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Abstract

We consider sparse count data models with the sparsity rate τ = N/n = O(1) where
N = N(n) is the number of observations and n→∞ is the number of cells. In this case
the plug-in estimator of the structural distribution of expected frequencies is inconsistent.
If τ = O(n−α) for some α > 0, the nonparametric maximum likelihood estimator, in
general, is also inconsistent. Assuming that some auxiliary information on the expected
frequencies is available, we construct a consistent estimator of the structural distribution.

Keywords: structural distribution, Poisson mixture, sparsity rate, nonparametric estimator,
consistency, weak convergence.

1. Introduction

Let us consider the multinomial sampling scheme

y = (y1, . . . , yn), y ∼Multinomialn(N,p), p = (p1, . . . , pn) ∈ Pn, (1)

in case of sparse asymptotics (cf. Fienberg and Holland 1973; Bishop, Fienberg, and Holland
1975):

p = p(n), N = N(n)→∞ as n→∞.

Here Pn is the standard (n − 1)-simplex of probabilities p. Khmaladze (1988) proposed
specifications of sparse asymptotics by introducing sampling schemes with large number of
rare events. It assumes that

N = O(n), as n→∞.

In this case, a consistent estimator of probabilities p does not exist for any reasonable metric
(Kolchin, Sevastyanov, and Chistyakov 1978; Khmaladze 1988; Klaassen and Mnatsakanov
2000; Radavičius 2019).

Sometimes it is natural to assume that problem under consideration possesses some invari-
ance properties. For instance, palindromic Bernoulli distributions (Marchetti and Wermuth
2016) and palindromic Ising models (Marchetti and Wermuth 2017) are invariant with respect
to palindromic transformations, DNA sequence symmetry models assume invariance of DNA
sequence distributions with respect to various symmetric transformations including reverse,
complement and their combination (Kong, Fan, Chen, Hsu, Zhou, Zheng, and Lee 2009; Ra-
davičius, Rekašius, and Židanavičiūte 2019). Let us suppose that cell numbering is irrelevant
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for statistical inference. This means that components of the vector y are exchangeable, i.e.
their distribution is invariant with respect to the coordinate permutations. In turn, this en-
sures that all useful information about the cell probabilities p is contained in their structural
distribution.

Structural distribution Klaassen and Mnatsakanov (2000) (cf. Khmaladze and Chitshvili
1989; Khmaladze 1988) defined the (empirical) structural distribution Gn as the empirical
distribution of the ”observations” λ = λ(n) := N · p,

Gn :=
1

n

n∑
j=1

δλj . (2)

Here and in what follows δa denotes the Dirac measure centered at a. The basic assumption
is that Gn (weakly) converges to a probability distribution G, i.e.,

Gn
W→ G, n→∞. (3)

From the viewpoint of latent distribution modelling it is more natural to reserve the term
structural distribution for the distribution G and to refer to Gn as the empirical structural
distribution.

Structural distributions are widely used in quantitative linguistics. In this case, N is the size
in words of a language corpus or some text and N is the size of its vocabulary (see, e.g.
Khmaladze and Chitshvili 1989; Piaseckiene and Radavičius 2014).

Khmaladze (1988) has noticed that the natural (plug-in) estimator of G obtained by sub-
stituting yj for λj (j = 1, . . . , n) in (2) generally yields an inconsistent estimator (see also
Klaassen and Mnatsakanov 2000; van Es, Klaassen, and Mnatsakanov 2003). Consistent esti-
mators of structural distribution based on grouping or kernel smoothing are given in (Klaassen
and Mnatsakanov 2000; van Es and Kolios 2002; van Es et al. 2003) under some smoothness
conditions, see Example (a) below.

Poisson mixture Assuming that the probabilities p vanish as n→∞, a Poisson sampling
scheme is commonly used as an approximation to that of multinomial (1) and can be obtained
from the latter by taking the number of observations N to be a Poisson random variable.
More subtle arguments based on poissonization show that, when dealing with the structural
distribution problem, the multinomial scheme (1) can be replaced with that of Poisson (van
Es et al. 2003).

Khmaladze (1988) pointed out that the empirical structural distribution can be treated as a
latent mixing distribution in the empirical Bayes approach. Thus, the structural distribution
can be interpreted as a mixing distribution in a Poisson mixture model. Nonparametric
estimation of the mixing distribution is a well-known topic. We refer to the review (van de
Geer 2003) and papers (Laird 1978; Redner and Walker 1984; Pfanzagl 1988; Lindsay 1983;
Mnatsakanov and Klaassen 2003; Zhang 2008; Chen 2017) to mention few.

In this paper an extension of the results announced in (Radavičius 2019) is given. We consider
a hierarchical Poisson sampling scheme with a certain sparsity rate. This enables us to
cover the case of very sparse data where N = o(n). Then the nonparametric maximum
likelihood estimator, in general, is inconsistent, see Remark below. Assuming that some
auxiliary information on expected frequencies is available, we construct a consistent estimator
of the structural distribution.

In the next section we introduce the hierarchical Poisson sampling model and state our main
result. The proofs are given in the last section.
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2. Structural distribution estimator

We consider a sparse hierarchical Poisson (independent) sampling scheme with a sparsity rate
τ :

[y|λ] ∼ Poissonn(τλ), λ ∼ Q(n), λ := (λ1, . . . , λn),

where τ = τ(n) is a positive convergent sequence, the components of y = (y1, . . . , yn) are mu-
tually independent, the conditional distribution of yj given λ is Poisson(τλj), the components

of λ are also mutually independent with λj ∼ Qj = Q
(n)
j , j = 1, . . . , n.

When Qj ≡ Q1 and τ ≡ 1, we get a Poisson mixture model.

Similarly as in (2), define

Gn :=
1

n

n∑
j=1

Q
(n)
j (4)

and assume (3), i.e., Gn
W→ G as n → ∞. The limiting distribution G is called structural

distribution for the rate τ . In the Poisson mixture model, G = Q1.

Remark. Actually, we are interested in cases where τ → 0. Then the nonparametric maxi-
mum likelihood estimator of G, in general, is inconsistent.

Let us assume that the Poisson mixture model holds and, for some fixed integer k > 1,

µk := Eλk1 =

∫ ∞
0

ukdG(u) <∞

and τkn = o(1). Note,

P{ max
j=1,...,n

yj ≥ k} ≤
n∑
j=1

P{yj ≥ k} ≤
n∑
j=1

τkEλkj
k!

=
nτkµk
k!

= o(1).

Thus, with the probability tending to 1, the observations y take at most k different values
and hence the cardinality of the support of the nonparametric maximum likelihood estimator
ĜNML of G does not exceed k (Lindsay 1983, see also Zhang 2008). Consequently, ĜNML is
inconsistent provided the support of G has more than k points.

Let Π(G,F ) denote the Levy-Prokhorov distance between distributions G and F .

Assumptions (P):

(P1) Let ∆(n) := {∆`, ` = 0, 1, . . . , L}, L = L(n), be a partition of {1, . . . , n} such that
n0 := |∆0| = o(n) and, for some parametric family of distributions F(Θ) := {Fθ, θ ∈ Θ},
Θ ⊂ Rk,

Π(Gn,`, Fθ`)→ 0, θ` = θ`(n) ∈ Θ,

as n→∞ uniformly with respect to ` = 1, . . . , L. Here

Gn,` :=
1

n`

∑
j∈∆`

Q
(n)
j , n` := |∆`|, ` = 0, 1, . . . , L. (5)

(P2) For some distribution H on Θ,

Hn :=

L∑
`=0

δθ`
n`
n

W−→ H.

Here θ0 ∈ Θ can be chosen arbitrarily.

(P3) The family F (Θ) of distributions is uniformly continuous in the weak topology with
respect to θ ∈ Θ.
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(P4) There exist estimators θ̂` := θ̂(yj , j ∈ ∆`) of θ` which are consistent in average, i.e., for
any ε > 0,

L∑
`=1

P{|θ̂` − θ`| > ε} n`
n
→ 0.

Theorem. Let assumptions (P) be fulfilled. Then

Ĝn :=
L∑
`=0

Fθ̂`
n`
n

(6)

is a consistent estimator of the structural distribution

G =

∫
Θ
FθH(dθ) (7)

of the observations y for the sparsity rate τ .

Examples:
(a) Smooth expected frequencies. Let λ be non-random with

λj = gj,n := g(j/n) + εj,n > 0, j = 1, . . . , n, max
j
|εj,n| → 0, (8)

where g(u), u ∈ [0, 1] is a positive continuous function. The condition (8) (stated in a different
form and assuming τ ≡ 1) is basic in (Klaassen and Mnatsakanov 2000; van Es et al. 2003). In
view of assumptions (P), the requirements for the function g can be relaxed to the requirement
to be of finite variation.

Assumptions (P) are fulfilled for any partition ∆(n) of {1, . . . , n} such that

max
j=1,...,L

diam(∆j) = o(n) (9)

and
τ min
j=1,...,L

nj →∞.

When the error term εj,n in (8) vanishes, one obtains a nonparametric Poisson regression
model with respect to explanatory variable x, xj := j/n, j = 1, . . . , n.

(b) Negative binomial regression and related models. Let gj,n, j = 1, . . . , n, be given by (8)
and λj ∼ Gamma(gj,n, s), where Gamma(a, s) denotes the Gamma distribution with the
mean a and the shape parameter s > 0.

Assumptions (P) are fulfilled for any partition ∆(n) of {1, . . . , n} such that (9) holds and

τ2 min
j=1,...,L

nj →∞.

In (Radavičius and Samusenko 2012), this model was used for sparse data simulations. If
the error term εj,n when calculating gj,n in (8) is dropped, one has a nonparametric negative
binomial regression model with respect to explanatory variable x, xj := j/n, j = 1, . . . , n.

In (Piaseckiene and Radavičius 2014), zero inflated negative binomial regression model and
the empirical Bayes method have been applied to estimate the structural distribution of words
in Lithuanian texts.
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3. Proofs

Lemma 1. For a given collection of paired distributions (G`, F`), ` = 0, 1, . . . , L, and proba-
bilities q = (q0, q1, . . . , qL) ∈ PL, denote

G :=
L∑
`=0

G` q`, F :=
L∑
`=0

F` q`.

If Π(G`, F`) ≤ δ, ` = 1, . . . ,M, then Π(G,F ) ≤ δ + (1− δ) p0.

Proof. Proof follows directly from the definition of the Levy-Prokhorov distance.

Lemma 2. Suppose that conditions (P1)–(P3) hold. Then the structural distribution of y for
the rate τ is given by (7).

Proof. Take any θ0 ∈ Θ and set

Fn :=

L∑
j=0

Fθj
nj
n
. (10)

According to (2) and (5),

Gn =
L∑
j=0

Gn,j
nj
n
. (11)

Condition (P1) implies

δn := max
`=1,...,L

Π(Gn,`, Fθ`)→ 0 as n→∞. (12)

From Lemma 1, (10), (11), (12) and condition (P1) it follows that

Π(Gn, Fn) ≤ δn + (1− δn)
n0

n
→ 0. (13)

In view of condition (P3), the mapping θ → Fθ is bounded and continuous in weak topology.
Thus, by the definition of weak convergence, assumption (P2) and (10)

Fn =

∫
Θ
Fθ dHn

W−→
∫

Θ
Fθ dH, n→∞. (14)

Combining (13) and (14) completes the proof.

Lemma 3. If assumptions (P) are valid then for the estimator Ĝn defined by (6)

Π(Ĝn, Fn)→ 0 in probability.

Proof. Fix some δ > 0 and choose ε > 0 so that

max
|θ−u|≤ε

Π(Fu, Fθ) ≤ δ. (15)

Here we applied condition (P3). The maximum in (15) is taken over all pairs (θ, u) ∈ Θ×Θ
such that |θ − u| ≤ ε. Let us introduce independent random variables

Zi := 1(|θ̂i − θi| > ε), i = 1, . . . , L, (16)
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(here 1(·) stands for an indicator) and denote by

Z̄ε :=
L∑
j=1

Zj
nj
n

(17)

the (weighted) proportion of cases where the parameter estimators θ̂` have deviations greater
than ε. From (15) and Lemma 1 using (17) we obtain

Π(Ĝn, Fn) ≤ δ + (1− δ)(n0/n+ Z̄ε).

Since δ > 0 is arbitrary and n0 = o(n) by condition (P1), it suffices to check that Z̄ε → 0 in
probability. Because of (17), (16) and condition (P4) we have

E Z̄ε =
L∑
j=1

P{|θ̂j − θj | > ε} nj
n
→ 0.

Proof of Theorem. Lemma 2 ensures that the structural distribution G of the observations
y does exist and is given by (7). From Lemma 3, (14) and (7), it follows that Ĝn weakly
converges to G in probability.
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