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Abstract
The time periodic Navier–Stokes equations are considered in the three-dimensional
and two-dimensional settings with Dirichlet boundary conditions in thin tube
structures. These structures are finite union of thin cylinders (thin rectangles in the
case of dimension two), where the small parameter ε is the ratio of the hight and the
diameter of the cylinders. We consider the case of finite or big coefficient before the
time derivative. This setting is motivated by hemodynamical applications. Theorems
of existence and uniqueness of a solution are proved. Complete asymptotic
expansion of a solution is constructed and justified by estimates of the difference of
the exact solution and truncated series of the expansion in norms taking into account
the first and second derivatives with respect to the space variables and the first
derivative in time. The method of asymptotic partial decomposition of the domain is
justified for the time periodic problem.
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1 Introduction
The present paper is motivated by the problem of computer modeling of the blood vessel
network. Such modeling is important for optimization of the choice of serging strategy
in the case of cardio-vascular or cerebrovascular problems. The existing one-dimensional
models and codes cannot give the required accuracy in the neighborhoods of clot forma-
tion zones, stents, and bifurcation of vessels. On the other hand, the completely three-
dimensional computations are currently very time consuming and can be applied only for
small parts of the blood circulation system. That is why we suggest the hybrid dimen-
sion models, combining the one-dimensional reduction in the regular zones with three-
dimensional zooms in small zones of singular behavior. This approach was addressed to
the non-stationary initial boundary value problems for the Navier–Stokes equations in
thin tube structures [17]. However, for the hemodynamical modeling, more natural are
time-periodic settings. That is why we consider here the periodic in time problem for the
Navier–Stokes equation, prove the existence and uniqueness theorems for this setting,
and construct the asymptotic expansion of a solution with respect to the small parameter
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ε equal to the ratio of the diameter of vessels to their length. We consider the Navier–
Stokes equations in a class of special domains called tube structures. These domains are
connected finite unions of thin finite cylinders (thin rectangles in the 2D case respectively).
Each such tube structure may be schematically represented by its graph: letting the thick-
ness of tubes tend to zero, we find out that tubes degenerate to segments. We consider the
problem in two different scalings: one of them is the same as in [17], while the other gen-
erates a big coefficient of order ε–2 of the time derivative of the velocity. The constructed
asymptotic expansion is then used for the construction of a special numerical method
combining one-dimensional description with three-dimensional zooms, the method of
asymptotic partial decomposition of the domain (MAPDD). This method reduces the full
geometry setting to the computations in neighborhoods of bifurcation zone of diameter of
order ε| ln ε| as in [4] but in the time periodic setting. An alternative approach was devel-
oped by A. Quarteroni’s team [5], but this other method of junction of one-dimensional
and three-dimensional zones is different because it is based on multi-physics modeling:
the one-dimensional hyperbolic equations and three-dimensional models are derived in-
dependently of conservation laws, and then coupling is based on the ideas of consistency
of numerical schemes implementing these models. On the contrary, the MAPDD starts
from the Navier–Stokes equation written everywhere in the blood flow area, it rigorously
derives the one-dimensional Poiseuille type equations in the main part of the domain with
three-dimensional zoom in small parts near the bifurcations of vessels and clot formation
zones. It prescribes mathematically justified size of the zoomed areas and asymptotically
exact junction conditions. Numerous computational tests show that the multi-physics ap-
proach with hyperbolic one-dimensional models is more convenient for the description
of thick vessels (arteries), while the MAPDD model works better for small vessels such as
arterioles.

Let us describe now two different scalings of the Navier–Stokes equations in small and
very small arterioles or capillaries. The experimental data depend on numerous factors:
whether human or animal blood system is considered, if it is healthy or ill. So we take some
averaged data from [10, 11]. The characteristic time (period) is 1 second, while the char-
acteristic velocity is about 0.5 × 10–3 m/sec. Consider two scalings for the characteristic
length and diameter of vessels: (1) the length is 10–3 m and the characteristic diameter
10–4 m, (2) the length is 10–2 m and the characteristic diameter 10–3 m (in both cases
ε = 0.1). Let us make the change of the space variable X = 10–3x in case (1), and X = 10–2x
in case (2). Consider case (1). Making the change of velocity v = 10–3V and the change of
pressure p = 103P and taking into account that the dynamic viscosity of the blood is about
4 × 10–3 Pa sec and its density is 103 kg/m3, we obtain in new variables the Navier–Stokes
equation with all coefficients of order one:

∂V
∂t

– 4�XV + 0.5(V,∇X)V + ∇XP = 0, ∇ ·V = 0.

Consider now case (2). Making the change of velocity v = 10–4V and the change of pres-
sure p = 101P, we obtain in new variables the Navier–Stokes equation with all coefficients
except for the time derivative term of order one, while the coefficient of the time derivative
is 102, i.e., ε–2:

102 ∂V
∂t

– 4�XV + 5(V,∇X)V + ∇XP = 0, ∇ ·V = 0.
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Figure 1 Graph of tube structure

That is why we consider below two different settings: with the factor ε–2 and without it.
In the first part of the paper we study the existence and uniqueness of the time periodic

Navier–Stokes equations for both settings and derive the a priori estimates. The proof of
the existence, uniqueness, and a priori estimates of a solution in the time periodic setting
differs significantly from the proof of this trinity in the case of initial conditions given
in [17]. Moreover, in the present paper we obtain more precise estimates by means of a
technique using the Stokes operator extension (see [21]) and the base of its eigenfunctions.
However, this technique needs the C2-smoothness of the boundary. That is why we modify
slightly the definition of the tube structure adding smoothing domains near the vertices of
the graph of the tube structure. This modification allows as well to improve the estimates
for the Jth partial sums of an asymptotic expansion of solution constructed in Sect. 6 and
to obtain better estimates than in [17]. The construction of the asymptotic expansion of
the solution and the MAPDD implementation for setting (1) is similar to [17] but with the
time periodicity condition instead of the initial condition.

On the contrary, case (2) corresponds to a different expansion of the solution, and the
algorithm of its construction is given in Sect. 6. Section 8 is devoted to the justification of
the asymptotic expansion.

1.1 Tube structures. Graphs
For the reader’s convenience, let us remind the definitions of the tube structure and its
graph given in [17], see also [12].

Definition 1.1 Let O1, O2, . . . , ON be N different points in R
n, n = 2, 3, and e1, e2, . . . , eM

be M closed segments each connecting two of these points (i.e., each ej = Oij Okj , where
ij, kj ∈ {1, . . . , N}, ij �= kj). All points Oi are supposed to be the ends of some segments ej. The
segments ej are called edges of the graph. A point Oi is called a node if it is the common
end of at least two edges and Oi is called a vertex if it is the end of the only one edge. Any
two edges ej and ei can intersect only at the common node. The set of vertices is supposed
to be non-empty.

Denote by B =
⋃M

j=1 ej the union of edges and assume that B is a connected set. The
graph G is defined as the collection of nodes, vertices, and edges (see Fig. 1). The union of
all edges having the same end point Ol is called the bundle B(l).

Let e be some edge, e = OiOj. Consider two Cartesian coordinate systems in R
n. The

first one has the origin in Oi and the axis Oix(e)
n has the direction of the ray [OiOj); the

second one has the origin in Oj and the opposite direction, i.e., Oix̃(e)
n is directed over the

ray [OjOi).
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In what follows, in the various situations we choose one or another coordinate system
denoting the local variable in both cases by x(e) and pointing out which end is taken as the
origin of the coordinate system.

With every edge ej, we associate a bounded domain σ j ⊂R
n–1 having C2-smooth bound-

ary ∂σ j, j = 1, . . . , M. For every edge ej = e and associated σ j = σ (e), we denote by Π (e)
ε the

cylinder

Π (e)
ε =

{

x(e) ∈ R
n : x(e)

n ∈ (0, |e|), x(e)′

ε
∈ σ (e)

}

,

where x(e)′ = (x(e)
1 , . . . , x(e)

n–1), |e| is the length of the edge e, and ε > 0 is a small parameter.
Notice that the edges ej and Cartesian coordinates of nodes and vertices Oj, as well as the
domains σj, do not depend on ε.

Let O1, . . . , ON1 be nodes and ON1+1, . . . , ON be vertices. Let ω1, . . . ,ωN be bounded in-
dependent of ε domains in R

n; introduce the nodal domains ω
j
ε = {x ∈R

n : x–Oj
ε

∈ ωj}.
Every vertex Oj is the end of one and only one edge ek , which is re-denoted as eOj ; we

re-denote as well the domain σ k associated with this edge as σ Oj . Notice that the subscript
k may be different from j.

Definition 1.2 We call the following domain a tube structure:

Bε =

( M⋃

j=1

Π
(ej)
ε

)

∪
( N⋃

j=1

ω(j)
ε

)

.

Suppose that it is a connected set and that the boundary ∂Bε of Bε is C2-smooth.

In what follows we use the following notation. Let V be a Banach space. The norm of
the element u in the function space V is denoted by ‖u‖V . Vector-valued functions are
denoted by bold letters, and the spaces of scalar and vector-valued functions are not dis-
tinguished in notation. We use the standard notations for Sobolev and Hölder spaces.
Let T be a positive number. The notation Vper means that elements of the space V are
T-periodic functions, i.e., u(·, t) = u(·, t + T). Without loss of generality we may assume
T = 2π . We will need two spaces of periodic functions: L2

per(0, 2π ) and W̊ 1,2
per(0, 2π ), which

are supplied by the inner product of L2(0, 2π ) and W̊ 1,2(0, 2π ), respectively.

1.2 Formulation of the problem
Consider in the tube structure Bε the time periodic boundary value problem for the
Navier–Stokes equations

⎧
⎪⎪⎨

⎪⎪⎩

1
εβ vt – ν�v + (v · ∇)v + ∇p = 0, β = 0, 2,

div v = 0,

v|∂Bε = g, v(x, t) = v(x, t + 2π ).

(1.1)

Assume that the fluid velocity g at the boundary ∂Bε has the following structure: g = 0
everywhere on ∂Bε except for the set γ N1+1

ε , . . . ,γ N
ε , where γ

j
ε = ∂Bε ∩∂ω

j
ε , j = N1 + 1, . . . , N ,
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i.e.,

g(x, t)|
γ

j
ε

= gj
(

x – Oj

ε
, t
)∣
∣
∣
∣
γ

j
ε

, j = N1 + 1, . . . , N ,

g(x, t)|
∂Bε\(

⋃N
j=N1+1 γ

j
ε ) = 0,

where gj ∈ C[ J+1
2 ]+1(0, 2π ; W 3/2,2(γ j)), [α]—is the integer part of α, γ j = ε–1(γ j

ε – Oj) the
corresponding dilated part of the boundary, g ∈ C[ J+1

2 ]+1(0, 2π ; W 3/2,2(∂Bε)).
Denote e = eOj (the edge with the end Oj) and x(e) is the Cartesian coordinates corre-

sponding to the origin Oj and the edge e, i.e., x(e) = P (e)(x – Oj), P (e) is the orthogonal
matrix relating the global coordinates x with the local ones x(e),σ j

ε = {x : x(e)′
ε

∈ σ , x(e)
n = 0}.

Denote g(e) = P (e)gj.
Let

F̃ j(t) =
∫

γ
j
ε

g(x, t) · n(x) dS =
∫

γ
j
ε

gj
(

x – Oj

ε
, t
)

· n(x) dS

= εn–1
∫

γ j
ĝ j

n
(
y(e)′ , t

)
dy(e)′ ≡ εn–1Fj(t), j = N1 + 1, . . . , N , (1.2)

where n is the unit outward (with respect to Bε) normal vector to γ
j
ε , y(e)′ = x(e)′

ε
, ĝj(y(e)′ , t) =

gj((P (e))∗y(e)′ , t). Since g(x, t) is time periodic, Fj(t) also must be time periodic. Moreover,
since we will need the divergence-free extension of g, we assume the compatibility condi-
tion for the flow rates Fj(t):

J∑

j=1

Fj(t) = 0 ∀t ∈ [0, 2π ]. (1.3)

Let g be the divergence-free time periodic extension of the boundary function g (which
we denote by the same symbol g, g ∈ C[ J+1

2 ]+1([0, 2π ]; W 2,2(Bε))) satisfying, for all t ∈
[0, 2π ], the following asymptotic estimates:

sup
x∈Bε

∣
∣g(x, t)

∣
∣≤ c, ‖∇g‖L2(Bε) ≤ cε

n–3
2 ,

‖gt‖L2(Bε ) ≤ cε
n–1

2 ,
∥
∥∇2g

∥
∥

L2(Bε) ≤ cε
n–5

2 ,
(1.4)

where the constant c is independent of ε.
Below we construct the special extension g in the form of asymptotic representation

of the solution g such that the discrepancy of this extension in equations (1.1) is small.
But first we consider the following variations problem: find a vector-field v = u + g with
div u = 0, u ∈ L∞

per(0, 2π ; W̊ 1,2(Bε)), ut ∈ L2
per(0, 2π ; L2(Bε)) satisfying the integral identity

∫

Bε

(
1
εβ

ut ·ηηη + ν∇u · ∇ηηη –
(
(u + g) · ∇)ηηη · u – (u · ∇)ηηη · g

)

dx

=
∫

Bε

f ·ηηη dx (1.5)
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for every divergence-free vector-field ηηη ∈ W̊ 1,2(Bε). Here g is an arbitrary extension satis-
fying (1.4) and f is an arbitrary function such that

A1(t) =
∥
∥f(·, t)

∥
∥2

L2(Bε ) ≤ c, (1.6)

where c is independent of ε.

2 Auxiliary results
In this section we prove some multiplicative inequalities in the tube structure Bε . First
we construct two coverings of the domain Bε . Take domains A(ej)

ε,k = {x ∈ Π
(ej)
ε : x(ej)

n ∈
ε(k – 2, k + 2)}, j = 1, . . . , N , k = 2, . . . , Lj

ε , Lj
ε ∼ |e|ε–1, and define A(j)

ε,k = ω
j
ε ∪{x ∈ Π

(ej)
ε : x(ej)

n ∈
(0, 2ε)}, j = N1 + 1, . . . , N (i.e., when Oj are vertices), and A(j)

ε,k = ω
j
ε ∪⋃kj

{x ∈ Π
(ekj )
ε : x

(ekj )
n ∈

(0, 2ε)}, j = 1, . . . , N1 (i.e., when Oj are nodes), where the union over kj is taken over all edges
of the bundle B(j) associated with the node Oj.

In parallel with the covering

Aε =

( N⋃

j=1

Lj
ε⋃

k=2

A(ej)
ε,k

)

∪
( N⋃

j=1

A(j)
ε,k

)

,

we take the covering

Ãε =

( N⋃

j=1

L̃j
ε⋃

k=2

Ã(ej)
ε,k

)

∪
( N⋃

j=1

Ã(j)
ε,k

)

of Bε containing larger domain: Ã(ej)
ε,k = {x ∈ Π

(ej)
ε : x(ej)

n ∈ ε(k – 3, k + 3)}, j = 1, . . . , N , k =
3, . . . , L̃j

ε , L̃j
ε ∼ |e|ε–1. Then we define A(j)

ε,k = ω
j
ε ∪ {x ∈ Π

(ej)
ε : x(ej)

n ∈ (0, 3ε)}, j = N1 + 1, . . . , N ,

and A(j)
ε,k = ω

j
ε ∪⋃kj

{x ∈ Π
(ekj )
ε : x

(ekj )
n ∈ (0, 3ε)}, j = 1, . . . , N1. Obviously,

A(ej)
ε,k ⊂ Ã(ej)

ε,k , A(j)
ε,k ⊂ Ã(j)

ε,k .

Lemma 2.1 (Poincaré inequality) The following inequality

‖u‖L2(Bε) ≤ cε‖∇u‖L2(Bε ), ∀u ∈ W̊ 1,2(Bε) (2.1)

holds with the constant c independent of ε.

Lemma 2.2 (Ladyzhenskaya inequalities)

‖u‖L4(Bε) ≤ 21/4‖u‖1/2
L2(Bε )‖∇u‖1/2

L2(Bε) ∀u ∈ W̊ 1,2(Bε), Bε ⊂R
2, (2.2)

‖u‖L4(Bε) ≤ (4/3)3/8‖u‖1/4
L2(Bε )‖∇u‖3/4

L2(Bε) ∀u ∈ W̊ 1,2(Bε), Bε ⊂R
3, (2.3)

‖u‖L6(Bε) ≤ 481/6‖∇u‖L2(Bε) ∀u ∈ W̊ 1,2(Bε), Bε ⊂R
3. (2.4)

The constants in (2.2)–(2.4) are independent of ε. In particular,

‖u‖L4(Bε) ≤ cε1/2‖∇u‖L2(Bε) ∀u ∈ W̊ 1,2(Bε), Bε ⊂R
2, (2.5)
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‖u‖L4(Bε) ≤ cε1/4‖∇u‖L2(Bε) ∀u ∈ W̊ 1,2(Bε), Bε ⊂R
3. (2.6)

The proof of (2.1) is obvious; the proofs of (2.2)–(2.4) can be found in [7].

Lemma 2.3 Let Bε ⊂R
2, u ∈ W 1,2(Bε). Then

‖u‖4
L4(Bε) ≤ cε–2‖u‖2

L2(Bε )
(‖u‖2

L2(Bε ) + ε2‖∇u‖2
L2(Bε)

)
(2.7)

with the constant c independent of ε.

Proof In any bounded Lipschitz domain Ω the following inequality holds (see [9]):

‖u‖4
L4(Ω) ≤ c(Ω)‖u‖2

L2(Ω)
(‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω)

)
,

and, by the Young inequality,

‖u‖4
L4(Ω) ≤ δ–2‖u‖4

W 1,2(Ω) + cδ2‖u‖4
L2(Ω), δ > 0.

By scaling, it is easy to see that in any domain Aε from the covering Aε we get the estimate

‖u‖4
L4(Aε) ≤ δ–2ε–2(‖u‖2

L2(Aε ) + ε2‖∇u‖2
L2(Aε)

)2 + cδ2ε–2‖u‖4
L2(Aε ), δ > 0.

Summing the above inequalities over all domains Aε from the covering Aε , we get

‖u‖4
L4(Bε) ≤ δ–2ε–2(‖u‖2

L2(Bε ) + ε2‖∇u‖2
L2(Bε)

)2 + cδ2ε–2‖u‖4
L2(Bε ), δ > 0.

Putting now δ2 = (‖u‖2
L2(Bε ) + ε2‖∇u‖2

L2(Bε))‖u‖–2
L2(Bε ) yields (2.7). �

Lemma 2.4 Let Bε ⊂R
n, n = 2, 3, u ∈ W̊ 1,2(Bε) ∩ W 2,2(Bε). Then

‖∇u‖2
L2(Bε) ≤ c‖u‖L2(Bε)

∥
∥∇2u

∥
∥

L2(Bε). (2.8)

In particular,

‖∇u‖2
L2(Bε) ≤ cε2∥∥∇2u

∥
∥2

L2(Bε) (2.9)

with the constant c independent of ε.

Proof In any bounded Lipschitz domain Ω the interpolation inequality holds (see [9]):

‖∇u‖2
L2(Ω) ≤ c

(
δ
∥
∥∇2u

∥
∥2

L2(Ω) + δ–1‖u‖2
L2(Ω)

)
, δ > 0.

By scaling in ε-domain Aε (i.e., Aε in any direction is of “size” ε), we derive

ε2‖∇u‖2
L2(Aε) ≤ c

(
δε4∥∥∇2u

∥
∥2

L2(Aε ) + δ–1‖u‖2
L2(Aε)

)
, δ > 0.
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Summing the above inequalities over all domains Aε from the covering Aε , we get

ε2‖∇u‖2
L2(Bε) ≤ c

(
δε4∥∥∇2u

∥
∥2

L2(Bε ) + δ–1‖u‖2
L2(Bε)

)
, δ > 0.

Putting δ = ε–2‖u‖L2(Bε)‖∇2u‖–1
L2(Bε ) implies (2.8). �

Lemma 2.5 Let Bε ⊂R
3, u ∈ W 1,2(Bε). Then

‖u‖3
L3(Bε) ≤ cε–3/2‖u‖3/2

L2(Bε )

(‖u‖2
L2(Bε) + ε2‖∇u‖2

L2(Bε )
)3/4 (2.10)

with the constant c independent of ε.

Proof By the multiplicative inequality in a bounded Lipschitz domain Ω (see [9])

‖u‖3
L3(Ω) ≤ c‖u‖3/2

L2(Ω)

(‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω)
)3/4

and, by the Young inequality,

‖u‖3
L3(Ω) ≤ δ2‖u‖2

W 1,2(Ω) + cδ–6‖u‖6
L2(Ω) ∀δ > 0.

Then, by scaling, we get, for any domains Aε from the covering Aε , the estimates

‖u‖3
L3(Aε) ≤ δ2(‖u‖2

L2(Aε ) + ε2‖∇u‖2
L2(Aε)

)
+ cδ–6ε–6‖u‖6

L2(Aε ),

and summing them over all Aε from Aε , we derive

‖u‖3
L3(Bε) ≤ δ2(‖u‖2

L2(Bε ) + ε2‖∇u‖2
L2(Bε)

)
+ cδ–6ε–6‖u‖6

L2(Bε).

Taking in the last inequality

δ = ε–3/4‖u‖3/4
L2(Bε )

(‖u‖2
L2(Bε) + ε2‖∇u‖2

L2(Bε )
)–1/8

gives (2.10). �

Lemma 2.6 (Agmon’s inequality, n = 3) Let Bε ⊂R
3, u ∈ W̊ 1,2(Bε) ∩ W 2,2(Bε). Then

‖u‖4
L∞(Bε) ≤ cε–6‖u‖L2(Bε)

(‖u‖2
L2(Bε ) + ε2‖∇u‖2

L2(Bε) + ε4∥∥∇2u
∥
∥2

L2(Bε)

)3/2, (2.11)

with the constant c independent of ε. In particular,

‖u‖L∞(Bε) ≤ cε1/4∥∥∇2u
∥
∥

L2(Bε). (2.12)

Proof In any bounded Lipschitz domains Ω the following multiplicative inequality holds
(see Lemma 13.2 in [1]):

‖u‖4
L∞(Ω) ≤ c‖u‖L2(Ω)‖u‖3

W 2,2(Ω).
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By scaling it is easy to see that in Aε we have

‖u‖4
L∞(Aε) ≤ c

(
ε–3/2‖u‖L2(Aε)

)(
ε–3‖u‖2

L2(Aε) + ε–1‖∇u‖2
L2(Aε ) + ε

∥
∥∇2u

∥
∥2

L2(Aε)

)3/2

≤ cε–6‖u‖L2(Aε)
(‖u‖2

L2(Aε ) + ε2‖∇u‖2
L2(Aε) + ε4∥∥∇2u

∥
∥2

L2(Aε )

)3/2

≤ cε–6‖u‖L2(Bε)
(‖u‖2

L2(Bε ) + ε2‖∇u‖2
L2(Bε) + ε4∥∥∇2u

∥
∥2

L2(Bε)

)3/2.

Taking the supremum over all Aε ∈ Aε , we obtain (2.11). Inequality (2.12) follows from
(2.11), (2.1), and (2.9). �

Lemma 2.7 (Agmon’s inequality, n = 2) Let Bε ⊂R
2, u ∈ W̊ 1,2(Bε) ∩ W 2,2(Bε). Then

‖u‖4
L∞(Bε) ≤ cε–4‖u‖2

L2(Bε)
(‖u‖2

L2(Bε ) + ε2‖∇u‖2
L2(Bε) + ε4∥∥∇2u

∥
∥2

L2(Bε)

)
, (2.13)

with the constant c independent of ε. In particular,

‖u‖L∞(Bε) ≤ cε1/2∥∥∇2u
∥
∥

L2(Bε). (2.14)

Proof In any bounded Lipschitz two-dimensional domain Ω the following interpolation
inequality holds (see Lemma 13.2 in [1]):

‖u‖4
L∞(Ω) ≤ c‖u‖2

L2(Ω)‖u‖2
W 2,2(Ω).

By scaling, we have

‖u‖4
L∞(Aε) ≤ cε–4‖u‖2

L2(Aε)
(‖u‖2

L2(Aε ) + ε2‖∇u‖2
L2(Aε) + ε4∥∥∇2u

∥
∥2

L2(Aε )

)

≤ cε–4‖u‖2
L2(Bε)

(‖u‖2
L2(Bε ) + ε2‖∇u‖2

L2(Bε) + ε4∥∥∇2u
∥
∥2

L2(Bε)

)
.

Taking the supremum over all Aε ∈Aε , we get (2.13). �

3 Stokes operator
Consider in Bε the Dirichlet problem for the Stokes system

⎧
⎪⎪⎨

⎪⎪⎩

–ν�v + ∇p = f in Bε ,

div v = 0 in Bε ,

v|∂Bε = 0.

(3.1)

The weak solution v ∈ H(Bε) = {v ∈ W̊ 1,2(Bε) : div v = 0} to (3.1) satisfies the integral iden-
tity

ν

∫

Bε

∇v · ∇ηηη dx =
∫

Bε

f ·ηηη dx, ∀ηηη ∈ H(Bε),

and hence the estimate

‖∇v‖L2(Bε ) ≤ cε‖f‖L2(Bε). (3.2)
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Lemma 3.1 Let ∂Bε ∈ C2. Then

∥
∥∇2v

∥
∥

L2(Bε ) ≤ c‖f‖L2(Bε ) (3.3)

with the constant c independent of ε.

Proof Let Aε ⊂ Ãε be domains from the covering Aε and Ãε of Bε . Consider (3.1) in Ãε .
Making the change of variables x = ε–1y, we transform Aε and Ãε into the fixed (indepen-
dent of ε) domains A and Ã. The Stokes problem in coordinates y takes the form

⎧
⎪⎪⎨

⎪⎪⎩

–ν�yv + ∇y(εp) = ε2f in Ã,

divy v = 0 in Ã,

v|∂Bε∩∂Ã = 0.

(3.4)

ADN local estimates for elliptic problems (see [2]) yield the inequality

‖v‖2
L2(A) + ‖∇yv‖2

L2(A) +
∥
∥∇2

y v
∥
∥2

L2(A)

≤ c
(
ε4‖f‖2

L2(Ã) + ‖v‖2
L2(Ã) + ‖q – q‖2

L2(Ã)

)
, (3.5)

where q = εp, q = 1
|Ã|
∫

Ã q(y) dy. Since
∫

Ã(q(y) – q) dy = 0, there exists w ∈ W̊ 1,2(Ã) such that
div w = q(y) – q in Ã and

‖∇w‖L2(Ã) ≤ c‖q – q‖L2(Ã)

(see [8]). Multiplying (3.4) by w and integrating by parts yields

‖q – q‖2
L2(Ã) =

∫

Ã
q(y)
(
q(y) – q

)
dy

=
∫

Ã
q(y) div w dy = ν

∫

Ã
∇v · ∇w dy – ε2

∫

Ã
f · w dy

≤ ‖∇v‖L2(Ã)‖∇w‖L2(Ã) + ε2‖f‖L2(Ã)‖w‖L2(Ã)

≤ c‖∇v‖L2(Ã)‖q – q‖L2(Ã) + cε2‖f‖L2(Ã)‖q – q‖L2(Ã).

Therefore,

‖q – q‖L2(Ã) ≤ c
(‖∇v‖L2(Ã) + ε2‖f‖L2(Ã)

)
. (3.6)

From (3.5), using (3.6) and the Poincaré inequality, we derive

‖v‖2
L2(A) + ‖∇yv‖2

L2(A) +
∥
∥∇2

y v
∥
∥2

L2(A) ≤ c
(
ε4‖f‖2

L2(Ã) + ‖∇yv‖2
L2(Ã)

)
.

Returning to coordinates x, we obtain

ε4∥∥∇2v
∥
∥2

L2(Aε) ≤ c
(
ε4‖f‖2

L2(Ãε ) + ε2‖∇v‖2
L2(Ãε)

)
. (3.7)



Juodagalvytė et al. Boundary Value Problems         (2020) 2020:28 Page 11 of 35

Summing (3.7) by all domains Aε ⊂ Ãε , we get

∥
∥∇2v

∥
∥2

L2(Bε ) ≤ c
(‖f‖2

L2(Bε) + ε–2‖∇v‖2
L2(Bε )

)
. (3.8)

Estimating the last term in the right-hand side of (3.8), by (3.2), we derive (3.3). �

Problem (3.1) can be rewritten in the operator form (without loss of generality we sup-
pose that f ∈ J0(Bε), where J0(Bε) is the closure of the set {v ∈ C∞

0 (Bε) : div v = 0} in L2(Bε)-
norm)

�̃v = f , (3.9)

where �̃ = P� : H(Bε) ∩ W 2,2(Bε) �→ J0(Bε) is an unbounded operator with the domain
H(Bε) ∩ W 2,2(Bε), and P is the Leray projection onto divergence-free vector fields. By
the same notation we denote the Friedrichs extension of this operator to the whole space
H(Bε). �̃ is called the Stokes operator. It is known that (see [7, 21]):

(i) The Stokes operator has a discrete spectrum:

�̃w = λw, w ∈ H(Bε), w �= 0;

λi > 0, limi→∞ λi → +∞.
(ii) The eigenfunctions {wk}∞k=1 of �̃ constitute an orthogonal basis in J0(Bε) and H(Bε),

‖∇wk‖L2(Bε) =
√

λk ,‖wk‖L2(Bε ) = 1. If ∂Bε ∈ C2, then wk ∈ H(Bε) ∩ W 2,2(Bε).
For given w ∈ H(Bε) ∩ W 2,2(Bε), we have
∫

Bε

�̃w · v dx =
∫

Bε

(–ν�w + ∇p) · v dx = –ν

∫

Bε

�w · v dx = ν

∫

Bε

∇w · ∇v dx

for any divergence-free v ∈ C∞
0 (Bε). Then, by density arguments, it follows that

∫

Bε

|�̃w|2 dx = –ν

∫

Bε

�w · �̃w dx.

Thus,

‖�̃w‖L2(Bε) ≤ c‖�w‖L2(Bε) ≤ c
∥
∥∇2w

∥
∥

L2(Bε). (3.10)

Moreover, from the equality
∫

Bε
�̃w · v dx = ν

∫
Bε

∇w · ∇v dx, we obtain

‖�̃w‖H(Bε )∗ ≤ ν‖∇w‖L2(Bε ).

Here, V ∗ means the dual space to V .
From (3.3) we get the estimate

∥
∥∇2w

∥
∥

L2(Bε) ≤ c‖�̃w‖L2(Bε),

which together with (3.10) gives

c1
∥
∥∇2w

∥
∥

L2(Bε) ≤ ‖�̃w‖L2(Bε ) ≤ c2
∥
∥∇2w

∥
∥

L2(Bε). (3.11)
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Lemma 3.2 Let Bε ⊂R
n, n = 2, 3, w ∈ H(Bε) ∩ W 2,2(Bε). Then

‖w‖L∞(Bε) ≤ cε1/4∥∥∇2w
∥
∥

L2(Bε) ≤ cε1/4‖�̃w‖L2(Bε ) for n = 3, (3.12)

and

‖w‖L∞(Bε) ≤ cε1/2∥∥∇2w
∥
∥

L2(Bε) ≤ cε1/2‖�̃w‖L2(Bε ) for n = 2, (3.13)

with the constant c independent of ε.

Proof Inequality (3.12) follows from (2.12) and (3.11), while inequality (3.13) from (2.14)
and (3.11). �

4 Solvability of problem (1.5); the case n = 2
Theorem 4.1 Let Bε ⊂ R

2, ∂Bε ∈ C2. Suppose that the extended function g ∈ C[ J+1
2 ]+1(0,

2π ; W 2,2(Bε)) satisfies conditions (1.2), (1.3), (1.4), and f satisfies (1.6). Then, for sufficiently
small ε, variational problem (1.5) admits a solution u satisfying the estimates

sup
t∈[0,2π ]

∥
∥u(·, t)

∥
∥2

L2(Bε ) + εβ

∫ 2π

0

∫

Bε

∣
∣∇u(x, t)

∣
∣2 dx dt ≤ cε2+β

∫ 2π

0
A1(t) dt, (4.1)

sup
t∈[0,2π ]

∥
∥∇u(·, t)

∥
∥2

L2(Bε ) +
∫ 2π

0

∫

Bε

∣
∣ut(x, t)

∣
∣2 dx dt

+ εβ

∫ 2π

0

∫

Bε

∣
∣∇2u(x, t)

∣
∣2 dx dt ≤ cεβ

∫ 2π

0
A1(t) dt (4.2)

with constants independent of ε.

Proof We prove the solvability of problem (1.5) by Galerkin method (see [7, 21]). The main
purpose is to obtain suitable a priori estimates. The remaining part is standard.

If u is a weak solution, then taking in (1.5) ηηη = u, we obtain

1
2εβ

d
dt

∫

Bε

|u|2 dx + ν

∫

Bε

|∇u|2 dx =
∫

Bε

(u · ∇)u · g dx +
∫

Bε

f · u dx.

Using (1.4) and the Poincaré inequality (2.1), we derive the estimate

∣
∣
∣
∣

∫

Bε

(u · ∇)u · g dx
∣
∣
∣
∣≤ ‖u‖L2(Bε)‖∇u‖L2(Bε)‖g‖L∞(Bε ) ≤ c1ε‖∇u‖2

L2(Bε ).

If c1ε ≤ ν
4 , this gives

1
2εβ

d
dt

∫

Bε

|u|2 dx + ν

∫

Bε

|∇u|2 dx

≤ c1ε‖∇u‖2
L2(Bε ) + cε‖f‖L2(Bε)‖∇u‖L2(Bε) ≤ ν

2
‖∇u‖2

L2(Bε) + cε2‖f‖2
L2(Bε).

Then

1
2εβ

d
dt
∥
∥u(·, t)

∥
∥2

L2(Bε) +
ν

2
∥
∥∇u(·, t)

∥
∥2

L2(Bε ) ≤ cε2‖f‖2
L2(Bε ) ≡ cε2A1(t) (4.3)
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and hence, multiplying this relation by 2εβ and using the Poincaré inequality, we get

d
dt
∥
∥u(·, t)

∥
∥2

L2(Bε) + c∗εβ–2∥∥u(·, t)
∥
∥2

L2(Bε) ≤ c2ε
β+2A1(t).

Multiplying this inequality with omitted second term in the left-hand side by ec∗εβ–2t and
integrating over t, we obtain

∥
∥u(·, 2π )

∥
∥2

L2(Bε )

≤ ∥∥u(·, 0)
∥
∥2

L2(Bε) · e–c∗2πεβ–2
+ c2ε

β+2
∫ 2π

0
A1(t) · ec∗εβ–2(t–2π ) dt

≤ ∥∥u(·, 0)
∥
∥2

L2(Bε) · e–c∗2πεβ–2
+ c2ε

β+2
∫ 2π

0
A1(t) dt. (4.4)

Consider Galerkin approximations of the solution to problem (1.5) defined by the fol-
lowing system of ordinary differential equations:

∫

Bε

(
1
εβ

u(N)
t ·ψψψ l + ν∇u(N) · ∇ψψψ l –

((
u(N) + g

) · ∇)ψψψ l · u(N)

–
(
u(N) · ∇)ψψψ l · g

)

dx =
∫

Bε

f ·ψψψ l dx, (4.5)

where l = 1, . . . , N , u(N)(x, t) =
∑N

k=1 γ
(N)
k (t)ψk(x), and {ψk}∞k=1 is a basis in the space H(Bε).

From estimate (4.4), which remains valid for Galerkin approximations, it follows that,
for every N , the map M : u(N)(0) �→ u(N)(2π ) brings the ball in L2(Bε) of radius r0 =√

c2εβ+2

1–e–c∗2πεβ–2

∫ 2π

0 A1(t) dt into itself. The continuity of M follows from the general theory
of systems of ordinary differential equations. It can be proved as well directly using the
arguments of the proof of uniqueness Theorem 4.2. Since M is continuous, this ensures
the existence of a 2π-periodic solution to the Galerkin approximations (4.5) for each fixed
N .

Now we derive a set of a priori estimates for Galerkin approximations u(N). Integrate
(4.3) with respect to t. Using the periodicity u(N)(x, 0) = u(N)(x, 2π ), we obtain

∫ 2π

0

∫

Bε

∣
∣∇u(N)(x, t)

∣
∣2 dx dt ≤ cε2

∫ 2π

0
A1(t) dt. (4.6)

Because of the Poincaré inequality and the mean value theorem for Lebesgue integrals,
there exists a point t∗ ∈ [0, 2π ] such that

1
ε2c
∥
∥u(N)(·, t∗)

∥
∥2

L2(Bε ) ≤ ∥∥∇u(N)(·, t∗)
∥
∥2

L2(Bε)

≤ 1
2π

∫ 2π

0

∫

Bε

∣
∣∇u(N)(x, t)

∣
∣2 dx dt ≤ cε2

∫ 2π

0
A1(t) dt. (4.7)

Without loss of generality we may assume that t∗ = 0 (if not, we can consider problem (1.5)
on the interval [t∗, t∗ + 2π ] and reduce it, by change of variable t → t – t∗, to the interval
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[0, 2π ]). Integrating (4.3) from 0 to t and using (4.7), we get

sup
t∈[0,2π ]

∥
∥u(N)(·, t)

∥
∥2

L2(Bε) ≤ cε2+β

∫ 2π

0
A1(t) dt. (4.8)

Estimates (4.7) and (4.8) are valid for Galerkin approximations constructed using an ar-
bitrary basis and for arbitrary bounded Lipschitz domains. In order to estimate the higher
derivatives of u, we have to assume that ∂Bε ∈ C2, and as a basis we shall use the eigen-
functions of the Stokes operator.

Multiplying (4.5) by λkγ
(N)
k (t) and summing from k = 1 to k = N , we obtain

∫

Bε

(
1
εβ

N∑

k=1

u(N)
t · ψlλkγ

(N)
k – ν

N∑

k=1

�u(N) · ψlλkγ
(N)
k

–
N∑

k=1

((
u(N) + g

) · ∇)λkγ
(N)
k ψl · u(N) –

N∑

k=1

(
u(N) · ∇)λkγ

(N)
k ψl · g

)

dx

=
∫

Bε

N∑

k=1

f · ψlλkγ
(N)
k dx, l = 1, . . . , N .

Using the properties of the Stokes operator and omitting the subscript N (below u means
u(N)), we rewrite the last equality as

∫

Bε

(
1
εβ

ut · �̃u – ν�u · �̃u +
(
(u + g) · ∇)u · �̃u + (u · ∇) · g · �̃u

)

dx

=
∫

Bε

f · �̃u dx.

This is equivalent to

ν

2εβ

d
dt

∫

Bε

|∇u|2 dx +
∫

Bε

|�̃u|2 dx

= –
∫

Bε

(
(u + g) · ∇)u · �̃u dx

–
∫

Bε

(u · ∇)g · �̃u dx +
∫

Bε

f · �̃u dx =
3∑

i=1

Ji. (4.9)

Let us estimate the right-hand side of (4.9). Using inequality (2.5), we obtain

|J3| ≤ δ

∫

Bε

|�̃u|2 dx + cδA1(t),

|J2| ≤ ‖u‖L4(Bε)‖∇g‖L4(Bε)‖�̃u‖L2(Bε )

≤ cε
1
2 ‖∇u‖L2(Bε )‖∇g‖L4(Bε )‖�̃u‖L2(Bε )

≤ cδε‖∇u‖2
L2(Bε)‖∇g‖2

L4(Bε) + δ‖�̃u‖2
L2(Bε ). (4.10)
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By (2.7) and (1.4),

‖∇g‖2
L4(Bε ) ≤ cε–1‖∇g‖L2(Bε)

(‖∇g‖2
L2(Bε) + ε2∥∥∇2g

∥
∥2

L2(Bε)

)1/2 ≤ cε–2.

Therefore,

|J2| ≤ cδε
–1‖∇u‖2

L2(Bε) + δ‖�̃u‖2
L2(Bε ). (4.11)

Further, by (1.4),

∣
∣
∣
∣

∫

Bε

(g · ∇)u · �̃u dx
∣
∣
∣
∣≤ ‖g‖L∞(Bε)‖∇u‖L2(Bε)‖�̃u‖L2(Bε )

≤ cδ‖∇u‖2
L2(Bε ) + δ‖�̃u‖2

L2(Bε). (4.12)

Finally, applying (2.2) and (2.7), we get

∣
∣
∣
∣

∫

Bε

(u · ∇)u · �̃u dx
∣
∣
∣
∣

≤ ‖u‖L4(Bε )‖∇u‖L4(Bε )‖�̃u‖L2(Bε)

≤ cδε
–1‖u‖L2(Bε )‖∇u‖2

L2(Bε)
(‖∇u‖2

L2(Bε ) + ε2∥∥∇2u
∥
∥2

L2(Bε )

) 1
2

+
δ

2
‖�̃u‖2

L2(Bε) ≤ cδε
–1‖u‖L2(Bε )‖∇u‖3

L2(Bε )

+ cδ‖u‖L2(Bε)‖∇u‖2
L2(Bε)

∥
∥∇2u

∥
∥

L2(Bε ) +
δ

2
‖�̃u‖2

L2(Bε)

≤ cδ

(
1 + ‖u‖2

L2(Bε)
)‖∇u‖4

L2(Bε) + δ‖�̃u‖2
L2(Bε)

(4.8)≤ cδ

(

1 + ε2+β

∫ 2π

0
A1(t) dt

)

‖∇u‖4
L2(Bε) + δ‖�̃u‖2

L2(Bε). (4.13)

Substituting (4.10)–(4.13) into (4.9) and taking δ = 1
8 , we obtain

ν

εβ

d
dt

∫

Bε

|∇u|2 dx +
∫

Bε

|�̃u|2 dx

≤ C1

(

1 + ε2+β

∫ 2π

0
A1(t) dt

)

‖∇u‖4
L2(Bε )

+ C3
(
1 + ε–1)‖∇u‖2

L2(Bε) + C2A1(t). (4.14)

Denote Y (t) =
∫

Bε
|∇u(x, t)|2 dx, d1 = C1(1 + ε2+β

∫ 2π

0 A1(t) dt). Then we can rewrite (4.14)
as

Y ′(t) ≤ εβ

ν
d1‖∇u‖2

L2(Bε)Y (t) + C3
εβ

ν

(
1 + ε–1)‖∇u‖2

L2(Bε) +
εβ

ν
C2A1(t).

Hence,

(
Y (t)e– εβ

ν

∫ t
0 d1‖∇u(·,τ )‖2

L2(Bε )
dτ )′
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≤ C4ε
β
((

1 + ε–1)‖∇u‖2
L2(Bε) + A1(t)

)
e– εβ

ν

∫ t
0 d1‖∇u(·,τ )‖2

L2(Bε )
dτ

≤ C4ε
β
((

1 + ε–1)‖∇u‖2
L2(Bε) + A1(t)

)
.

Integrating the last inequality and using (4.6) and (4.7) with t∗ = 0, we obtain

Y (t) ≤ cY (0) + cεβ

∫ 2π

0
A1(s) ds ≤ c

(
ε2 + εβ

)
∫ 2π

0
A1(t) dt ≤ cεβ

∫ 2π

0
A1(t) dt. (4.15)

From (4.15) we have

sup
t∈[0,2π ]

∥
∥∇u(N)(·, t)

∥
∥2

L2(Bε) ≤ cεβ

∫ 2π

0
A1(t) dt. (4.16)

Substituting (4.16) into (4.14) and integrating by t from 0 to 2π imply

∫ 2π

0

∫

Bε

∣
∣�̃u(N)∣∣2 dx dt

≤ c
∫ 2π

0
A1(t) dt

+ cεβ

(

1 + ε2+β

∫ 2π

0
A1(t) dt

)∫ 2π

0
A1(t) dt

∫ 2π

0

∥
∥∇u(N)∥∥2

L2(Bε) dt

+ c
(
1 + ε–1)

∫ 2π

0

∥
∥∇u(N)∥∥2

L2(Bε ) dt ≤ C
∫ 2π

0
A1(t) dt. (4.17)

Let us estimate the norm of u(N)
t . Multiply (4.5) by d

dt γ
(N)
k and sum up the obtained equal-

ities over k from k = 1 to k = N . Again omitting the subscript N , we obtain

1
εβ

∫

Bε

|ut|2 dx +
ν

2
d
dt

∫

Bε

|∇u|2 dx

= –
∫

Bε

(
(u + g) · ∇)u · ut dx –

∫

Bε

(u · ∇)g · ut dx +
∫

Bε

f · ut dx

≤ (‖u‖L∞(Bε) + ‖g‖L∞(Bε )
)‖∇u‖L2(Bε)‖ut‖L2(Bε )

+ ‖u‖L∞(Bε)‖∇g‖L2(Bε)‖ut‖L2(Bε) + ‖f‖L2(Bε )‖ut‖L2(Bε)

≤ δ‖ut‖2 + cδ‖u‖2
L∞(Bε)‖∇u‖2

L2(Bε) + cδ‖g‖2
L∞(Bε)‖∇u‖2

L2(Bε)

+ cδ‖u‖2
L∞(Bε)‖∇g‖2

L2(Bε) + cδA1(t).

Taking sufficiently small δ and integrating over [0, 2π ], we obtain the inequality

(
1
εβ

–
1
2

)∫ 2π

0

∫

Bε

|ut|2 dx dt

≤ c
∫ 2π

0
A1(t) dt + c

∫ 2π

0
‖u‖2

L∞(Bε )‖∇u‖2
L2(Bε) dt

+ c
∫ 2π

0
‖g‖2

L∞(Bε)‖∇u‖2
L2(Bε ) dt + c

∫ 2π

0
‖∇g‖2

L2(Bε)‖u‖2
L∞(Bε ) dt
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(3.13)≤ c
∫ 2π

0
A1(t) dt + cε sup

t∈[0,2π ]
‖∇u‖2

L2(Bε)

∫ 2π

0

∥
∥∇2u

∥
∥2

L2(Bε) dt

+ c sup
t∈[0,2π ]

‖g‖2
L∞(Bε )

∫ 2π

0
‖∇u‖2

L2(Bε) dt + cε sup
t∈[0,2π ]

‖∇g‖2
L2(Bε )

∫ 2π

0

∥
∥∇2u

∥
∥2

L2(Bε) dt

(3.11)≤ c
∫ 2π

0
A1(t) dt + cε sup

t∈[0,2π ]
‖∇u‖2

L2(Bε)

∫ 2π

0
‖�̃u‖2

L2(Bε) dt

+ c sup
t∈[0,2π ]

‖g‖2
L∞(Bε )

∫ 2π

0
‖∇u‖2

L2(Bε) dt + cε sup
t∈[0,2π ]

‖∇g‖2
L2(Bε )

∫ 2π

0
‖�̃u‖2

L2(Bε) dt

(1.4),(4.6),(4.16),(4.17)≤ C
∫ 2π

0
A1(t) dt.

Thus,

∫ 2π

0

∫

Bε

∣
∣u(N)

t
∣
∣2 dx dt ≤ cεβ

∫ 2π

0
A1(t) dt. (4.18)

Estimates (4.7), (4.17), and (4.18) ensure (in a standard way, see [7, 21]) the convergence
of the Galerkin approximation and guarantee the existence of the solution u. �

Theorem 4.2 For sufficiently small ε, the solution of problem (1.5), n = 2, is unique.

Proof Suppose that there are two solutions u1 and u2 of problem (1.5) satisfying the con-
ditions of Theorem 4.1. Subtracting identity (1.5) for u2 from the one for u1, we obtain,
for the difference v = u1 – u2, the following identity:

∫

Bε

(
1
εβ

vt ·ηηη + ν∇v · ∇ηηη – (u1 · ∇)ηηη · v – (v · ∇)ηηη · u2 – (g · ∇)ηηη · v

– (v · ∇)ηηη · g
)

dx = 0

for every divergence-free vector-field ηηη ∈ W̊ 1,2(Bε). Taking ηηη = v, we obtain

1
2εβ

d
dt

∫

Bε

|v|2 dx + ν

∫

Bε

|∇v|2 dx

=
∫

Bε

(v · ∇)v · u2 dx +
∫

Bε

(v · ∇)v · g dx

≤ ‖v‖L4(Bε )‖∇v‖L2(Bε )
(‖u2‖L4(Bε) + ‖g‖L4(Bε)

)

(2.7),(2.1)≤ cε‖∇v‖2
L2(Bε )

(‖∇u2‖L2(Bε ) + ‖∇g‖L2(Bε )
)
.

Integrating the last inequality with respect to t, we derive

ν

∫ 2π

0

∫

Bε

|∇v|2 dx dt ≤ cε
(

sup
t∈[0,2π ]

‖∇u2‖L2(Bε ) + sup
t∈[0,2π ]

‖∇g‖L2(Bε )

)∫ 2π

0
‖∇v‖2

L2(Bε) dt

(1.4),(4.2)≤ cε
((

εβ

∫ 2π

0
A1(t) dt

)1/2

+ ε–1/2
)∫ 2π

0
‖∇v‖2

L2(Bε ) dt.
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For sufficiently small ε (i.e., cε((εβ
∫ 2π

0 A1(t) dt)1/2 + ε–1/2) < ν) this implies

∫ 2π

0

∫

Bε

|∇v|2 dx dt = 0,

and hence u1 = u2. �

5 Solvability of problem (1.5); the case n = 3
In this section we prove the existence of the unique weak solution of problem (1.5).

Theorem 5.1 Let Bε ⊂ R
3, ∂Bε ∈ C2. Suppose that the extended function g belongs to

C[ J+1
2 ]+1(0, 2π ; W 2,2(Bε)) and satisfies conditions (1.2), (1.3), (1.4), and f satisfies (1.6). Then,

for sufficiently small ε, there exists a solution to variational problem (1.5). The following
estimate

sup
t∈[0,2π ]

∥
∥u(·, t)

∥
∥2

L2(Bε) + εβ

∫ 2π

0

∥
∥∇u(·, t)

∥
∥2

L2(Bε ) dt ≤ cε2+β

∫ 2π

0
A1(t) dt (5.1)

holds. If the constant in (1.6) is sufficiently small (independently of ε) in the case β = 0 or if
β = 2, then there holds also the estimate

sup
t∈[0,2π ]

∥
∥∇u(·, t)

∥
∥2

L2(Bε ) +
∫ 2π

0

∫

Bε

∣
∣ut(x, t)

∣
∣2 dx dt

+ εβ

∫ 2π

0

∥
∥∇2u(·, t)

∥
∥2

L2(Bε) dt ≤ cεβ

∫ 2π

0
A1(t) dt. (5.2)

Proof As in Theorem 4.1, we use Galerkin approximations. First, applying inequality (2.3)
instead of (2.2), we prove, exactly in the same way as before, the existence of Galerkin
approximations and the following estimate for them:

1
εβ

sup
t∈[0,2π ]

∥
∥u(N)(·, t)

∥
∥2

L2(Bε) +
∫ 2π

0

∫

Bε

∣
∣∇u(N)(x, t)

∣
∣2 dx dt ≤ cε2

∫ 2π

0
A1(t) dt. (5.3)

In order to estimate the higher derivatives of u, we use as a basis the eigenfunctions
of the Stokes operator. Taking in (4.5) Galerkin approximations with the basis {wk}∞k=1,
multiplying it by λkγ

(N)
k (t), summing up the obtained equalities from k = 1 to k = N , and

using properties of the Stokes operator, we obtain (here we again omit the subscript N )

ν

2εβ

d
dt

∫

Bε

|∇u|2 dx +
∫

Bε

|�̃u|2 dx

= –
∫

Bε

(
(u + g) · ∇)u · �̃u dx

–
∫

Bε

(u · ∇)g · �̃u dx +
∫

Bε

f · �̃u dx =
3∑

i=1

Ji. (5.4)

Let us estimate the right-hand side of (5.4). Using (2.1), (2.4)–(2.10), (3.12), and (1.4) for
n = 3, we obtain

|J3| ≤ δ

∫

Bε

|�̃u|2 dx + cδA1(t), (5.5)
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|J2| =
∣
∣
∣
∣

∫

Bε

(u · ∇)g · �̃u dx
∣
∣
∣
∣≤ ‖u‖L∞(Bε )‖∇g‖L2(Bε )‖�̃u‖L2(Bε )

(3.12)≤ c ε
1
4 ‖�̃u‖2

L2(Bε), (5.6)

|J11| =
∣
∣
∣
∣

∫

Bε

(g · ∇)u · �̃u dx
∣
∣
∣
∣≤ ‖g‖L∞(Bε )‖∇u‖L2(Bε)‖�̃u‖L2(Bε)

(2.9)≤ cε‖g‖L∞(Bε )
∥
∥∇2u

∥
∥

L2(Bε)‖�̃u‖L2(Bε )
(3.11)≤ cε‖�̃u‖2

L2(Bε), (5.7)

|J12| =
∣
∣
∣
∣

∫

Bε

(u · ∇)u · �̃u dx
∣
∣
∣
∣

≤ cδ‖u‖2
L6(Bε)‖∇u‖2

L3(Bε) + δ

∫

Bε

|�̃u|2 dx
(2.4),(2.10)≤ δ

∫

Bε

|�̃u|2 dx

+ cδ‖∇u‖2
L2(Bε)ε

–1‖∇u‖L2(Bε )
(‖∇u‖2

L2(Bε) + ε2∥∥∇2u
∥
∥2

L2(Bε )

) 1
2

(2.9)≤ δ

∫

Bε

|�̃u|2 dx + cδε
–1‖∇u‖3

L2(Bε)

(
cε2∥∥∇2u

∥
∥2

L2(Bε) + ε2∥∥∇2u
∥
∥2

L2(Bε )

) 1
2

(3.12)≤ δ

∫

Bε

|�̃u|2 dx + cδ‖∇u‖3
L2(Bε)‖�̃u‖L2(Bε)

≤ 2δ

∫

Bε

|�̃u|2 dx + cδ‖∇u‖6
L2(Bε ). (5.8)

Substituting (5.5)–(5.8) into (5.4) and taking δ = 1
12 implies

ν

2εβ

d
dt

∫

Bε

|∇u|2 dx +
(

3
4

– C1ε
1/4
)∫

Bε

|�̃u|2 dx

≤ C2‖∇u‖6
L2(Bε) + C3A1(t). (5.9)

If ε is sufficiently small (ε1/4 ≤ 1
4C1

), then

3
4

– C1ε
1
4 ≥ 1

2
,

and (5.9) yields

ν

2εβ

d
dt

∫

Bε

|∇u|2 dx +
1
2

∫

Bε

|�̃u|2 dx ≤ C2‖∇u‖6
L2(Bε) + C3A1(t). (5.10)

Denoting z(t) =
∫

Bε
|∇u|2 dx, we rewrite (5.10) as

z′(t) ≤ 2εβ

ν
C2z(t)3 +

2εβ

ν
C3A1(t) ≤ (1 + z(t)2)

(
2εβ

ν
C2z(t) +

2εβ

ν
C3A1(t)

)

,

or, equivalently,

z′(t)
1 + z(t)2 ≤ 2εβ

ν
C2z(t) +

2εβ

ν
C3A1(t). (5.11)
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Integrating (5.11) by t and using (5.3), we obtain

arctan z(t) ≤ arctan z(0) +
2εβ

ν
C2

∫ 2π

0
z(t) dt +

2εβ

ν
C3

∫ 2π

0
A1(t) dt

≤ arctan

(

C4ε
2
∫ 2π

0
A1(t) dt

)

+
(

C5ε
β+2 +

2εβ

ν
C3

)∫ 2π

0
A1(t) dt. (5.12)

Here, as in Sect. 4, we assume that t∗ = 0. For sufficiently small ε in the case β = 2 or for
sufficiently small constant in inequality (1.6) in the case β = 0, the following inequalities

(

C5ε
2+β +

2εβ

ν
C3

)∫ 2π

0
A1(t) dt <

π

6
,

C4ε
2
∫ 2π

0
A1(t) dt + tan

[(

C5ε
2+β +

2εβ

ν
C3

)∫ 2π

0
A1(t) dt

]

<
1
2

hold. Then (5.12) gives

z(t) =
∫

Bε

|∇u|2 dx ≤ C6

(

ε2
∫ 2π

0
A1(t) dt + tan

[(

C5ε
2+β +

2εβ

ν
C3

)∫ 2π

0
A1(t) dt

])

≤ cεβ

∫ 2π

0
A1(t) dt,

i.e.,

sup
t∈[0,2π ]

∥
∥∇u(N)(·, t)

∥
∥2

L2(Bε) ≤ cεβ

∫ 2π

0
A1(t) dt. (5.13)

Substituting (5.13) into (5.10) yields

∫ 2π

0

∥
∥∇2u(N)(·, t)

∥
∥2

L2(Bε) dt

(3.11)≤ c
∫ 2π

0

∥
∥�̃u(N)(·, t)

∥
∥2

L2(Bε) dt

≤ c
(

ε3β

(∫ 2π

0
A1(t) dt

)3

+
∫ 2π

0
A1(t) dt

)

≤ c
∫ 2π

0
A1(t) dt. (5.14)

Let us estimate the norm of u(N)
t . Taking in integral identity (1.5) ηηη = u(N)

t (more pre-
cisely, multiplying (4.5) by d

dt γ
(N)
k and summing by k from 1 to N ), we obtain (omitting the

subscript N )

1
εβ

∫

Bε

|ut|2 dx +
ν

2
d
dt

∫

Bε

|∇u|2 dx

= –
∫

Bε

(
(u + g) · ∇)u · ut dx –

∫

Bε

(u · ∇)g · ut dx +
∫

Bε

f · ut dx

≤ ‖u‖L∞(Bε )‖∇u‖L2(Bε)‖ut‖L2(Bε ) + ‖g‖L∞(Bε)‖∇u‖L2(Bε)‖ut‖L2(Bε)

+ ‖u‖L∞(Bε)‖∇g‖L2(Bε)‖ut‖L2(Bε) + ‖f‖L2(Bε )‖ut‖L2(Bε)
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≤ 4δ‖ut‖2
L2(Bε) + cδ‖u‖2

L∞(Bε)‖∇u‖2
L2(Bε) + cδ‖g‖2

L∞(Bε)‖∇u‖2
L2(Bε)

+ cδ‖u‖2
L∞(Bε)‖∇g‖2

L2(Bε) + cδA1(t). (5.15)

Integrating (5.15) over [0, 2π ], using the periodicity condition, (1.4), and inequalities
(3.12), (5.14), for sufficiently small ε, we derive

(
1
εβ

–
1
2

)∫ 2π

0

∫

Bε

|ut|2 dx dt

≤ c
∫ 2π

0
‖u‖2

L∞(Bε)‖∇u‖2
L2(Bε) dt

+ c sup
t∈[0,2π ]

∥
∥g(·, t)

∥
∥2

L∞(Bε )

∫ 2π

0
‖∇u‖2

L2(Bε) dt

+ c sup
t∈[0,2π ]

∥
∥∇g(·, t)

∥
∥2

L2(Bε)

∫ 2π

0
‖u‖2

L∞(Bε) dt + c
∫ 2π

0
A1(t) dt

(3.12),(1.4)≤ cε1/2
∫ 2π

0

∥
∥∇2u

∥
∥2

L2(Bε)‖∇u‖2
L2(Bε) dt + c

∫ 2π

0
‖∇u‖2

L2(Bε) dt

+ cε1/2
∫ 2π

0

∥
∥∇2u

∥
∥2

L2(Bε ) dt + c
∫ 2π

0
A1(t) dt

≤ cε1/2 sup
t∈[0,2π ]

‖∇u‖2
L2(Bε)

∫ 2π

0

∥
∥∇2u

∥
∥2

L2(Bε ) dt + c
∫ 2π

0
‖∇u‖2

L2(Bε ) dt

+ cε1/2
∫ 2π

0

∥
∥∇2u

∥
∥2

L2(Bε ) dt + c
∫ 2π

0
A1(t) dt ≤ c

∫ 2π

0
A1(t) dt. (5.16)

Thus,

∫ 2π

0

∫

Bε

|u(N)
t |2 dx dt ≤ cεβ

∫ 2π

0
A1(t) dt.

Estimates (5.3), (5.14), and (5.16) ensure the convergence of the Galerkin approximations
and guarantee the existence of the solution (see [7, 21]). �

Theorem 5.2 For sufficiently small ε, the solution of problem (1.5), n = 3, is unique.

Proof The proof is absolutely identical to that in the two-dimensional case (see Theo-
rem 4.2), we only have to use inequalities (2.3), (5.2) instead of (2.2), (4.2). �

6 Asymptotic expansion
Let us describe the procedure of constructing an asymptotic expansion of the solution to
problem (1.1) in the case β = 2. The case β = 0 is completely similar to the asymptotic
expansion constructed in [17] with only one difference that all functions depending on
time are 2π-periodic (instead of being equal to zero in some neighborhood of t = 0).

First we solve the time-periodic problem on the graph and find the macroscopic pressure
as a periodic in time function linear on every edge with respect to the longitudinal vari-
able x(e)

n . At the nodes it satisfies the Kirchhoff type junction conditions. This problem on
the graph is the time-periodic analogue of the problem considered in [15]. This problem
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defines in every cylinder Π (e)
ε the Poiseuille type velocity depending only on the transver-

sal space variable x(e)′ of the tube. We multiply the Poiseuille type velocity and pressure in
every cylinder by cut-off functions ζ equal to one in the main middle part of the cylinder
and vanishing in some O(ε)-neighborhood of the nodes. This multiplication generates an
important residual in the right-hand side of the Navier–Stokes equations, having a finite
support belonging to a O(ε)-neighborhood of the nodes. Then we construct the boundary
layer correctors, compensating this residual. These correctors are solutions to the Stokes
equations in the dilated bundles of cylinders extended by outlets to infinity. In this context
the asymptotic expansion of the velocity is constructed in the form

v(J)(x, t) =
M∑

i=1

ζ

(
x(ei)

n

3rε

)

ζ

( |ei| – x(ei)
n

3rε

) J∑

j=0

εjV(ei)
j
(
y(ei)′ , t

)

+
N∑

l=1

(

1 – ζ

( |x – Ol|
|e|min

)) J∑

j=–1

εjV[BLOl]
j (y, t), (6.1)

where y = x(e)

ε
, ζ (τ ) is a smooth cut-off function independent of ε with ζ (τ ) = 0 for τ ≤ 1/3

and ζ (τ ) = 1 for τ ≥ 2/3, 0 ≤ ζ (τ ) ≤ 1. Here, |e|min is the minimal length of the edges,
r = 3 max{diamσ1, . . . , diamσM} + 1, V(ei)

j (y(ei)′ , t) are the Poiseuille type velocities and the
boundary layer terms V[BLOl]

j (y, t) exponentially decay as |y| tends to infinity. The asymp-
totic expansion of the pressure has a similar form:

p(J)(x, t) =
M∑

i=1

ζ

(
x(ei)

n

3rε

)

ζ

( |ei| – x(ei)
n

3rε

) J∑

j=0

εj–2(–s(ei)
j (t)x(ei)

n + a(ei)
j (t)

)

+
N∑

l=1

(

1 – ζ

( |x – Ol|
|e|min

)) J∑

j=–1

εj–1P[BLOl]
j (y, t). (6.2)

The asymptotic solution is constructed by induction with respect to j. At the base (ini-
tial) step j = 0, we consider the following problem on the graph: find a function p0 ∈
L2

per(0, 2π ; W 1,2(B)) such that equations

–
∂

∂x(e)
n

(

L(e) ∂p0

∂x(e)
n

(
x(e)

n , t
)
)

= 0, x(e)
n ∈ (0, |e|),∀e = ej, j = 1, . . . , M,

–
∑

e:Ol∈e

(

L(e) ∂p0

∂x(e)
n

)

(0, t) = 0, l = 1, . . . , N1,

–
(

L(e) ∂p0

∂x(e)
n

)

(0, t) = Ψl(t), l = N1 + 1, . . . , N ,

(6.3)

hold. Here, Ψl(t) =
∫
γ l gl · n dS. Operator L(e) relates the pressure slope S and the flux H

in an infinite cylindrical pipe with section σ (e). Namely, consider the following periodic
in time boundary value problem for the heat equation: for given S ∈ L2

per(0, 2π ), find V ∈
L2

per(0, 2π ; W̊ 1,2(σ (e))) with ∂V
∂t ∈ L2

per(0, 2π ; L2(σ (e))) such that

∂V
∂t
(
y(e)′ , t

)
– ν�′

y(e)′V
(
y(e)′ , t

)
= S(t), y(e)′ ∈ σ (e), t > 0,
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V
(
y(e)′ , t

)∣
∣
∂σ (e) = 0, V

(
y(e)′ , t

)
= V
(
y(e)′ , t + 2π

)

and denote

L(e)S(t) =
∫

σ (e)
V
(
y(e)′ , t

)
dy(e)′ = H(t),

L(e) is a bounded linear operator acting from L2
per(0, 2π ) to W 1,2

per(0, 2π ) (see [3, 6]). Denote
MS = V . The existence of a solution to problem (6.3) is proved in [18]. Let us represent
p(e)

0 in the form

p(e)
0
(
x(e)

n , t
)

= –s(e)
0 (t)x(e)

n + a(e)
0 (t).

For every edge ei, define the Poiseuille type velocity V(ei)
0 (y(ei)′ , t) as a vector such that in

the local coordinates its last (i.e., normal) component is Ms(e)
0 , while the tangential com-

ponents are equal to zero.
Next, we find the boundary layer correctors (V[BLOl]

0 , P[BLOl]
0 ) as solutions of the periodic

in time Stokes equations in the dilated domain: union of semi-infinite cylinders having
the common node Ol , and the corresponding ωl . Namely, let Ol be a node which is the
common end of edges ei1 , . . . , eim of the bundle B(l). Define the semi-infinite cylinders

Π+
l,js =

{
y ∈R

n : P (eis )y ∈ σ is × (0, +∞)
}

and the domain Ωl with m outlets to infinity corresponding to the node Ol :

Ωl =

( m⋃

s=1

Π+
l,js

)

∪ ωl.

We introduce the boundary layer pressure of the rank –1 as

P[BLOl]
–1 (y, t) = –

(∑

e:Ol∈e

ζ

(
y(e)

n

3r

)

– 1
)

p0(Ol, t).

(Here, p0 is a continuous function on B without jumps at the nodes, so that p0(Ol, t) is well
defined.) The boundary layer velocity of rank –1 is equal to zero: V[BLOl]

–1 (y, t) = 0.
The boundary layer terms (V[BLOl]

0 , P[BLOl]
0 ) are defined as a solution of the periodic in

time Stokes problem in the unbounded domain Ωl :

∂

∂t
V[BLOl]

0 – ν�yV[BLOl]
0 + ∇yP[BLOl]

0

=
∑

e:Ol∈e

(

ζ

(
y(e)

n

3r

)
∂

∂t
V (e)

0
(
y(e)′ , t

)
+ ν

∂2

∂y(e)2
n

(

ζ

(
y(e)

n

3r

))

V(e)
0
(
y(e)′ , t

)

+ ∇y

(

ζ

(
y(e)

n

3r

)

y(e)
n

)

s(e)
0 (t) – ∇y

(

ζ

(
y(e)

n

3r

))

â(e)
1 (t)

)

, y ∈ Ωl,

divy V[BLOl]
0 = –

∑

e:Ol∈e

∂

∂y(e)
n

ζ

(
y(e)

n

3r

)

V (e)
0,n
(
y(e)′ , t

)
, y ∈ Ωl,
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V[BLOl]
0 |∂Ωl = 0, V[BLOl]

0 (y, t) = V[BLOl]
0 (y, t + 2π ),

where the local coordinates have the origin at Ol and â(e)
1 (t) is an unknown function. This

problem is decomposed to two independent ones: first we solve it without the term con-
taining â(e)

1 (t) in the right-hand side for (V[BLOl]
0 , P̂[BLOl]

0 ):

∂

∂t
V[BLOl]

0 – ν�yV[BLOl]
0 + ∇yP̂[BLOl]

0

=
∑

e:Ol∈e

(

ζ

(
y(e)

n

3r

)
∂

∂t
V (e)

0
(
y(e)′ , t

)
+ ν

∂2

∂y(e)2
n

(

ζ

(
y(e)

n

3r

))

V(e)
0
(
y(e)′ , t

)

+ ∇y

(

ζ

(
y(e)

n

3r

)

y(e)
n

)

s(e)
0 (t)

)

, y ∈ Ωl,

divy V[BLOl]
0 = –

∑

e:Ol∈e

∂

∂y(e)
n

ζ

(
y(e)

n

3r

)

V (e)
0,n
(
y(e)′ , t

)
, y ∈ Ωl,

V[BLOl]
0 |∂Ωl = 0, V[BLOl]

0 (y, t) = V[BLOl]
0 (y, t + 2π )

and find a solution V[BLOl]
0 which tends to zero as |y| → ∞, while P̂[BLOl]

0 at each out-
let Π+

l,j tends to a constant âl,j(t), except for the outlet corresponding to a selected edge
es where it tends to zero (this is possible because the pressure is defined up to an ad-
ditive constant). Then we solve the following problem on the graph: find a function
p(e)

1 ∈ L2
per(0, 2π ; W 1,2(e)) such that equations

–
∂

∂x(e)
n

(

L(e) ∂p(e)
1

∂x(e)
n

(
x(e)

n , t
)
)

= 0, x(e)
n ∈ (0, |e|),∀e = ej, j = 1, . . . , M,

–
∑

e:Ol∈e

(

L(e) ∂p(e)
1

∂x(e)
n

)

(0, t) = 0, l = 1, . . . , N1,

–
(

L(e) ∂p(e)
1

∂x(e)
n

)

(0, t) = 0, l = N1 + 1, . . . , N ,

p(e)
1 (0, t) – p(es)

1 (0, t) = â(e)
1 (t), ∀e ⊂ Bl, e �= es,

hold, where es is a selected edge of the bundle. This problem has a unique (up to an additive
function of t) solution p1 and p(e)

1 (x(e)
n , t) = –s(e)

1 (t)x(e)
n + a(e)

1 (t). Then finally we define

P[BLOl]
0 = P̂[BLOl]

0 –
( ∑

e:Ol∈e,e�=es

ζ

(
y(e)

n

3r

))

â(e)
1 (t) –

(∑

e:Ol∈e

ζ

(
y(e)

n

3r

)

– 1
)

p(es)
1 (0, t).

Analogously, if Ol is a vertex, the end of the edge ei, then we define the domain Ωl ,
corresponding to this vertex, as follows:

Ωl =
{

y ∈R
n : P (ei)y ∈ σ i × (0, +∞)

}∪ ωl,

and the boundary layer problem has the form

∂

∂t
V[BLOl]

0 – ν�yV[BLOl]
0 + ∇yP̂[BLOl]

0
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= ζ

(
y(e)

n

3r

)
∂

∂t
V (e)

0
(
y(e)′ , t

)
+ ν

∂2

∂y(e)2
n

(

ζ

(
y(e)

n

3r

))

V(e)
0
(
y(e)′ , t

)

+ ∇y

(

ζ

(
y(e)

n

3r

)

y(e)
n

)

s(e)
0 (t), y ∈ Ωl,

divy V[BLOl]
0 = –

∂

∂y(e)
n

ζ

(
y(e)

n

3r

)

V (e)
0,n
(
y(e)′ , t

)
, y ∈ Ωl,

V[BLOl]
0 |∂Ωl\γ l = 0, V[BLOl]

0 |γ l = gl(y, t),

V[BLOl]
0 (y, t) = V[BLOl]

0 (y, t + 2π ).

Because of condition (6.3)3, we have

∫

Ωl

∂

∂y(e)
n

ζ

(
y(e)

n

3r

)

V (e)
0,n
(
y(e)′ , t

)
dy +

∫

γ l
gl · n dS = 0.

This compatibility condition ensures the existence of a unique solution (V[BLOl]
0 , P̂[BLOl]

0 )
which exponentially tends to zero at infinity (see [17, 19, 20]).

Suppose that all terms of asymptotic expansion corresponding to the rank less or equal
to j – 1 are known and the pressure on the graph pj is known as well. Describe the passage
from rank j – 1 to the rank j.

Step 1. As pressure on the graph pj is known, define for every edge e functions s(e)
j (t) and

a(e)
j (t) such that

p(e)
j
(
x(e)

n , t
)

= –s(e)
j (t)x(e)

n + a(e)
j (t)

and define the Poiseuille type velocity V(e)
j (y(e)′ , t) as a vector such that in the local coor-

dinates its last (i.e., normal) component is M(s(e)
j ), while the tangential components are

equal to zero.
Step 2. The boundary layer solution is a 2π-periodic in time pair (V[BLOl]

j , P[BLOl]
j ) satis-

fying the problem

∂V[BLOl]
j

∂t
– ν�yV[BLOl]

j + ∇yP[BLOl]
j = f [REGOl]

j
(
y(e)′ , t

)
+ f [BLOl]

j (y, t),

divy V[BLOl]
j = h[REGOl]

j
(
y(e)′ , t

)
, y ∈ Ωl

V[BLOl]
j (y, t)|∂Ωl = 0, V[BLOl]

j (y, t) = V[BLOl]
j (y, t + 2π ),

where

h[REGOl]
j

(
y(e)′ , t

)
= –

∑

e:Ol∈e

∂

∂y(e)
n

ζ

(
y(e)

n

3r

)

V(e)
j,n
(
y(e)′ , t

)
,

f [REGOl]
j

(
y(e)′ , t

)

=
∑

e:Ol∈e

[

ν(V(e)
j
(
y(e)′ , t

) ∂2

∂y(e)2
n

(

ζ

(
y(e)

n

3r

))
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– ζ

(
y(e)

n

3r

) j–1∑

k=0

(
V(e)

k
(
y(e)′ , t

) · ∇y
)×
{

ζ

(
y(e)

n

3r

)

V(e)
j–k–1

(
y(e)′ , t

)
}

+ s(e)
j (t)y(e)

n · ∇y

(

ζ

(
y(e)

n

3r

))

– a(e)
j+1(t) · ∇y

(

ζ

(
y(e)

n

3r

))]

and

f [BLOl]
j (y, t) =

∑

e:Ol∈e

[

–
j–1∑

k=0

(
V[BLOl]

k (y, t) · ∇y
)×
{

ζ

(
y(e)

n

3r

)

V(e)
j–k–1

(
y(e)′ , t

)
}

–
j–1∑

k=0

(
V[BLOl]

k (y, t) · ∇y
)× { V[BLOl]

j–k–1 (y, t)
}

– ζ

(
y(e)

n

3r

) j–1∑

k=0

(
V(e)

k
(
y(e)′ , t

) · ∇y
)× { V[BLOl]

j–k–1 (y, t)
}
]

,

l = 1, . . . , N , j = –1, . . . , J .

This problem is solved in two steps: first we find the couple (V[BLOl]
j , P̂[BLOl]

j ) which is
the solution of the same problem without the last term in the definition of f [REGOl]

j .
It has a unique (up to an additive constant in the pressure) solution V[BLOl]

j (·, t) ∈
W̊ 1,2(Ωl), P̂[BLOl]

j ∈ L2
loc(Ωl) (t is a parameter) if and only if

∫

Ωl

h[REGOl]
j (y, t) dy = 0, l = 1, . . . , N1.

This condition can be written as

∑

e:Ol∈e

∫

σ (e)
V(e)

j
(
y(e)′ , t

) · n dy(e)′ = 0,

i.e.,

∑

e:Ol∈e

L(e)s(e)
j (t) = 0,

or

–
∑

e:Ol∈e

(

L(e) ∂p(e)
j

∂x(e)
n

)

= 0, l = 1, . . . , N1.

It is satisfied because p(e)
j is a solution to the problem on the graph with this junction

condition (by the inductive hypothesis). When V[BLOl] exponentially tends to zero as |y| →
∞, the corresponding pressure function P̂[BLOl]

j stabilizes in outlets at infinity to some
constants â(e)

l,j (t); these constants may be different for different outlets. Since the pressure
function is defined up to an additive constant, we can fix the limit constant equal to zero
for the outlet corresponding the selected edge es. Define ϕ

(e)
l,j+1(t) = â(e)

l,j (t).
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Similarly, in every vertex Ol, l = N1 +1, . . . , N , we get for (V[BLOl]
j , P[BLOl]

j ) the Stokes prob-
lem in Ωl which is the same as in the case of nodes Ol with only one difference: there is
no summing over e : Ol ∈ e in the right-hand sides of the equations.

Step 3. Solve the problem on the graph for the function p(e)
j+1, (j < J):

–
∂

∂x(e)
n

(

L(e) ∂p(e)
j+1

∂x(e)
n

(
x(e)

n , t
)
)

= 0, x(e)
n ∈ (0, |e|),∀e = ej, j = 1, . . . , M,

–
∑

e:Ol∈e

(

L(e) ∂p(e)
j+1

∂x(e)
n

)

(0, t) = 0, l = 1, . . . , N1,

–
(

L(e) ∂p(e)
j+1

∂x(e)
n

)

(0, t) = 0, l = N1 + 1, . . . , N ,

p(e)
j+1(0, t) – p(es)

j+1 (0, t) = ϕ
(e)
l,j+1(t), ∀e ⊂ Bl, e �= es.

The local coordinates x(e) are defined so that all of them have the same origin Ol .
Step 4. Finally we find the pressure P[BLOl]

j (y, t) in the boundary layer problem:

P[BLOl]
0 = P̂[BLOl]

0 –
( ∑

e:Ol∈e,e�=es

ζ

(
y(e)

n

3r

))

â(e)
l,j (t) –

(∑

e:Ol∈e

ζ

(
y(e)

n

3r

)

– 1
)

p(es)
j+1 (0, t).

For j = J the last sum is absent. The last step finalizes the passage from j to j + 1.

7 Residual
Consider the asymptotic expansion (v(J), p(J)) of order J in the case β = 2 (see (6.1), (6.2)).
By construction,

v(J) ∈ L2
per
(
0, 2π ; W 2,2(Bε)

)∩ L∞
per
(
0, 2π ; W 1,2(Bε)

)
,

∂v(J)

∂t
∈ L2

per
(
0, 2π ; W 1,2(Bε)

)∩ L∞
per
(
0, 2π ; L2(Bε)

)
,

∇p(J) ∈ L2
per
(
0, 2π ; L2(Bε)

)
.

(7.1)

Put L(v, p) = 1
ε2 vt – ν�v + (v · ∇)v + ∇p. Let us calculate L(v(J), p(J)). We obtain

L
(
v(J), p(J))

= f (J)(x, t)

=
N∑

l=1

[ 2J∑

j=J+1

εj–2
∑

k,p:k+p=j–1
0≤k,p≤J

∑

e:Ol∈e

{(

V(e)
k ζ

(
y(e)

n

3r

)

· ∇y

)(

V(e)
p ζ

(
y(e)

n

3r

))

+ ζ

(
y(e)

n

3r

)
(
V(e)

k
(
y(e)′ , t

) · ∇y
)
V[BLOl]

p (y, t)

+
(
V[BLOl]

k (y, t) · ∇y
)
(

ζ

(
y(e)

n

3r

)

V(e)
p
(
y(e)′ , t

)
)

+
(
V[BLOl]

k (y, t) · ∇y
)
V[BLOl]

p (y, t)
}

+ εJ–2
∑

e:Ol∈e

a(e)
J+1∇yζ

(
y(e)

n

3r

)]
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–
N∑

l=1

{

L
(

ζ

( |x – Ol|
|e|min

)

V[BLOl]
J (y, t), ζ

( |x – Ol|
|e|min

)

P[BLOl]
J (y, t)

)

χ (x)
}

.

Here, y = x–Ol
ε

, y(e) = x(e)

ε
,χ = χ

supp(1–ζ ( |x–Ol ||e|min
)) is the characteristic function of the set supp(1–

ζ ( |x–Ol|
|e|min

)). From the obtained formulas it follows that

∥
∥f (J)∥∥

L2
per(0,2π ;L2(Bε )) =

∥
∥L
(
v(J), p(J))∥∥

L2
per(0,2π ;L2(Bε )) = O

(
εJ–2),

∥
∥f (J)

t
∥
∥

L2
per(0,2π ;L2(Bε )) = O

(
εJ–2).

(7.2)

Let us calculate the divergence of v(J). We have

divv(J) = –
N∑

l=1

∇ζ

( |x – Ol|
|e|min

)

· V[BLOl]
J (y, t) = h(J)(y, t), (7.3)

where h(J) ∈ L2
per(0, 2π ; W̊ 1,2(Bε)). Since the support of the function ∇ζ ( |x–Ol |

|e|min
) belongs to

the middle third part (between the planes x(e)
n = 1

3 |e|min and x(e)
n = |e| – 1

3 |e|min) of every
cylinder, there hold the relations

∥
∥h(J)∥∥

L2
per(0,2π ;W 1,2(Bε)) = O

(
e–c1/ε),

∥
∥h(J)

t
∥
∥

L2
per(0,2π ;L2(Bε)) = O

(
e–c1/ε). (7.4)

The boundary conditions and the periodicity conditions are satisfied exactly. It is easy
to see that

∫

Bε

h(J)(y, t) dy = 0.

Therefore, by Lemma 3.7 (see [16]), there exists a vector field w(J) ∈ L2
per(0, 2π ; W 2,2(Bε) ∩

W̊ 1,2(Bε)) with w(J)
t ∈ L2

per(0, 2π ; W̊ 1,2(Bε)) ∩ L∞
per(0, 2π ; L2(Bε)) such that div w(J) = –h(J).

Moreover, there hold the estimates

∥
∥w(J)∥∥

L2(0,2π ;W 2,2(Bε )) ≤ ε–3c
∥
∥h(J)∥∥

L2(0,2π ;W 1,2(Bε )), (7.5)
∥
∥w(J)

t
∥
∥

L2(0,2π ;W 1,2(Bε )) ≤ ε–1c
∥
∥h(J)

t
∥
∥

L2(0,2π ;L2(Bε)). (7.6)

Set u(J) = v(J) + w(J). Then div u(J) = 0, u(J) satisfies the periodicity conditions, and because
of (7.2), (7.4) we have

∥
∥f (J)

1
∥
∥

L2(0,2π ;L2(Bε)) = O
(
εJ–2), (7.7)

where f (J)
1 = L(u(J), p(J)).

If β = 0, then the residual has the same form as in [17].

8 Justification of the asymptotics
Consider Navier–Stokes problem (1.1). As an extension of the boundary value g, we take
the asymptotic approximation u(J) constructed in the previous sections and let p(J) be the
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corresponding asymptotic approximation for the pressure p. By construction u(J) satis-
fies conditions (1.4). Represent v, p as the sums v = u + u(J), p = q + p(J). Then u, u(J) ∈
L2

per(0, 2π ; W 2,2(Bε)), ut , u(J)
t ∈ L2

per(0, 2π ; L2(Bε)). The difference u = v – u(J) is divergence
free, satisfies the periodicity condition, the boundary condition u(x, t)|∂Bε = 0, and the in-
tegral identity

∫

Bε

(
1
εβ

ut ·ηηη + ν∇u · ∇ηηη –
((

u + u(J)) · ∇)ηηη · u – (u · ∇)ηηη · u(J)
)

dx

=
∫

Bε

f (J)
1 ·ηηη dx (8.1)

for every ηηη ∈ H(Bε).
The existence of the unique solution u of (8.1) follows from Theorems 4.1–5.2.

Theorem 8.1 Let n = 3. The following estimates:

sup
t∈[0,2π ]

∥
∥u(·, t)

∥
∥2

L2(Bε ) + εβ

∫ 2π

0

∫

Bε

|∇u|2 dx dt ≤ cε2J–2+β , (8.2)

sup
t∈[0,2π ]

∥
∥∇u(·, t)

∥
∥2

L2(Bε ) +
∫ 2π

0

∫

Bε

|ut|2 dx dt

+ εβ

∫ 2π

0

∫

Bε

∣
∣∇2u

∣
∣2 dx dt ≤ cε2J–4+β (8.3)

hold. Moreover, there exists the pressure function q ∈ L2
per(0, 2π ; L2(Bε)) such that

∫
Bε

q(x, t) dx = 0 and

∫

Bε

(
1
εβ

ut ·ηηη + ν∇u · ∇ηηη –
((

u + u(J)) · ∇)ηηη · u – (u · ∇)ηηη · u(J)
)

dx

=
∫

Bε

q divηηη dx +
∫

Bε

f (J)
1 ·ηηη dx, ∀ηηη ∈ W̊ 1,2(Bε). (8.4)

If J ≥ 2, then the following estimate

∫ 2π

0

∫

Bε

|q|2 dx dt ≤ cε2J–4–β (8.5)

holds.

Proof Estimates (8.2) and (8.3) follow from (5.1), (5.2), and (7.7). Let us prove the existence
of the pressure q and estimate (8.5) for it. Consider the linear functional

M(ηηη) =
∫

Bε

(
1
εβ

ut ·ηηη + ν∇u · ∇ηηη –
((

u + u(J)) · ∇)ηηη · u

– (u · ∇)ηηη · u(J)
)

dx –
∫

Bε

f (J)
1 ·ηηη dx (8.6)

defined on functions ηηη ∈ W̊ 1,2(Bε). There holds the estimate

∣
∣M(ηηη)

∣
∣≤ c

(
ε1–β

∥
∥ut(·, t)

∥
∥

L2(Bε ) +
∥
∥∇u(·, t)

∥
∥

L2(Bε) +
∥
∥u(·, t)

∥
∥2

L4(Bε )
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+
∥
∥u(·, t)

∥
∥

L4(Bε)

∥
∥u(J)(·, t)

∥
∥

L4(Bε ) + ε
∥
∥f (J)

1 (·, t)
∥
∥

L2(Bε)

)‖∇ηηη‖L2(Bε)

(2.3)≤ c
(
ε1–β

∥
∥ut(·, t)

∥
∥

L2(Bε ) +
∥
∥∇u(·, t)

∥
∥

L2(Bε)

+ cε
1
2
∥
∥∇u(·, t)

∥
∥

L2(Bε)

∥
∥∇u(J)(·, t)

∥
∥

L2(Bε )

+ cε
1
2
∥
∥∇u(·, t)

∥
∥2

L2(Bε) + ε
∥
∥f (J)

1 (·, t)
∥
∥

L2(Bε )

)‖∇ηηη‖L2(Bε ). (8.7)

Thus, M(ηηη) is a bounded linear functional (for almost all t ∈ [0, 2π ]) defined on ηηη ∈
W̊ 1,2(Bε). Moreover, due to (8.1), M(ηηη) = 0 for ηηη with divηηη = 0. Therefore, there exists a
function q(·, t) ∈ L2(Bε), with

∫
Bε

q(x, t) dx = 0, such that

M(ηηη) =
∫

Bε

q(x, t) divηηη(x) dx ∀ηηη ∈ W̊ 1,2(Bε)

(see [8]). Since
∫

Bε
q(x, t) dx = 0, there exists a function w ∈ W̊ 1,2(Bε) such that div w = q in

Bε and there holds the estimate

∥
∥∇w(·, t)

∥
∥

L2(Bε ) ≤ c
ε

∥
∥q(·, t)

∥
∥

L2(Bε )

with the constant c independent of ε (see [16]). Taking in (8.7) ηηη = w, we get

∥
∥q(·, t)

∥
∥2

L2(Bε)

= M(w)

≤ c
(
ε1–β

∥
∥ut(·, t)

∥
∥

L2(Bε ) +
∥
∥∇u(·, t)

∥
∥

L2(Bε )

+ cε
1
2
∥
∥∇u(·, t)

∥
∥

L2(Bε)

∥
∥∇u(J)(·, t)

∥
∥

L2(Bε )

+ cε
1
2
∥
∥∇u(·, t)

∥
∥2

L2(Bε) + ε
∥
∥f (J)

1 (·, t)
∥
∥

L2(Bε)

)‖∇w‖L2(Bε)

≤ c
ε

(
ε1–β

∥
∥ut(·, t)

∥
∥

L2(Bε) +
∥
∥∇u(·, t)

∥
∥

L2(Bε )

+ cε
1
2
∥
∥∇u(·, t)

∥
∥

L2(Bε)

∥
∥∇u(J)(·, t)

∥
∥

L2(Bε )

+ cε
1
2
∥
∥∇u(·, t)

∥
∥2

L2(Bε) + ε
∥
∥f (J)

1 (·, t)
∥
∥

L2(Bε)

)∥
∥q(·, t)

∥
∥

L2(Bε).

Therefore,

∫ 2π

0

∥
∥q(·, t)

∥
∥2

L2(Bε ) dt

≤ c
ε2

(∫ 2π

0

(
ε2–2β

∥
∥ut(·, t)

∥
∥2

L2(Bε) +
∥
∥∇u(·, t)

∥
∥2

L2(Bε )

)
dt

+ ε sup
t∈[0,2π ]

∥
∥∇u(·, t)

∥
∥2

L2(Bε)

∫ 2π

0

∥
∥∇u(·, t)

∥
∥2

L2(Bε) dt

+ ε sup
t∈[0,2π ]

∥
∥∇u(J)(·, t)

∥
∥2

L2(Bε )

∫ 2π

0

∥
∥∇u(·, t)

∥
∥2

L2(Bε) dt + ε2
∫ 2π

0

∥
∥f (J)

1 (·, t)
∥
∥2

L2(Bε ) dt
)

(8.2),(8.3),(1.4)≤ cε2J–4–β . �
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The results and the proof for the two-dimensional case are absolutely the same. The
following holds.

Theorem 8.2 Let n = 2. The following estimates

sup
t∈[0,2π ]

∥
∥u(·, t)

∥
∥2

L2(Bε ) + εβ

∫ 2π

0

∫

Bε

|∇u|2 dx dt ≤ cε2J–2+β , (8.8)

sup
t∈[0,2π ]

∥
∥∇u(·, t)

∥
∥2

L2(Bε ) +
∫ 2π

0

∫

Bε

|ut|2 dx dt + εβ

∫ 2π

0

∫

Bε

∣
∣∇2u

∣
∣2 dx dt

≤ cε2J–4+β (8.9)

hold. Moreover, there exists the pressure function q ∈ L2
per(0, 2π ; L2(Bε)) satisfying identity

(8.4). If J ≥ 2, then

∫ 2π

0

∫

Bε

|q|2 dx dt ≤ cε2J–4–β . (8.10)

Let n = 3 or n = 2. In the case when the boundary value g is more regular, the obtained
estimates can be improved. Assume that g ∈ C[ J+3

2 ]+1([0, 2π ]; W 3/2,2(σ )). Then we can con-
struct the asymptotic approximation u(J+2) and estimate (8.2) takes the following form:

sup
t∈[0,2π ]

∥
∥v(·, t) – u(J+2)(·, t)

∥
∥

L2(Bε ) + εβ/2∥∥∇v – ∇u(J+2)∥∥
L2(0,2π ;L2(Bε))

≤ cεJ+β/2+1 ≤ cεJ+β/2
√

mes(Bε).

Comparing u(J) and u(J+2), we notice that

sup
t∈[0,2π ]

∥
∥u(J)(·, t) – u(J+2)(·, t)

∥
∥

L2(Bε) + εβ/2∥∥∇u(J) – ∇u(J+2)∥∥
L2(0,2π ;L2(Bε ))

≤ cεJ+β/2
√

mes(Bε).

By the triangle inequality we get

sup
t∈[0,2π ]

∥
∥v(·, t) – u(J)(·, t)

∥
∥

L2(Bε) + εβ/2∥∥∇v – ∇u(J)∥∥
L2(0,2π ;L2(Bε ))

≤ cεJ+β/2
√

mes(Bε).

Analogously, the improvement of estimates (8.5), (8.10) can be obtained.

Theorem 8.3 If g ∈ C[ J+3
2 ]+1([0, 2π ]; W 3/2,2(σ )), then

sup
t∈[0,2π ]

∥
∥v(·, t) – u(J)(·, t)

∥
∥

L2(Bε) + εβ/2∥∥∇v – ∇u(J)∥∥
L2(0,2π ;L2(Bε ))

≤ cεJ+β/2
√

mes(Bε),

sup
t∈[0,2π ]

∥
∥∇v(·, t) – ∇u(J)(·, t)

∥
∥2

L2(Bε) +
∫ 2π

0

∫

Bε

∣
∣vt – u(J)

t
∣
∣2 dx dt
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+ εβ

∫ 2π

0

∫

Bε

∣
∣∇2v – ∇2u(J)∣∣2 dx dt ≤ cε2J–2+βmes(Bε)

and

‖p‖L2(0,2π ;L2(Bε)) ≤ cεJ–2–β/2
√

mes(Bε).

Remark 8.4 The asymptotic expansion (6.1)–(6.2) can be slightly modified without loss of
accuracy. Namely, the argument |x–Ol|

|e|min
in the cut-off function ζ may be replaced by |x–Ol|

δ
,

where δ = CJε| ln ε||e|min and the constant CJ will be chosen below.

Denote J ′ = J + 2. Consider the boundary layer functions V[BLOl ,J ′] and P[BLOl ,J ′]. It follows
that these functions F [BLOl ,J ′] (F stands for V or P) and their derivatives decay exponentially
as the space variable tends to infinity in the outlets. Thus, there exist positive constants
c1, c2 such that, for all t ∈ [0, 2π ] and for sufficiently large R, the following inequality holds:

∥
∥F [BLOl ,J ′](·, t)

∥
∥

W 2,2(ΩR
l ) +

∥
∥
∥
∥
∂F [BLOl ,J ′](·, t)

∂t

∥
∥
∥
∥

W 2,2(ΩR
l )

≤ c1 exp(–c2R),

where ΩR
l = Ωl ∪ {|y| > R}.

Therefore, if Bl
ε = {x ∈ Bε : |x – Ol| ≥ CJε| ln ε||e|min/3}, then making change of the vari-

able y = x–Ol
ε

in the above inequality and taking R = CJ | ln ε||e|min/3, we get

∥
∥F [BLOl ,J ′](·, ·)∥∥L2(0,2π ;W 2,2(Bl

ε)) +
∥
∥
∥
∥
∂F [BLOl ,J ′](·, ·)

∂t

∥
∥
∥
∥

L2(0,2π ;W 2,2(Bl
ε))

≤ c1 exp
{

–c2CJ | ln ε||e|min/3
)

= c1ε
c2CJ |e|min/3.

Choose CJ such that c2CJ |e|min/3 ≥ J ′ = J + 2. Then, for F [BLOl ,J ′] and its derivatives, this
upper bound is equal to c1ε

J+2. So, for the difference

ζ

( |x – Ol|
|e|min

)

F [BLOl ,J ′]
(

x – Ol

ε
, t
)

– ζ

( |x – Ol|
δ

)

F [BLOl ,J ′]
(

x – Ol

ε
, t
)

,

the following estimate holds:

∥
∥
∥
∥ζ

( |x – Ol|
|e|min

)

F [BLOl ,J ′](·, ·) – ζ

( |x – Ol|
δ

)

F [BLOl ,J ′](·, ·)
∥
∥
∥
∥

L2(0,2π ;W 2,2(D))

≤ c1ε
J+2,

where D = supp{ζ ( |x–Ol|
|e|min

) – ζ ( |x–Ol |
δ

)}. Notice that in D we have |x–Ol|
δ

≥ 1
3 for suf-

ficiently small ε. Because of this estimate for the approximation u(J+2) the residual
‖f (J+2)

1 ‖L2(0,2π ;L2(Bε)) has the order O(εJ ). So, the difference u(J+2) – v is of order
O(εJ√mes(Bε)) in the norm of Theorem 8.3. In this case we have assumed that g ∈
C[ J+3

2 ]+1(0, 2π ; W 3/2,2(σ )).
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Figure 2 Truncation of the cylinder Π (e)
ε

Figure 3 Connected component Bε,δ
i

9 Method of asymptotic partial decomposition of the domain
The obtained asymptotic expansion of the solution to the time periodic non-steady
Navier–Stokes problem can be applied to justify the method of asymptotic partial decom-
position of the domain (MAPDD) proposed for the steady case in [13, 14].

Let us describe the algorithm of the MAPDD for the non-steady Navier–Stokes problem
set in a tube structure Bε . Let δ be a small positive number much greater than ε. For any
edge e = OiOj of the graph, introduce two hyperplanes orthogonal to this edge and crossing
it at the distance δ from its ends.

Denote the cross-section of the cylinders Π (e)
ε by these two hyperplanes respectively: by

Si,j (the cross-section at the distance δ from Oi) and Sj,i (the cross-section at the distance
δ from Oj), and denote the part of the cylinder Π (e)

ε between these two cross-sections by
Bdec,ε

i,j (see Fig. 2). Let Bε,δ
i be the connected, truncated by the cross-sections Si,j, part of Bε

which contains the vertex or the node Oi (see Fig. 3).
Introduce the space H1

div=0(Bε) of all divergence-free vector-valued functions from the
space W 1,2(Bε) vanishing for x ∈ ∂Bε \ (

⋃N
j=N1+1 γ

j
ε).

Define the subspace H1
div=0(Bε , δ) of H1

div=0(Bε) such that elements of every truncated
cylinder Bdec,ε

i,j (vector-valued functions) coincide with the Womersley type flow. Here
Womersley type flow is a vector-valued function uW such that, in local coordinates x(e)

associated with the edge e, its “last” (longitudinal) component un,W (x(e)/ε) is independent
of x(e)

n , i.e., un,W = un,W (x(e)′/ε), while all transversal components of the velocity are equal
to zero. We will consider as well the subspace H1

0,div=0(Bε , δ) of the space H1
div=0(Bε , δ) such

that its elements vanish on the whole boundary ∂Bε and the subspace L2(Bε , δ) of the space
L2(Bε) such that its elements (vector-valued functions) coincide with the Womersley type
flows on every truncated cylinder Bdec,ε

i,j .
The method of asymptotic partial decomposition (MAPDD) replaces problem (1.1) by

its projection on H1
div=0(Bε , δ):

Find ûε,δ from L2
per(0, 2π ; H1

div=0(Bε , δ)) such that ûε,δ – ĝ ∈ L2
per(0, 2π ; H1

0,div=0(Bε , δ)),
(ûε,δ – ĝ)t ∈ L2

per(0, 2π ; H1
0,div=0(Bε , δ)), and for any test function ηηη ∈
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H1
0,div=0(Bε , δ), the following integral identity holds:

∫

Bε

(
1
εβ

(ûε,δ)t ·ηηη + ν∇ûε,δ · ∇ηηη –
(
(ûε,δ + ĝ) · ∇)ηηη · ûε,δ – (ûε,δ · ∇)ηηη · ĝ

)

dx = 0. (9.1)

Here, ĝ is an extension of the boundary function g constructed above as u(J+2) with the
modification described in Remark 8.4, i.e., δ = CJε| ln ε||e|min.

Theorem 9.1 Let g ∈ C[ J+3
2 ]+1(0, 2π ; W 3/2,2(σ )). Then there exists a unique solution ûε,δ of

the partially decomposed problem (9.1) and

sup
t∈[0,2π ]

∥
∥v(·, t) – ûε,δ(·, t)

∥
∥

L2(Bε) + εβ/2∥∥∇(v – ûε,δ)
∥
∥

L2
per(0,2π ;L2(Bε))

≤ cεJ+β/2
√

mes(Bε).

The proof of this theorem repeats the beginning of the proof of Theorem 4.1 (derivation
of estimates (4.6) and (4.8)), where the Galerkin approximations are constructed in the
space H1

0,div=0(Bε , δ) instead of H1
div=0(Bε).
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