the REG-CLS method uses eq. (5.3.10) to estimate the inno-
vation covariance matrix and does not make any underlying assumptions
about their joint and marginal distributions. Consequently, REG-CLS
results for the Poisson marginal distributions in Pois and Pois-NB cases
include the estimates for the variance parameter as well. These results
indicate that estimated variance parameters are close to the mean esti-
mates. This also confirms a well-known fact that the variance estimate
of a Poisson r.v. has a larger MSE than the mean estimate. For neg-
ative binomial marginal distributions the larger variance results in less
accurate variance estimates and mean estimates for the NB and Pois-
NB cases. On the other hand, the accuracy of mean estimates for the
Poisson marginal distributions for the Pois-NB cases is similar to the
Pois cases. The estimates of α j, j = 1, ...,4 are unaffected neither by the
marginal distribution of the innovations, nor by the underlying copula.

Furthermore, the density estimates of the parameters from the Monte
Carlo simulation are presented in Fig. 5.4.1, which shows that increasing
the sample size results in more accurate estimates for both REG-CLS
and IFM estimation methods. This means that for larger samples, the
REG-CLS estimates of the mean and variance will be close to the true
values, regardless of the underlying marginal distribution. However,
unlike the IFM estimation method, the REG-CLS estimation method
does not allow to estimate the dependence parameter.

Finally, we would also like to mention that the overall calculation
time of REG-CLS is much shorter than that of the IFM, especially for
d > 2 since the copula pmf in eq. (5.3.11) requires 2d copula evaluations
for any given value vector [a1, ...,ad ]. This limitation of the IFM for
the discrete copula case is also discussed in Panagiotelis et al. (2012),
where a discrete analogue to vine Pair Copula Constructions (PCC’s)
is proposed. The applicability of PCC’s to SINAR(1)d is left for future
research.
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Table 5.4.2: MSE of the Monte Carlo simulation results for 1000 simulations of a SINAR(1)d model with different
innovation marginal distributions and Clayton copula.

d = 4 α1 α2 α3 α4 µε,1 µε,2 µε,3 µε,4 σε,11 σε,22 σε,33 σε,44 θ

Clayton

True values (Pois) 0.76 0.9 0.72 0.28 1 2 3 4 1 2 3 4 5
N = 240 REG-CLS 0.0094 0.0019 0.0077 0.0117 0.1588 0.5302 0.8571 0.4162 0.1576 0.8386 1.2116 1.2616 -

IFM 0.0029 0.0004 0.0034 0.0156 0.0492 0.1302 0.3738 0.5269 - - - - 17.1589
N = 540 REG-CLS 0.0032 0.0009 0.0032 0.0046 0.0533 0.3010 0.3650 0.1649 0.0619 0.4276 0.4734 0.5228 -

IFM 0.0012 0.0002 0.0012 0.0064 0.0195 0.0683 0.1354 0.2222 - - - - 10.0703

True values (NB) 0.76 0.9 0.72 0.28 1 2 3 4 2.25 4.5 6.75 9 5
N = 240 REG-CLS 0.0084 0.0030 0.0072 0.0099 0.1799 0.9662 0.8815 0.4813 0.9046 2.8677 5.9890 7.6571 -

IFM 0.0029 0.0008 0.0058 0.0126 0.0769 0.3171 0.7117 0.5227 0.7940 2.3899 5.0700 5.8236 9.2140
N = 540 REG-CLS 0.0032 0.0011 0.0025 0.0043 0.0630 0.3988 0.3203 0.1866 0.4441 1.3379 2.1321 2.8840 -

IFM 0.0009 0.0003 0.0018 0.0058 0.0278 0.1081 0.2302 0.2431 0.4035 1.1014 1.9504 2.5655 7.7525

True values (Pois-NB) 0.76 0.9 0.72 0.28 1 2 3 4 1 4.5 3 9 5
N = 240 REG-CLS 0.0095 0.0027 0.0076 0.0112 0.1436 0.8255 0.8256 0.4728 0.1475 3.4099 1.0535 7.3995 -

IFM 0.0029 0.0007 0.0031 0.0125 0.0412 0.2667 0.3185 0.5301 - 2.5708 - 6.0270 10.7848
N = 540 REG-CLS 0.0031 0.0011 0.0031 0.0045 0.0546 0.4252 0.3492 0.2043 0.0668 1.4936 0.5016 3.1498 -

IFM 0.0011 0.0003 0.0014 0.0055 0.0211 0.1046 0.1667 0.2401 - 1.1617 - 2.7568 8.3908
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Table 5.4.3: MSE of the Monte Carlo simulation results for 1000 simulations of a SINAR(1)d model with different
innovation marginal distributions and Frank copula.

d = 4 α1 α2 α3 α4 µε,1 µε,2 µε,3 µε,4 σε,11 σε,22 σε,33 σε,44 θ

Frank

True values (Pois) 0.76 0.9 0.72 0.28 1 2 3 4 1 2 3 4 10
N = 240 REG-CLS 0.0095 0.0020 0.0080 0.0120 0.1557 0.5570 0.8351 0.4307 0.1498 0.8469 1.0703 1.2883 -

IFM 0.0031 0.0005 0.0030 0.0155 0.0460 0.1473 0.3370 0.5312 - - - - 12.7514
N = 540 REG-CLS 0.0033 0.0010 0.0032 0.0049 0.0549 0.3208 0.3582 0.1754 0.0599 0.4214 0.5279 0.5030 -

IFM 0.0012 0.0002 0.0014 0.0067 0.0197 0.0646 0.1602 0.2277 - - - - 5.0582

True values (NB) 0.76 0.9 0.72 0.28 1 2 3 4 2.25 4.5 6.75 9 10
N = 240 REG-CLS 0.0083 0.0028 0.0071 0.0111 0.1692 0.8597 0.8598 0.4702 1.0231 2.8696 4.9963 6.9865 -

IFM 0.0028 0.0007 0.0052 0.0133 0.0714 0.2876 0.6809 0.5654 0.8969 2.3213 4.3173 5.8163 6.9854
N = 540 REG-CLS 0.0029 0.0010 0.0026 0.0040 0.0653 0.3636 0.3244 0.1921 0.4492 1.3239 1.9567 3.0079 -

IFM 0.0010 0.0002 0.0016 0.0051 0.0276 0.1099 0.2275 0.2314 0.4077 1.0185 1.7941 2.7375 2.5738

True values (Pois-NB) 0.76 0.9 0.72 0.28 1 2 3 4 1 4.5 3 9 10
N = 240 REG-CLS 0.0096 0.0030 0.0073 0.0099 0.1395 0.9140 0.7660 0.4346 0.1492 3.6768 1.1012 7.7152 -

IFM 0.0032 0.0008 0.0031 0.0122 0.0471 0.2743 0.3411 0.5158 - 2.8485 - 5.9642 7.3902
N = 540 REG-CLS 0.0034 0.0011 0.0028 0.0045 0.0603 0.4156 0.3160 0.1971 0.0639 1.3612 0.4817 2.8819 -

IFM 0.0012 0.0002 0.0013 0.0054 0.0219 0.1025 0.1490 0.2167 - 1.0231 - 2.4537 3.1838
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Figure 5.4.1: Monte Carlo simulation kernel density plots of the parameter estimates via IFM and REG-CLS estimation
methods.
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5.5 Empirical application to Chicago crime data

In this section, we carry out an empirical application using Chicago
crime data1 from January 2016 to March 2018. The data set includes
the numbers of various types of crimes committed throughout the day.
We have selected four types of crimes – assault, battery, burglary and
robbery – and aggregated the data every 4 hours so as to divide each day
into 6 periods. Their summary statistics are provided in Table 5.5.1.

Table 5.5.1: Chicago Crime data summary statistics by crime type,
aggregated by 4-hour periods.

Period (hour interval) Mean Variance Minimum Maximum

Assault
00:00 - 03:59 4.4915 7.3955 0 17
04:00 - 07:59 3.1890 3.6602 0 12
08:00 - 11:59 9.7902 13.9853 1 22
12:00 - 15:59 12.5915 16.5496 2 28
16:00 - 19:59 12.2683 16.3699 2 26
20:00 - 23:59 9.2634 13.7938 1 24

Battery
00:00 - 03:59 22.3707 142.5046 4 93
04:00 - 07:59 11.1366 28.5650 0 40
08:00 - 11:59 19.8195 25.8087 5 40
12:00 - 15:59 24.9183 35.4817 8 49
16:00 - 19:59 27.4024 45.1956 10 52
20:00 - 23:59 28.5671 75.5547 7 70

Burglary
00:00 - 03:59 4.1427 5.5095 0 13
04:00 - 07:59 4.7159 6.7897 0 14
08:00 - 11:59 7.9963 13.9817 0 24
12:00 - 15:59 7.3280 9.5003 1 20
16:00 - 19:59 6.7780 9.3231 0 19
20:00 - 23:59 5.2134 6.7542 0 15

Robbery
00:00 - 03:59 5.5598 10.7791 0 21
04:00 - 07:59 3.2024 5.0408 0 14
08:00 - 11:59 3.5683 4.4605 0 14
12:00 - 15:59 5.1000 5.4772 0 14
16:00 - 19:59 6.7268 10.9094 0 20
20:00 - 23:59 7.6659 10.3839 0 20

1for the latest data snapshot, see https://data.cityofchicago.org/
Public-Safety/Crimes-2001-to-present/ijzp-q8t2

66

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2


We see that the average number of offences occur at night time with
battery having the largest variance. We also note that burglary and
robbery have much lower number of occurrences compared to assault
and battery.

The four different crime types exhibit different magnitudes in the
mean and variance but they generally exhibit a similar autocorrelation
pattern, as can be seen in Figure 5.5.1 and Figure 5.5.2.
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BATTERY, last 30 days of the series
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Figure 5.5.1: Chicago Crime data time series, aggregated by 4-hour periods, and seasonal plots for the last 30 day period
from 2018-03-01 00:00 to 2018-03-30 23:59 and the full series autocorrelation plots for assault (left) and battery (right).
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BURGLARY, last 30 days of the series
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ROBBERY, last 30 days of the series
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Figure 5.5.2: Chicago Crime data time series, aggregated by 4-hour periods, and seasonal plots for the last 30 day period
from 2018-03-01 00:00 to 2018-03-30 23:59 and the full series autocorrelation plots for burglary (left) and robbery (right).
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In order to capture the seasonality, we have fitted a SINAR(1)6 model
for each crime type and estimated the parameters via REG-CLS. The
estimates of parameters are provided in Table 5.5.2.

Table 5.5.2: Estimated coefficients of the SINAR(1)6 models on each
crime type.

Assault Battery Burglary Robbery

α1 0.1346 0.2164 0.1807 0.2897
(0.0326) (0.0243) (0.0328) (0.0317)

α2 0.0712 0.1235 0.1462 0.0507
(0.1725) (0.6478) (0.1568) (0.2059)

α3 0.1372 0.1026 0.1270 0.1149
(0.0343) (0.0278) (0.0318) (0.0334)

α4 0.1272 0.1113 0.0947 0.1061
(0.1276) (0.3544 (0.1737) (0.1318)

α5 0.1081 0.2229 0.1035 0.3030
(0.0321) (0.0330) (0.0308) (0.0340)

α6 0.1401 0.1391 0.1183 0.1309
(0.3385) (0.6763) (0.2772) (0.1416)

µε,1 3.8742 17.4434 3.3927 3.9476
(0.0327) (0.0327) (0.0326) (0.0341)

µε,2 2.9622 9.7319 4.0282 3.0414
(0.4343) (0.8393) (0.2613) (0.1916)

µε,3 8.4522 17.7855 6.9892 3.1601
(0.0331) (0.0306) (0.0325) (0.0326)

µε,4 10.9990 22.1420 6.6365 4.5616
(0.4279) (0.8672) (0.2426) (0.2449)

µε,5 10.9500 21.2918 6.0850 4.6894
(0.0329) (0.0298) (0.0333) (0.0335)

µε,6 7.9670 24.5938 4.6028 6.6662
(0.3287) (0.8985) (0.1949) (0.2795)

σε,11 6.5824 119.3875 4.7119 8.5867
σε,22 3.4522 26.0592 6.0079 4.8942
σε,33 12.5246 23.7519 12.5929 4.0556
σε,44 14.7102 32.3107 8.7780 4.9609
σε,55 14.8733 37.0851 8.5753 8.4566
σε,66 12.2922 67.0528 6.0547 9.3179

MSE 11.5855 53.4522 8.3737 7.3971

The estimated innovation mean and variance parameters are close to
the sample values in Table 5.5.1. In order to assess the models, in Table
5.5.2 we also provide the mean squared errors (MSE). Since battery-
type crime counts have the largest variance, we see that the latter model
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has the largest MSE among other types of crime models. The residual
density and autocorrelation plots are shown in Figure 5.5.3, which indi-
cate that seasonality was captured quite well by the specified SINAR(1)6

models. However, as indicated by the residual autocorrelation plots, the
non-seasonal autocorrelation is not captured by the model.

Finally, in order to capture the remaining significant non-seasonal
autocorrelation, the SINAR(1)6 model could be extended to allow a non-
seasonal autocorrelation component. Analysis of such a process is left
for future research.
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Figure 5.5.3: Residual density and autocorrelation plots of the fitted
SINAR(1)6 models.
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5.6 Summary

In this chapter a first order INAR process with seasonally-varying auto-
correlation parameters and intra-seasonally-dependent shocks was pro-
posed. Model properties for both the univariate and the multivariate
representation of the model were provided with the multivariate form
being stationary. In order to estimate the model parameters of the
multivariate specification, a restricted estimated generalized conditional
least squares (REG-CLS) estimation method with restrictions on the
non-diagonal model coefficients was proposed.

A Monte Carlo simulation experiment was carried out in order to
compare the aforementioned estimation method with the inference func-
tion of margins (IFM) method, which is a likelihood-based parameter
estimation method. The simulation results showed that the REG-CLS
method is much faster than the IFM method and produces similar re-
sults in terms of parameter accuracy for larger samples, although it does
not allow estimation of the innovation copula dependence parameters.
On the other hand, the IFM estimation method is computationally in-
tensive, with the number of evaluations exponentially increasing with
the seasonal period size.

Finally, an empirical application to four types of crime data in
Chicago city was carried out. The estimated models indicated that the
INAR(1)6 can successfully be used to capture the seasonality for Chicago
crime occurrence data time series. The empirical application results also
indicated that the model could be extended in order to capture the non-
seasonal autocorrelation effect. This is the topic of the authors’ current
research.
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Conclusions

The main objective of this thesis is to provide some contributions to the
analysis of integer-valued time series models. The main focus is on such
models, where the joint innovation distribution can be described by a
copula.

Firstly, a class of bivariate integer-valued autoregressive processes of
order 1 (BINAR(1)) are analysed. Such a process can be thought of as a
multivariate representation of two time series with copula-joint innova-
tions. The existing literature on such models is extended by providing
a two-step estimation method, where the BINAR(1) model parameters
are estimated separately from the dependence parameter of the copula.
If one is interested in estimating the dependence parameter, this proce-
dure reduces the computational time, while providing a similar accuracy
as the conditional maximum likelihood estimation method for all of the
model parameters.

Secondly, a more general specification for an integer-valued process
for seasonality is also considered. More specifically, a univariate integer-
valued autoregressive process for seasonality with period d (SINAR(1)d)
is introduced, which allows the intra-seasonal dependence of the inno-
vations to be described by a copula. Furthermore, it can be shown that
such a univariate process can also be written as a multivariate specifi-
cation, for which the BINAR(1) is a special case by taking the seasonal
period d = 2. The multivariate specification allows the use of an estima-
tion method based on least-squares, which can be generalized to account
for the residual dependence. This method is then compared with a two-
step likelihood-based estimation method, where emphasis is now put on
the accuracy of the parameters of the SINAR(1)d model itself, rather
than the dependence parameter only.

Finally, the estimation methods of the above processes are illustrated
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using Monte Carlo simulation. Furthermore, the processes studied in
this thesis are illustrated using empirical applications in the context
of loan defaults (for the BINAR(1) process) and crime data (for the
SINAR(1)d process).
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Appendix A

Proof of thinning operator
properties

Below we present the proof of various thinning operator properties.

A.1 Proof of Theorem 2.1.1

Below we present the proofs of Theorem 2.1.1 for the thinning operator
properties for the univariate setting.

2.1.1 (a) Let B̃i ∼ Bern(α1), Bi ∼ Bern(α2) and Bi ∼ Bern(α1α2), i = 1,2, ....
We will show that α1 ◦ (α2 ◦X) and (α1α2) ◦X are equal in dis-
tribution by showing that their characteristic functions are equal.
From the definition of the thinning operator we have that

α1 ◦ (α2 ◦X) = α1 ◦
X

∑
i=1

Bi =
∑X

i=1 Bi

∑
j=1

B̃ j, (A.1.1)

(α1α2)◦X =
X

∑
i=1

Bi. (A.1.2)

The characteristic function of equation (A.1.2) is:

φ(u) = Eeiu∑X
i=1 Bi =

∞

∑
k=0

Eeiu∑k
i=1 BiP(X = k) =

∞

∑
k=0

φk
α1α2

(u)P(X = k)

=
∞

∑
k=0

(eiuα1α2 +(1−α1α2))
kP(X = k), (A.1.3)
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because

φα1α2
(u) = EeiuB = E(eiuB|B = 1)P(B = 1)+E(eiuB|B = 0)P(B = 0)

= eiuα1α2 +(1−α1α2).

The characteristic function of equation (A.1.1) is:

φ̃(u) = Eeiu∑
∑X

i=1 Bi
j=1 B̃ j =

∞

∑
k=0

Eeiu∑
∑k

i=1 Bi
j=1 B̃ jP(X = k). (A.1.4)

We see that

Eeiu∑
∑k

i=1 Bi
j=1 B̃ j =

k

∑
l=0

Eeiu∑l
j=1 B̃ jP

(
k

∑
i=1

Bi = l

)
=

k

∑
l=0

φ l
α1
(u)P

(
k

∑
i=1

Bi = l

)
,

(A.1.5)

where

φα1(u) = EeiuB̃ = E(eiuB̃|B̃ = 1)P(B̃ = 1)+E(eiuB̃|B̃ = 0)P(B̃ = 0)

= eiuα1 +(1−α1),

and

P

(
k

∑
i=1

Bi = l

)
=

(
k
l

)
α l

2(1−α2)
k−l.

From (A.1.4) and (A.1.5) we have that:

φ̃(u) = Eeiu∑
∑X

i=1 Bi
j=1 B̃ j

=
∞

∑
k=0

k

∑
l=0

(eiuα1 +(1−α1))
l
(

k
l

)
α l

2(1−α2)
k−lP(X = k)

(A.1.6)

Because (a+b)k = ∑k
l=0
(k

l

)
albk−l where a,b ∈ C, we see that

k

∑
l=0

(eiuα1 +(1−α1))
l
(

k
l

)
α l

2(1−α2)
k−l

= (eiuα1α2 +(1−α1)α2 +(1−α2))
k
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and equation (A.1.6) becomes:

φ̃(u) =
∞

∑
k=0

(eiuα1α2 +(1−α1)α2 +(1−α2))
kP(X = k)

=
∞

∑
k=0

(eiuα1α2 +(1−α1α2))
kP(X = k). (A.1.7)

Comparing equations (A.1.3) and (A.1.7) we see that they are
equal, so we have that α1 ◦ (α2 ◦X)

d
= (α1α2)◦X .

Alternatively, as mentioned by the reviewer, if the non-negative
integer-valued r.v. X has the probability generating function (pgf)
G, then the pgf of α ◦X can be derived as the composite function
G(1+α(z−1)), where 1+α(z−1) is the pgf of the Bernoulli dis-
tribution with mean α, see Weiß (2018, p. 19). This is a result for
branching processes, see Athreya and Ney (1972, p. 263).

2.1.1 (b) We have that α ◦(X1+X2) = ∑X1+X2
i=1 Bi, which has the characteristic

function:

φ(u) = Eeiu∑
X1+X2
i=1 Bi =

∞

∑
k=0

Eeiu∑k
i=1 BiP(X1 +X2 = k)

=
∞

∑
k=0

(eiuα +(1−α))kP(X1 +X2 = k),

where we used the property that Bi are i.i.d. random variables:

Eeiu∑k
i=1 Bi = (EeiuBi)k = (eiuα +(1−α))k.

Applying the same properties to the right side of the equality, we
have that:

α ◦X1 +α ◦X2 =
X1

∑
i=1

Bi +
X2

∑
i=1

B̃i =
X1+X2

∑
i=1

Bi,

where Bi ∼ Bern(α) and B̃i ∼ Bern(α) and

Bi =

Bi, if i = 1, ...,X1,

B̃i, if i = X1 +1, ...,X2.

Since Bi are i.i.d. random variables conditionally with respect to

82



X1 and X2, we have that the characteristic function is the same as
the left side of the equality:

φ̃(u) = Eeiu∑
X1+X2
i=1 Bi =

∞

∑
k=0

(eiuα +(1−α))kP(X1 +X2 = k) = φ(u).

Thus, the equality in 2.1.1 (b) holds.

2.1.1 (c) Using the definition of α ◦X we have that:

E(α ◦X) = E

(
X

∑
i=1

Bi

)
=

∞

∑
k=0

E

(
k

∑
i=1

Bi

)
P(X = k)

=
∞

∑
k=0

k

∑
i=1

αP(X = k) = α
∞

∑
k=0

kP(X = k) = αE(X).

2.1.1 (d) We know that Var(α ◦X) = E(α ◦X)2 − (E(α ◦X))2. Using part
2.1.1 (c), we have that the second term can be expressed as

(E(α ◦X))2 = (αE(X))2 = α2(E(X))2, (A.1.8)

and the first term as

E(α ◦X)2 = E

(
X

∑
i=1

Bi

)2

= E

(
X

∑
i, j=1

BiB j

)
= E

(
∑
i ̸= j

BiB j +
X

∑
i=1

B2
i

)

=
∞

∑
k=0

E

(
∑
i̸= j

BiB j +
k

∑
i=1

B2
i

)
P(X = k)

=
∞

∑
k=0

(
∑
i ̸= j

α2 +
k

∑
i=1

α

)
P(X = k)

=
∞

∑
k=0

((k2 − k)α2 + kα)P(X = k)

= α2
∞

∑
k=0

k2P(X = k)+α(1−α)
∞

∑
k=0

kP(X = k)

= α2E(X2)+α(1−α)E(X). (A.1.9)

From equations (A.1.8) and (A.1.9) we get

Var(α ◦X) = α2E(X2)+α(1−α)E(X)−α2(E(X))2

= α2Var(X)+α(1−α)E(X).
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2.1.1 (e) We have that

E(X p
2 (α ◦X1)) = E

(
E((α ◦X1)X

p
2 |X1,X2)

)
= E

(
E

(
X1

∑
i=1

BiX
p
2

∣∣∣∣X1,X2

))
= E

(
X1

∑
i=1

E
(

BiX
p
2

∣∣∣∣X1,X2

))

= E

(
X1

∑
i=1

E(Bi|X1,X2)X p
2

)
= E

(
X p

2

X1

∑
i=1

α

)
= αE(X1X p

2 ).

2.1.1 (f) Using part 2.1.1 (e) with X1 = X2 = X , we have that the equality
E [X p(α ◦X)] = αE(X p+1) holds true.

2.1.1 (g) Using parts 2.1.1 (c) and 2.1.1 (e), we get that

Cov(α ◦X1,X2) = E((α ◦X1)X2)−E(α ◦X1)E(X2)

= αE(X1X2)−αE(X1)E(X2)

= α (E(X1X2)−E(X1)E(X2))

= αCov(X1,X2).

2.1.1 (h) Similarly to part 2.1.1 (e), we have that

E((α1 ◦X1)(α2 ◦X2)) = E(E((α ◦X1)(α2 ◦X2)|X1,X2))

= E

(
E

(
X1

∑
i=1

X2

∑
j=1

BiB j|X1,X2

))

= E

(
X1

∑
i=1

X2

∑
j=1

E(BiB j|X1,X2)

)

= E

(
X1

∑
i=1

X2

∑
j=1

E(Bi|X1,X2)E(B j|X1,X2)

)

= E

(
X1

∑
i=1

X2

∑
j=1

α1α2

)
= α1α2E(X1X2).
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2.1.1 (i) Similarly to eq. (A.1.9) and part 2.1.1 (f), we have that

E
[
X p(α ◦X)2]= EX p

(
X

∑
i=1

Bi

)2

= E

[(
X p

X

∑
i, j=1

BiB j

)]

= E

(
X p

[
∑
i̸= j

BiB j +
X

∑
i=1

B2
i

])

=
∞

∑
k=0

E

(
kp

[
∑
i̸= j

BiB j +
k

∑
i=1

B2
i

])
P(X = k)

=
∞

∑
k=0

(
kp

[
∑
i̸= j

α2 +
k

∑
i=1

α

])
P(X = k)

=
∞

∑
k=0

kp((k2 − k)α2 + kα)P(X = k)

= α2
∞

∑
k=0

kp+2P(X = k)+α(1−α)
∞

∑
k=0

kp+1P(X = k)

= α2E(X p+2)+α(1−α)E(X p+1).

A.2 Proof of Theorem 2.2.1

Below we present the proofs of Theorem 2.2.1 for the thinning operator
properties for the multivariate setting.

2.2.1 (a) The m-th element of A j ◦X j is ∑k
s=1 αm,s, j ◦Xs, j, then by applying

property 2.1.1 (c) to each element, it holds that

E[A j ◦X j] =
[
∑k

s=1 α1,s, jE[Xs, j] . . . ∑k
s=1 αk,s, jE[Xs, j]

]⊤
= A jE[X j].

2.2.1 (b) The (m1,m2)-th element of [Ai ◦Xi][A j ◦X j]
⊤ is

k

∑
s1=1

k

∑
s2=1

(αm1,s1,i ◦Xs1,i)(αm2,s2, j ◦Xs2, j).

From property 2.1.1 (h) and eq. (A.1.9) the expected value of the
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(m1,m2)-th element is

k

∑
s1=1

k

∑
s2=1

E(αm1,s1,i ◦Xs1,i)(αm2,s2, j ◦Xs2, j)

=
k

∑
s1=1

k

∑
s2=1

αm1,s1,iαm2,s2, jE[Xs1,iXs2, j]

+1{(m1=m2)∩(i= j)}

k

∑
s1=1

αm1,s1,i(1−αm1,s1,i)E[Xs1,i].

It then holds that

E[Ai ◦Xi][A j ◦X j]
⊤ = AiE[XiX⊤

j ]A
⊤
j +1{i= j}diag(BiE[Xi]),

where Bi = (αm1,m2,i(1−αm1,m2,i))m1,m2=1,...,k.

2.2.1 (c) The (m1,m2)-th element of [Ai ◦Xi][A jX j]
⊤ is

∑k
s1=1 ∑k

s2=1(αm1,s1,i ◦ Xs1,i)(αm2,s2, jXs2, j) similarly to 2.1.1 (e) and
2.1.1 (f), the expected value of the (m1,m2)-th element is

k

∑
s1=1

k

∑
s2=1

αm2,s2, jE[(αm1,s1,i ◦Xs1,i)Xs2, j] =
k

∑
s1=1

k

∑
s2=1

αm1,s1,iαm2,s2, jE[Xs1,iXs2, j].

It then holds that E[Ai ◦Xi][A jX j]
⊤ = AiE[XiX⊤

j ]A⊤
j .

2.2.1 (d) As the (m1,m2)-th element of [AiXi][A j ◦ X j]
⊤ is

∑k
s1=1 ∑k

s2=1(αm1,s1,iXs1,i)(αm2,s2, j ◦ Xs2, j), the proof is analogous
to 2.2.1 (c).
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Appendix B

Proof of BINAR(1)
properties

B.1 Proof of Theorem 4.1.1

Below we present the proofs of Theorem 4.1.1 for the properties of the
BINAR(1) process.

We would also like to mention that the expected value in 4.1.1 (a) and
the covariances in 4.1.1 (d) and 4.1.1 (f) can be calculated recursively,
as mentioned by the reviewer.

4.1.1 (a) We have

EYj,t = E(α j ◦Yj,t−1 + ε j,t) = E(α2
j ◦Yj,t−2 +α j ◦ ε j,t−1 + ε j,t)

= . . .= E(
∞

∑
k=0

αk
j ◦ ε j,t−k) =

∞

∑
k=0

αk
jE(ε j,t−k) =

∞

∑
k=0

αk
j µε, j

=
µε, j

1−α j
.

Here, first equality is from the definition of BINAR(1) model from
equation (4.1.1). We get the second, third and fourth equalities
by using the definition of BINAR(1) model expressed in terms of
arrival processes (4.1.3) and properties 2.1.1 (a) and 2.1.1 (b). The
fifth equality is from property 2.1.1 (c), as well as Fubini’s theorem,
since the infinite sum in eq. (4.1.3) converges a.s. with α j ∈ [0,1).
The last equality is from the definition of an infinite geometric
series.
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4.1.1 (b) From the 2.1.1 (e) property of the binomial thinning operator and
Def. 4.1.1 it follows that

E(Yj,t |Yj,t−1) = E(α j ◦Yj,t−1 + ε j,t |Yj,t−1)

= E(α j ◦Yj,t−1|Yj,t−1)+E(ε j,t |Yj,t−1)

= α jE(Yj,t−1|Yj,t−1)+E(ε j,t)

= α jYj,t−1 +µε, j.

4.1.1 (c) We have

Var(Yj,t) = Var

(
∞

∑
k=0

αk
j ◦ ε j,t−k

)

=
∞

∑
k=0

Var(αk
j ◦ ε j,t−k)

=
∞

∑
k=0

(
α2k

j Var(ε j,t−k)+αk
j (1−αk

j )E(ε j,t−k)
)

=
∞

∑
k=0

(α2k
j σ2

j +αk
j (1−αk

j )µε, j)

=
1

1−α2
j
σ2

j +
1

1−α j
µε, j −

1
1−α2

j
µε, j

=
σ2

j +µε, j +α jµε, j −µε, j

1−α2
j

=
σ2

j +α jµε, j

1−α2
j

.

Here, the first equality is from equation (4.1.3). The second equal-
ity is from Fubini’s theorem and the fact that ε j,t−k are i.i.d. The
third equality is from 2.1.1 (d).
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4.1.1 (d) We have that

Cov(Yi,t ,ε j,t) = E(Yi,tε j,t)−E(Yi,t)E(ε j,t)

= E(Yi,tε j,t)−µYi µε, j

= E

((
∞

∑
k=0

αk
i ◦ εi,t−k

)
ε j,t

)
−µYi µε, j

=
∞

∑
k=0

αk
i E(εi,t−kε j,t)−µYi µε, j

= E(εi,tε j,t)+
∞

∑
k=1

αk
i E(εi,t−kε j,t)−µYi µε, j

= E(εi,tε j,t)+
∞

∑
k=1

αk
i µε,iµε, j −

µε,iµε, j

1−αi

= Cov(εi,t ,ε j,t).

Here we use Fubini’s theorem, eq. (4.1.3), the fact that ε j,t−k are
i.i.d. in t and 4.1.1 (a).

4.1.1 (e) We have that

Cov(Yj,t ,Yj,t+h) = Cov(Yj,t ,αh
j ◦Yj,t +

h−1

∑
k=0

αk
j ◦ ε j,t+h−k)

= Cov(Yj,t ,αh
j ◦Yj,t)+Cov(Yj,t ,

h−1

∑
k=0

αk
j ◦ ε j,t+h−k)

= αh
j Cov(Yj,t ,Yj,t) = αh

j σ2
Y j
.

Here, using the fact that ε j,t are i.i.d in t and t+h−k > t for k < h,
we have that Cov(Yj,t ,∑h−1

k=0 αk
j ◦ ε j,t+h−k) = 0. We have also used

Theorem 2.1.1 (g) to get the next-to-last equality.

4.1.1 (f) Using covariance and variance expressions from 4.1.1 (c) and
4.1.1 (e) we have that

Corr(Yj,t+h,Yj,t) =
Cov(Yj,t+h,Yj,t)√
Var(Yj,t+h)Var(Yj,t)

=
αh

j σ2
Y j√

σ4
Y j

= αh
j .
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4.1.1 (g) Using equations (4.1.2), (4.1.3) and Theorem 2.1.1 we have that

Cov(Yi,t ,Yj,t+h) = E(Yi,tYj,t+h)−E(Yi,t)E(Yj,t+h)

= E

(
Yi,t

[
αh

j ◦Yj,t +
h−1

∑
l=0

α l
j ◦ ε j,t+h−l

])
−µYi µYj

= αh
j E(Yi,tYj,t)+

h−1

∑
l=0

α l
jE
(
Yi,tε j,t+h−l

)
−µYi µYj

= αh
j E(Yi,tYj,t)+(1−αh

j )µYi µYj −µYi µYj

= αh
j
(
E(Yi,tYj,t)−µYi µYj

)
= αh

j Cov(Yi,t ,Yj,t)

=
αh

j

1−αiα j
Cov(εi,t ,ε j,t),

because:

h−1

∑
l=0

α l
jE
(
Yi,tε j,t+h−l

)
=

h−1

∑
l=0

α l
jE(Yi,t)E(ε j,t+h−l)

= µYi µε, j

(
h−1

∑
l=0

α l
j

)

= µYi µε, j
1−αh

j

1−α j

= (1−αh
j )µYi µYj ,

and

Cov(Yi,tYj,t) = Cov

(
∞

∑
k=0

αk
i ◦ εi,t−k,

∞

∑
s=0

αs
j ◦ ε j,t−s

)

=
∞

∑
k,s=0

αk
i αs

jCov(εi,t−k,ε j,t−s)

=
∞

∑
k=0

αk
i αk

jCov(εi,t−k,ε j,t−k)

=

(
∞

∑
k=0

αk
i αk

j

)
Cov(εi,t ,ε j,t)

=
1

1−αiα j
Cov(εi,t ,ε j,t), h ≥ 0,
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where ∑h−1
l=0 α l

j is a geometric series and ∑∞
k=0 αk

i αk
j is an infinite

geometric series.

4.1.1 (h) From the definition of the correlation as well as using properties
4.1.1 (c) and 4.1.1 (g) we have that

Corr(Yi,t+h,Yj,t) =
Cov(Yi,t+h,Yj,t)√
Var(Yi,t+h)Var(Yj,t)

=
αh

i

√
(1−α2

i )(1−α2
j )

(1−α1α2)
√
(σ2

i +αiµε,i)(σ2
j +α jµε, j)

Cov(εi,t ,ε j,t)

holds for h ≥ 0.

B.2 Proof of equation (4.2.10)

We provide the derivation of equation (4.2.10). Let Fj,k = Fj(k; µε, j),
F j,k = 1−Fj,k, j = 1,2. Using eq. (3.0.5), eq. (4.2.6) and eq. (4.2.7) we
have that the following holds:

E(ε1,tε2,t) =
∞

∑
k=1

∞

∑
s=1

ks
(
F1,kF2,s

(
1+θF1,kF2,s

)
−F1,kF2,s−1

(
1+θF1,kF2,s−1

)
− F1,k−1F2,s

(
1+θF1,k−1F2,s

)
+F1,k−1F2,s−1

(
1+θF1,k−1F2,s−1

))
= Eε1,tEε2,s +θ

∞

∑
k=1

∞

∑
s=1

ksF1,kF2,sF1,kF2,s

−θ
∞

∑
k=1

∞

∑
s=1

ksF1,kF2,s−1F1,kF2,s−1 −θ
∞

∑
k=1

∞

∑
s=1

ksF1,k−1F2,sF1,k−1F2,s

+θ
∞

∑
k=1

∞

∑
s=1

ksF1,k−1F2,s−1F1,k−1F2,s−1

= Eε1,tEε2,s +θ
∞

∑
k=1

k
(
F1,kF1,k −F1,k−1F1,k−1

)
×

∞

∑
s=1

s
(
F2,sF2,s −Fs,2−1F2,s−1

)
Substituting the above expression in eq. (4.2.6) we get:

γ(µε,1,µε,2;θ) = θ
∞

∑
k=1

k
(
F1,kF1,k −F1,k−1F1,k−1

) ∞

∑
s=1

s
(
F2,sF2,s −Fs,2−1F2,s−1

)
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Inserting the new expression of γ(µε,1,µε,2;θ) in equation (4.2.5) and
taking the derivative with respect to θ and equating it to zero gives us:

(N −1)θ̂ CLS
FGM

∞

∑
k=1

k
(
F1,kF1,k −F1,k−1F1,k−1

) ∞

∑
s=1

s
(
F2,sF2,s −Fs,2−1F2,s−1

)
=

N

∑
t=2

(
(Y1,t − α̂CLS

1 Y1,t−1 − µ̂CLS
ε,1 )(Y2,t − α̂CLS

2 Y2,t−1 − µ̂CLS
ε,2 )

)
Rearranging the equality we get:

θ̂ CLS
FGM =

∑N
t=2(Y1,t − α̂CLS

1 Y1,t−1 − µ̂CLS
ε,1 )(Y2,t − α̂CLS

2 Y2,t−1 − µ̂CLS
ε,2 )

(N −1)∑∞
k=1 k

(
F1,kF1,k −F1,k−1F1,k−1

)
∑∞

s=1 s
(
F2,sF2,s −F2,s−1F2,s−1

)
Using the approximation of the covariance function in eq. (4.2.8) com-
pletes the proof.
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Appendix C

Inference on the estimate
bias from the BINAR(1)
Monte Carlo simulation

Let our simulated data in the Monte-Carlo simulation results be
X (i)

j,1, ...,X
(i)
j,N for simulated sample i = 1, ...,M and j = 1,2. Let η ∈

{α1,α2,µε,1,µε,2,θ ,σ2
2 } and let η̂(i) be either a CLS, CML or Two-step

estimate of the true parameter value η for the simulated sample i.
The mean squared error and the bias are calculated as follows:

MSE(η̂) =
1
M

M

∑
i=1

(η̂(i)−η)2,

Bias(η̂) =
1
M

M

∑
i=1

(η̂(i)−η).

Calculating the per-sample bias for each simulated sample i would also
allow us to calculate the sample variance of biases Bias(η̂(i)) = η̂(i)−η ,
i = 1, ...,M:

V̂ar(Bias(η̂)) =
1

M−1

M

∑
i=1

[
Bias(η̂(i))−Bias(η̂)

]2
,

which we can use to calculate the standard error of the bias.
The standard errors of the parameter bias of the Monte Carlo simu-

lation are presented in Table C.0.1. The columns labelled ’P-P’ indicate
the cases where both innovations have Poisson marginal distributions,
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while columns labelled ’P-NB’ is for the cases where one innovation com-
ponent follows Poisson and the other - a negative binomial distribution.

Table C.0.1: Standard errors of the bias of the estimated parameters
from the Monte Carlo simulation.

Copula Sample Parameter True CLS CML Two-Step
size value P-P P-NB P-P P-NB P-P P-NB

FGM

N = 50

α1 0.6 0.12396 0.12465 0.09252 0.09073 - -
α2 0.4 0.13274 0.13029 0.12510 0.08541 - -

µε,1 1 0.33494 0.33631 0.25311 0.23225 - -
µε,2 2 0.48040 0.61210 0.44024 0.48916 - -
θ -0.5 0.53139 0.54330 0.57707 0.53850 0.56899 0.53887

σ2
2 9 - 5.15368 - 3.88865 - 4.60221

N = 500

α1 0.6 0.03813 0.03893 0.02706 0.02745 - -
α2 0.4 0.04258 0.04392 0.03585 0.02306 - -

µε,1 1 0.10018 0.10076 0.07455 0.07367 - -
µε,2 2 0.15433 0.19676 0.13266 0.15377 - -
θ -0.5 0.21631 0.25760 0.20666 0.20741 0.20657 0.20770

σ2
2 9 - 1.50841 - 1.34701 - 1.36119

Frank

N = 50

α1 0.6 0.12882 0.12975 0.09552 0.09420 - -
α2 0.4 0.13158 0.13073 0.12448 0.08543 - -

µε,1 1 0.34266 0.34594 0.25719 0.23879 - -
µε,2 2 0.47982 0.61879 0.43939 0.48409 - -
θ -1 1.34944 1.34314 1.43522 1.32589 1.40547 1.29538

σ2
2 9 - 4.98845 - 3.85654 - 4.62540

N = 500

α1 0.6 0.03862 0.03951 0.02734 0.02727 - -
α2 0.4 0.04212 0.04312 0.03591 0.02240 - -

µε,1 1 0.10091 0.10329 0.07409 0.07481 - -
µε,2 2 0.15490 0.19278 0.13351 0.15287 - -
θ -1 0.46985 0.56268 0.44862 0.43540 0.44802 0.43627

σ2
2 9 - 1.31856 - 1.35359 - 1.36369

Clayton

N = 50

α1 0.6 0.12352 0.12684 0.08846 0.09360 - -
α2 0.4 0.13123 0.12798 0.12361 0.07779 - -

µε,1 1 0.33505 0.33926 0.24609 0.24514 - -
µε,2 2 0.48252 0.62066 0.44194 0.48075 - -
θ 1 0.84763 0.88328 0.82176 0.79618 0.77890 0.75037

σ2
2 9 - 4.93912 - 3.91243 - 4.81812

N = 500

α1 0.6 0.03782 0.03850 0.02641 0.02742 - -
α2 0.4 0.04337 0.04410 0.03468 0.02176 - -

µε,1 1 0.09804 0.10033 0.07162 0.07180 - -
µε,2 2 0.15612 0.19969 0.13071 0.15185 - -
θ 1 0.33857 0.31212 0.23852 0.23316 0.23717 0.23476

σ2
2 9 - 1.57798 - 1.34163 - 1.37066

The results in Table C.0.1 are in line with the conclusions presented
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in Section 4.3 – for α̂ j, µ̂ε, j, j = 1,2 and σ̂2
2 the standard error of the

bias is smaller for CML compared to CLS. On the other hand, θ̂ has
a similar standard error of the bias for CML and Two-step estimation
method.

The kernel density estimate for the bias of the dependence parameter
estimate, θ̂ , is presented in Figure C.0.1 for the Monte-Carlo simulation
cases, where the sample size was 500. From Figure C.0.1 we see that the
CML and Two-step estimates of the dependence parameter θ are similar
to one another and have a lower standard error of the bias, compared
to the CLS estimation method.

Frank copula
 Poisson and negative binomial marginals

Frank copula
 Poisson and Poisson marginals

FGM copula
 Poisson and negative binomial marginals

FGM copula
 Poisson and Poisson marginals

Clayton copula
 Poisson and negative binomial marginals

Clayton copula
 Poisson and Poisson marginals
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Figure C.0.1: Kernel density estimate of the bias of the dependence
parameter estimates in the Monte Carlo simulation.
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Appendix D

Proof of SINAR(1)d

properties

D.1 Proof of Proposition 5.1.1

5.1.1 (a) Let t = j + kd, k ∈ Z and j ∈ {1, ...,d}. Recursively applying
eq. (5.1.1), we get that

Yj+kd = ϕ j+kd ◦Yj+(k−1)d + ε j+kd
d
=

(
n

∏
l=0

ϕ j+(k−l)d

)
◦Yj+(k−n−1)d

+ ε j+kd +
n

∑
l=1

(
l

∏
i=1

ϕ j+(k−(i−1))d

)
◦ ε j+(k−l)d

= αn
j ◦Yj+(k−n−1)d +

n

∑
l=0

α l
j ◦ ε j+(k−l)d (D.1.1)

for any n ≥ 1, where we use the fact that ϕt = α j, t = j+kd, k ∈ Z.
We can then continue the proof similarly to Bourguignon et al.
(2016). For a fixed value j ∈ {1, . . . ,d} and k ∈ Z, we define the
following random variable

X j,k,n =
n

∑
l=0

α l
j ◦ ε j+(k−l)d ,

where the counting sequences involved in α l
j ◦ε j+(k−l)d are the same

for each fixed j and k, as l −→∞. Then, for all 0< n<m and k ∈Z,
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we get

E
(
X j,k,m −X j,k,n−1

)
= E

( m

∑
l=n

α l
j ◦ ε j+(k−l)d

)
=

m

∑
l=n

α l
jµε, j

=
αn

j (1−αm+1−n
j )

1−α j
µε, j

≤
αn

j

1−α j
µε, j → 0 as n −→ ∞,

Var
(
X j,k,m −X j,k,n−1

)
= Var

( m

∑
l=n

α l
j ◦ ε j+(k−l)d

)
=

m

∑
l=n

(
α2l

j σε, j j +α l
j(1−α l

j)µε, j
)

≤
α2n

j (1−α2m+2−2n
j )

1−α2
j

σε, j j

+
αn

j (1−αm+1−n
j )

1−α j
µε, j

≤
α2n

j

1−α2
j
σε, j j +

αn
j

1−α j
µε, j → 0 as n → ∞,

which means that for each j ∈ {1, . . . ,d} and k ∈ Z, X j,k,n, n ≥ 1
forms a Cauchy sequence in the mean square sense and conse-
quently, in probability. This implies that for a fixed j ∈ {1, . . . ,d}
and any k ∈ Z it holds true that

X j,k,n
P−→ X j,k as n → ∞ (D.1.2)

with a random variable X j,k having the form of infinite sum on the
r.h.s. of (5.1.2). Now, by (D.1.1), we can write {Yt} as d processes
{Yj+kd ,k ∈ Z}, j = 1, . . . ,d of the form

Yj+kd
d
= αn

j ◦Yj+(k−n−1)d +X j,k,n.

Let the mean and variance of each of these stationary processes be
defined as µY, j < ∞ and σ2

Y, j < ∞, respectively. Since α j ∈ [0,1), it
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holds that

E
(
αn

j ◦Yj+(k−n−1)d
)

= αn
j µY, j → 0,

Var
(
αn

j ◦Yj+(k−n−1)d
)

= α2n
j σ2

Y, j +αn
j (1−αn

j )µY, j → 0 as n → ∞.

Therefore, for any k and j ∈ {1, ...,d}, αn
j ◦Yj+(k−n−1)d

P−→ 0 as
n → ∞. This result, along with eq. (D.1.2) yields

Yj+kd
d
= X j,k for all k ∈ Z.

This means that the unique stationary marginal distribution of
process {Yj+kd = α j ◦Yj+(k−1)d +ε j+kd ,k ∈Z} has the form in (5.1.2)
(although it is not identical across j = 1, . . . ,d).

5.1.1 (b) By applying 5.1.1 (a) and the properties of the binomial thinning
operator we have:

E(Yt) = E
( ∞

∑
l=0

α l
j ◦ εt−ld

)
=

∞

∑
l=0

α l
jE(εt−ld) =

µε, j

1−α j
.

5.1.1 (c) By applying 5.1.1 (a), the properties of the binomial thinning oper-
ator and using the fact that εt are only intra-seasonally-dependent,
we have:

Var(Yt) = Var
( ∞

∑
l=0

α l
j ◦ εt−ld

)
=

∞

∑
l=0

Var
(
α l

j ◦ εt−ld
)

=
∞

∑
l=0

(
α2l

j Var(εt−ld)+α l
j(1−α l

j)E(εt−ld)
)

=
∞

∑
l=0

(
α2l

j σε, j j +α l
j(1−α l

j)µε, j
)

=
σε, j j +α jµε, j

1−α2
j

.

5.1.1 (d) If s = j − i such that i ∈ {1, . . . ,d} and i ̸= j, then t − s = i+ kd.
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Because the process {Yt , t ∈ j+Zd} is stationary, we have that

Cov(Yj+kd ,Yi+kd) = Cov(α j ◦Yj+(k−1)d + ε j+kd ,αi ◦Yi+(k−1)d + εi+kd)

= αiα jCov(Yj+(k−1)d ,Yi+(k−1)d)+σε,i j

= ...

= (αiα j)
n+1Cov(Yj+(k−(n+1))d ,Yi+(k−(n+1))d)

+ σε,i j

n

∑
l=0

(αiα j)
l , where n ∈ N∪{0}.

Let D := (αiα j)
n+1Cov(Yj+(k−(n+1))d ,Yi+(k−(n+1))d). Then the differ-

ence∣∣∣D+
n

∑
l=0

(αiα j)
l σε,i j −σε,i j

∞

∑
l=0

(αiα j)
l
∣∣∣ =

∣∣∣∣D−σε,i j

∞

∑
l=n+1

(αiα j)
l
∣∣∣∣

≤ (αiα j)
n+1E(Yj+(k−(n+1))dYi+(k−(n+1))d)+σε,i j

(αiα j)
n+1

1−αiα j

≤ (αiα j)
n+1
√
E(Y 2

j )E(Y 2
i )+σε,i j

(αiα j)
n+1

1−αiα j
→ 0 as n → ∞.

Thus, Cov(Yj+kd ,Yi+kd) = σε,i j/(1−αiα j).

Let s be a multiple of d and let s/d = m ∈ N (the case s/d = −m,
m ∈ N, is similar).

Then t − s = j+(k−m)d and

Cov(Yt ,Yt−s) = Cov(Yj+kd , Yj+(k−m)d)

= Cov
(
α j ◦Yj+(k−1)d + ε j+kd , Yj+(k−m)d

)
= α jCov

(
α j ◦Yj+(k−2)d + ε j+(k−1)d , Yj+(k−m)d

)
= ... = αm

j Cov
(
Yj+(k−m)d ,Yj+(k−m)d

)
= αm

j
σε, j j +α jµε, j

1−α2
j

.

If s = 0, then we have the variance given in 5.1.1 (c).

Let t−s = i+md, m ∈Z and i ∈ {1, ...,d} such that i ̸= j and m ̸= k.
Then, since Cov(ε j+kd ,εi+md) = 0 for all m ̸= k, it can be shown
that Cov(Yj+kd ,Yi+md) = 0.

5.1.1 (e) The equality holds by eq. (5.1.1) and the properties of the binomial
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thinning operator.

D.2 Proof of Proposition 5.2.1

We begin by proving the stationarity of {Yk}. From the definition of a
periodically correlated process (see Hurd and Miamee (2007, Def. 1.4)),
we have that {Yt} in Proposition 5.1.1 (a) is periodically correlated with
period d. Then, from Gladyshev (1961) it follows that process {Yk},
defined in eq. (5.2.1) is stationary (see also Hurd and Miamee (2007)).
Furthermore, eqs. (5.2.1) have a unique stationary solution which is
causal, when written as a VAR(1) process (see eq. (5.3.1)), since the
roots of det(I−Az) = 0 are all outside the unit circle.

Next, we present proofs of the properties in Proposition 5.2.1.

5.2.1 (a) Using property 5.1.1 (b) and the fact that each row of (5.2.1) cor-
responds to an INAR process Yj+kd = α j ◦Yj+(k−1)d + ε j+kd verifies
the first equality. Because the process mean vector is constant,
taking the expectations of both sides of (5.2.1) we get

µµµY = (I−A)−1µµµε ,

where µµµε = E(Zk). Since I−A is diagonal, calculating its inverse
confirms the second equality.

5.2.1 (b) The proof is evident by applying the properties of the binomial
thinning operator.

5.2.1 (c) The proof is obvious.

5.2.1 (d) The elements of ΓΓΓ(0) can be calculated from Proposition 5.1.1 (c)
and 5.1.1 (d):

γi j(0) = Cov(Yi+kd ,Yj+kd) =
σε,i j +αiµε,i1{i= j}

1−αiα j
.

Furthermore, applying the binomial thinning operator properties
and the fact that εt are intra-seasonally dependent, ΓΓΓ(h), h > 0,
can be expressed as

Cov(A◦Yk−1 +Zk,Yk−h) = ACov(Yk−1,Yk−h) = · · ·= AhΓΓΓ(0),
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which yields property 5.2.1 (d).

D.3 Proof of equation (5.3.2)

To express the multivariate INAR(1) process in eq. (5.2.1) as a VAR(1)
process in eq. (5.3.1), we simply add and subtract the conditional mean,
defined in Proposition 5.2.1(b), to get

Yk = µµµε +AYk−1 + eeek,

where eeek = A◦Yk−1−AYk−1+Zk −µµµε . Then, the expected value of eeek is

E(eeek) = AE(Yk−1)−AE(Yk−1)+µµµε −µµµε = 0

and the variance-covariance matrix of eeek is

ΣΣΣeee = E
(

eeekeee⊤k
)
= E(A◦Yk−1 −AYk−1)(A◦Yk−1 −AYk−1)

⊤

+E(A◦Yk−1 −AYk−1)(Zk −µµµε)
⊤

+E(Zk −µµµε)(A◦Yk−1 −AYk−1)
⊤+E(Zk −µµµε)(Zk −µµµε)

⊤ .

By applying the binomial thinning operator properties, the first term
can be expressed as

E(A◦Yk−1 −AYk−1)(A◦Yk−1 −AYk−1)
⊤ = diag(BE(Yk−1))

and the remaining terms as

E(A◦Yk−1 −AYk−1)(Zk −µµµε)
⊤ = 000

and

E(Zk −µµµε)(Zk −µµµε)
⊤ = ΣΣΣεεε ,

which reduces the covariance matrix expression to

ΣΣΣeee = diag(BE(Yk−1))+ΣΣΣεεε .

It is then straightforward to verify that the final equality in eq. (5.3.2)
holds true.
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D.4 Proof of Proposition 5.3.1

It is straightforward to verify that equality βββ = Rγγγ is satisfied provided
restriction matrix R⊤ = [R⊤

0 , . . . ,R⊤
d−1] with Rk = (r(k)i, j ) given in (5.3.5),

when the off-diagonal entries of A in eq. (5.2.1) are zeros.
Vectorizing eq. (5.3.3), we get

vec(Y) = vec(XBId)+vec(E) = (Id ⊗X)Rγγγ +vec(E) .

Noting that the covariance matrix of vec(E) is ΣΣΣeee⊗In, we want to choose
an estimator of γγγ, which minimizes

S(γγγ) = vec(E)⊤ (ΣΣΣeee ⊗ In)
−1 vec(E) (D.4.1)

= [vec(Y)− (Id ⊗X)Rγγγ]⊤
(
ΣΣΣ−1

eee ⊗ In
)
[vec(Y)− (Id ⊗X)Rγγγ] .

Let A := (Id ⊗X)R and yyy = vec(Y). Then eq. (D.4.1) can be written as:

S(γγγ) = yyy⊤
(
ΣΣΣ−1

eee ⊗ In
)

yyy− yyy⊤
(
ΣΣΣ−1

eee ⊗ In
)
A γγγ − γγγ⊤A ⊤ (ΣΣΣ−1

eee ⊗ In
)

yyy

+ γγγ⊤A ⊤ (ΣΣΣ−1
eee ⊗ In

)
A γγγ

= yyy⊤
(
ΣΣΣ−1

eee ⊗ In
)

yyy− yyy⊤
(
ΣΣΣ−1

eee ⊗X
)

Rγγγ − γγγ⊤R⊤
(

ΣΣΣ−1
eee ⊗X⊤

)
yyy

+ γγγ⊤R⊤
(

ΣΣΣ−1
eee ⊗

(
X⊤X

))
Rγγγ,

which yields the REG-CLS estimate

γ̂ =
[
R⊤
(

ΣΣΣ−1
eee ⊗

(
X⊤X

))
R
]−1

R⊤
(

ΣΣΣ−1
eee ⊗X⊤

)
yyy.

Following Lütkepohl (2007, p. 197) we substitute ΣΣΣeee with its estimate,
calculated using the unrestricted CLS estimates from eq. (5.3.4). This
completes the proof.

D.5 Proof of Proposition 5.3.2

The proof is analogous to Lütkepohl (2007, Prop. 5.3). Noting that

γ̂γγ =
[
R⊤(ΣΣΣ−1

eee ⊗
(
X⊤X

))
R
]−1R⊤(ΣΣΣ−1

eee ⊗X⊤)[(Id ⊗X)Rγγγ +vec(E)
]

= γγγ +
[
R⊤(ΣΣΣ−1

eee ⊗
(
X⊤X

))
R
]−1R⊤(ΣΣΣ−1

eee ⊗X⊤)vec(E)

= γγγ +
[
R⊤(ΣΣΣ−1

eee ⊗
(
X⊤X

))
R
]−1R⊤(ΣΣΣ−1

eee ⊗ Id+1
)
vec
(
X⊤E

)
,
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we have

√
n
(
γ̂γγ − γγγ

)
=

[
R⊤
(

ΣΣΣ−1
eee ⊗

(X⊤X
n

))
R
]−1

R⊤(ΣΣΣ−1
eee ⊗ Id+1

) 1√
n

vec
(
X⊤E

)
.

Furthermore, from the assumptions of Proposition 5.3.2 and because Zk

are independent vectors, the conditions in Lütkepohl (2007, Prop. 5.3)
are satisfied and we have that

X⊤X
n

P−→ ΓΓΓXXX(0) := E
(
X⊤

k Xk
)

as n → ∞

and

1√
n

vec
(
X⊤E

) d−→ N (000, ΣΣΣeee ⊗ΓΓΓXXX(0)) as n → ∞,

which yields that
√

n
(
γ̂γγ − γγγ

)
is asymptotically normal with covariance

matrix[
R⊤ (ΣΣΣ−1

eee ⊗ΓΓΓXXX(0)
)

R
]−1

R⊤ (ΣΣΣ−1
eee ⊗ Id+1

)
(ΣΣΣeee ⊗ΓΓΓXXX(0))

(
ΣΣΣ−1

eee ⊗ Id+1
)

×R
[
R⊤ (ΣΣΣ−1

eee ⊗ΓΓΓXXX(0)
)

R
]−1

=
[
R⊤ (ΣΣΣ−1

eee ⊗ΓΓΓXXX(0)
)

R
]−1

.
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