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Abstract

Gap junctions are key mediators of intercellular communication in cardiac tissue, and their

function is vital to sustaining normal cardiac electrical activity. Conduction through gap junc-

tions strongly depends on the hemichannel arrangement and transjunctional voltage, ren-

dering the intercellular conductance highly non-Ohmic, particularly under steady-state

regimes of conduction. Despite this marked non-linear behavior, current tissue-level models

of cardiac conduction are rooted in the assumption that gap-junctions conductance is con-

stant (Ohmic), which results in inaccurate predictions of electrical propagation, particularly

in the low junctional-coupling regime observed under pathological conditions. In this work,

we present a novel non-Ohmic homogenization model (NOHM) of cardiac conduction that is

suitable to tissue-scale simulations. Using non-linear homogenization theory, we develop a

conductivity model that seamlessly upscales the voltage-dependent conductance of gap

junctions, without the need of explicitly modeling gap junctions. The NOHM model allows for

the simulation of electrical propagation in tissue-level cardiac domains that accurately

resemble that of cell-based microscopic models for a wide range of junctional coupling sce-

narios, recovering key conduction features at a fraction of the computational complexity. A

unique feature of the NOHM model is the possibility of upscaling the response of non-sym-

metric gap-junction conductance distributions, which result in conduction velocities that

strongly depend on the direction of propagation, thus allowing to model the normal and retro-

grade conduction observed in certain regions of the heart. We envision that the NOHM

model will enable organ-level simulations that are informed by sub- and inter-cellular

mechanisms, delivering an accurate and predictive in-silico tool for understanding the

heart function. Codes are available for download at https://github.com/dehurtado/

NonOhmicConduction.
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Author summary

The heart relies on the propagation of electrical impulses that are mediated gap junctions,

whose conduction properties vary depending on the transjunctional voltage. Despite this

non-linear feature, current mathematical models assume that cardiac tissue behaves like

an Ohmic (linear) material, thus delivering inaccurate results when simulated in a com-

puter. Here we present a novel mathematical multiscale model that explicitly includes the

non-Ohmic response of gap junctions in its predictions. Our results show that the pro-

posed model recovers important conduction features modulated by gap junctions at a

fraction of the computational complexity. This contribution represents an important step

towards constructing computer models of a whole heart that can predict organ-level

behavior in reasonable computing times.

Introduction

The conduction of electrical waves in cardiac tissue is key to human life, as the synchronized

contraction of the cardiac muscle is controlled by electrical impulses that travel in a coordi-

nated manner throughout the heart chambers. Under pathological conditions cardiac con-

duction can be severely reduced, potentially leading to reentrant arrhythmias and ultimately

death if normal propagation is not restored properly [1]. At a subcellular level, electrical com-

munication in cardiac tissue occurs by means of a rapid flow of ions moving through the cyto-

plasm of cardiac cells, and a slower intercellular flow mediated by gap junctions embedded in

the intercalated discs. Gap junctions are intercellular channels composed by hemichannels of

specialized proteins, known as connexins, that control the passage of ions between neighbor-

ing cells [2]. The regulation of ionic flow through gap junctions has been established for a

variety of connexin types and hexameric arrangements, which under dynamic conditions

result in a markedly non-linear relation between the electric conductance and the transjunc-

tional voltage [3], revealing a non-ohmic electrical behavior. Further, it has been shown that

ionic flow through cell junctions can take up to 50% of the total conduction time in cultured

strands of myocytes with normal coupling levels [4], and that conduction velocity (CV) is

largely controlled by the level of gap-junctional communication [1, 5], which highlights the

key physiological relevance of gap-junction conductivity and coupling in tissue electrical

conduction.

Cardiac modeling and simulation has strongly motivated the development of tissue-level

mathematical models of electrophysiology, as they have the ability to connect subcellular

mechanisms to whole-organ behavior [6]. To date, the vast majority of continuum models

assume a linear conduction model of spatial communication, based on the assumption that

electrical current in cardiac tissue follows Ohm’s law, i.e, that current is linearly proportional

to gradients in the intra-cellular potential [7, 8]. From a mathematical perspective, the assump-

tion that conduction in cardiac tissue follows Ohm’s law is conveniently represented by a

linear diffusion term, where gradients are modulated by a conductivity tensor that is indepen-

dent of the local electrical activity. The most complete electrophysiology formulation is given

by the bidomain model [9] where both the intra-cellular and extra-cellular potential fields are

considered. Further, by assuming that the intra- and extra-cellular conductivity tensors have

the same anisotropy ratio, the bidomain equations can be conveniently represented by a non-

linear reaction-diffusion partial differential equation known as the monodomain (cable)

model [10].
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Using two-scale asymptotic homogenization techniques, analytic expressions have been

obtained for the effective conductivity tensor, which is then used to model the electrical cur-

rent in an average macroscopic sense [11–13]. To this end, periodicity at the microstructural

level of cardiac tissue is assumed, and a representative tissue unit is partitioned in regions of

high and low conductivity that represent the cytoplasm and intercalated discs with gap junc-

tions, respectively. While this approach allows for the explicit consideration of regions with

decreased conductivity, e.g. membranes where flow is mediated by gap junctions, Ohm’s law is

still assumed to hold throughout the microstructural domain [14]. As a result, the non-Ohmic

behavior of gap junctions and their impact on tissue-level conduction continues to be

neglected [15]. In particular, it has been shown that continuum models that consider effective

conductivity tensors described above fail to capture the slow conduction of electrical impulses

in cases of low gap-junctional coupling [13, 16], limiting their applicability to the simulation of

pathological conditions in excitable tissue. Non-linear diffusion models that replace the con-

duction term in the monodomain equation either by a fractional laplacian [17, 18] or a

porous-medium-like diffusive term [8, 19] have been recently proposed. While these formula-

tions have shown to modulate the shape of propagating waves and other restitution properties,

they remain largely phenomenological, and have the disadvantage of not being able to upscale

microscopic physical information, neither have been assessed for cases of low junctional

coupling.

In this work, we present a multiscale continuum model of cardiac tissue conduction that

accounts for the nonlinear communication between adjacent cells. We argue that the explicit

consideration of the non-ohmic behavior of gap junctions can be seamlessly embedded into

continuum tissue-scale models of electrophysiology using an asymptotic homogenization

approach, which delivers nonlinear continuum equations for characterizing the electrical con-

duction in excitable media.

Methods

Multiscale tissue model for non-ohmic conduction

In the following we consider the microscopic problem of non-linear conduction in a strand of

cardiac cells with domain O = (0, L), see Fig 1. We let ε be the cell length, δε be the length of

gap junctions, and assume that δε� ε� L. Further, we let uε,δ be the microscopic transmem-

brane potential field, and jε,δ be the microscopic current density. The time-independent prob-

lem of conduction resulting from current balance reads

�
@

@x
jε;dðuε;dÞ ¼ 0; x 2 O; ð1Þ

and we note that in writing (1) it has been assumed that the extra-cellular potential is

constant along the cardiac strand. We denote the space occupied by the cytoplasm by

Bcytε;d ¼ [1k¼� 1 kþ d

2

� �
ε; kþ 1 � d

2

� �
ε

� �
, and the space occupied by gap junctions by

Bgapε;d ¼ [1k¼� 1 k � d

2

� �
ε; kþ d

2

� �
ε

� �
. Further, we assume that current is governed by Ohm’s law

inside the cytoplasm with conductivity σc, but is non-linearly regulated at the gap junctions,

which we express by the following microscopic constitutive law

jε;dðuε;dÞ ¼ � s x; fuε;dg
� � @uε;d

@x
ð2Þ
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where the conductivity is described by the following relation

s x; uð Þ ¼

sc; x 2 Bcytε;d ;

dsgð1þ maðS ½u�j;εÞÞ; x 2 Bgapε;d ;

8
>>><

>>>:

ð3Þ

where δσg is a representative conductivity for the intercalated disc with gap junctions, μ is a

positive constant, and a is a smooth bounded function that depends on the transjunctional

voltage jump defined as

½u�j;ε ¼ uððkþ
d

2
ÞεÞ � uððk �

d

2
Þ; εÞ ð4Þ

where S is a scaling parameter (S� ε−1). From (3) and the relationship between electrical con-

ductance and conductivity for a cylindrical domain we write

dsgð1þ maðS ½u�j;εÞÞ ¼ b
gjodε
Acell

gjðS ½u�j;εÞ; ð5Þ

where gjo is a representative conductance for the intercalated disc with gap junctions, Acell the

cross-sectional area of the cell, and the parameter β represents the level of gap-junctional cou-

pling (GJc), with β 2 [0, 1]. From (5), we set dsg ¼
gjodε
Acell

. As a result, we get

maðS ½u�j;εÞ ¼ bgjðS½u�j;εÞ � 1: ð6Þ

Using asymptotic analysis (see S1 Appendix for technical details and proofs) we show that

the macroscopic (tissue-level) current conservation for the steady-state problem is governed

Fig 1. Schematic of the multiscale model of cardiac conduction. Ionic currents are linearly proportional to gradients

of transmembrane potential inside the cytoplasm, but are non-linearly mediated by gap junctions located at the

intercalated discs.

https://doi.org/10.1371/journal.pcbi.1007232.g001
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by the homogenized equation

@

@x
ðŝð

@v
dx
Þ
@v
@x
Þ ¼ 0; x 2 O; ð7Þ

where v is the macroscopic transmembrane potential, and the effective conductivity modulat-

ing conduction at the macroscopic scale takes the form

ŝðyÞ ¼ sc
1þ maðSε½N�ðyÞÞ

sc
sg
þ ð1 � dÞð1þ maðSε½N�ðyÞÞÞ

( )

ð8Þ

where

½N�ðyÞ ¼ � ð1 � dÞ
ŝðyÞ
sc
� 1

� �

y; ð9Þ

with [N] = [u]j,ε/ε, and we note that for a given transmembrane potential gradient y, the effec-

tive conductivity ŝðyÞ is implicitly solved from (8) and (9). Further, we show that under rea-

sonable assumptions, the following error estimate for the macroscopic transmembrane

potential holds

kuε;d� vkL1ðð0;1ÞÞ ¼ Oðεþ d
2
Þ: ð10Þ

We now focus on the time-dependent macroscopic model of cardiac electrophysiology for the

time interval (0, T). The homogenized electrical flux described in the right-hand side of (7) is

then balanced by the transmembrane current, leading to the non-Ohmic cable equation

@

@x
ðŝð

@v
dx
Þ
@v
@x
Þ ¼ Am Cm

@v
@t
þ Iion

� �

in O� ð0;TÞ; ð11Þ

where Iion : R� RM ! R represents the transmembrane ionic current, Cm is the membrane

capacity and Am is the surface-to-volume ratio, and we note that the right-hand side of (11)

accounts for the amount of charge that leaves the intra-cellular domain and enters the extra-

cellular domain. Further, we will assume that the transmembrane ionic current Iion is governed

by v and by gating variables w : O� ð0;TÞ ! RM that modulate the conductance of ion chan-

nels, pumps and exchangers, i.e., Iion = Iion(v, w), where the exact functional form of Iion will

depend on the choice of ionic model. The evolution of gating variables is determined by

kinetic equations of the form

@w
@t
¼ gðv;wÞ; ð12Þ

where the form of g : R� RM ! RM will also depend on chosen the ionic model. The Eqs

(11) and (12) are supplemented with initial and boundary conditions for the transmembrane

potential and gating variables to form an initial boundary value problem, which we refer to as

the Non-Ohmic Homogenization Model (NOHM). Boundary conditions at the left end pre-

scribed a pulsatile electrical current, while the right end was prescribed with zero current. To

study reverse conduction, the boundary conditions where flipped. The numerical solution of

the coupled system of the non-Ohmic cable Eq (11) and kinetic Eq (12) was performed using a

standard Galerkin finite-element scheme [20] for the spatial discretization and a Forward

Euler scheme for the time discretization implemented in FEniCS [21], see S1 Appendix. Codes

are available for download at https://github.com/dehurtado/NonOhmicConduction.
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For the sake of comparison, we also consider the case of uniform (Ohmic) gap junction

conductivity, i.e.,

s x; uð Þ ¼

sc; x 2 Bcytε;d ;

bdsg ; x 2 Bgapε;d :

8
>>><

>>>:

ð13Þ

Following standard asymptotic-analysis arguments for linear systems [11], one can show that

for the case of the piecewise uniform conductivity tensor defined in (13) the effective conduc-

tivity tensor takes the form

ŝ ¼
1

sc
þ

1

bsg

( )� 1

: ð14Þ

We remark that in this case the macroscopic conductivity is not dependent on the voltage

gradient. Further, we note that (14) is also obtained as a particular case of the NOHM when

the microscopic conductivity (13) is assumed, see S1 Appendix. We refer to the system of Eqs

(11) and (12) that considers the uniform effective conductivity tensor (14) as the Linear

Homogenization Model (LHM).

Cellular models of cardiac propagation

To validate the proposed NOHM model we consider the cellular model described in [7, 22], in

which a strand of cardiac cells electrically connected by gap junctions are represented using a

circuit network, see Fig 2. In the following, we summarize the main aspects of cellular model-

ing. For the cellular models (CM), a chain of cells is discretized at subcellular level in ndiv = 10

subregions. A generic node i is connected to its neighbor i + 1 through a resistor Ri,i+1. If i
and i + 1 belongs to the same cell Ri,i+1 = Rmyo where Rmyo is the myoplasmic resistance. Now,

if Ri,i+1 connects nodes from different cells (i.e. a gap junction) its value will be given by Ri,i+1 =

Rj(Vj) where Rj(Vj) is the resistance of the gap junction, which depends non-linearly on the

transjunctional voltage Vj. For computing the resistance Ri,i+1 we use

Vj ¼ viþ1þðndiv� 1Þ � vi� ðndiv� 1Þ

where we consider how the experimental relationship Vj versus gj is obtained through the dual

voltage clamp method [23].

Due to the Kirchhoff’s law, the current balance yields to the following finite-difference

equation

si;iþ1
viþ1 � vi

Dx2
þ si� 1;i vi� 1 � vi

Dx2
¼ Am Cm

@vi

@t
þ Iionðv

i;wiÞ

� �

; ð15Þ

Fig 2. Circuit representation for the cellular models.

https://doi.org/10.1371/journal.pcbi.1007232.g002
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where Am is the surface to volume ratio and Cm the membrane capacitance. The ionic current

Iion depends on the transmembrane potential in the node vi and on the gating variables wi.
Local conductivity can be expressed in terms of the resistance as

si;iþ1 ¼
Dx

Ri;iþ1Acell

with Δx = lcell/ndiv. Then

si;iþ1 ¼

sc if i; iþ 1 are in the same cell

dsgbgjðVjÞ if i; iþ 1 are in different cells

8
<

:
ð16Þ

and we call the model given by Eqs (15) and (16) CM voltage-gated. If the gap junctions are

assumed to be voltage insensitive, then the conductivity reads

si;iþ1 ¼

sc if i; iþ 1 are in the same cell;

bdsg if i; iþ 1 are in different cells:

8
<

:
ð17Þ

We refer to the model given by Eqs (15) and (17) as the CM clamped, and we note that it serves

as a cellular counterpart to the LHM.

Conduction experiments in a cardiac strand

In this work, we model the propagation of electrical impulses in a strand with a length L = 6.4

mm. Cells were assumed to be cylinders with radius rcell = 11 μm, length ε = 100 μm, and inter-

calated-disc length ratio of δ = 10−4. Based on these dimensions, Acell = 380 μm2. For the gap-

junction conductance model, we set S = 2, and assumed gjo = 2.534 μm [24], which results in a

representative conductivity of δσg = 6.67 � 10−5 Sm−1. The cytoplasmic conductivity and the

membrane capacitance are taken to be σc = 0.667 Sm−1 and Cm = 1 μF/cm2, respectively [24].

For the transmembrane ionic current, we considered the Luo-Rudy I model [25]. The surface

to volume ratio is given by Am = 2RCG/rcell, where RCG = 2 is the ratio between capacitive and

geometrical areas and [24, 26]. Given the time-dependent behavior of the conductance of GJs

[5, 27], in our experiments, we consider two limit cases for the temporal state of gap junctions:

the instantaneous conductance case, and the steady-state conductance case. For the instanta-

neous conductance case, we adopt the model of Vogel and Weingart [28] which for the nor-

malized conductance takes the form

gj;instðVjÞ ¼

G�j

e

� Vj

V�H 1þe
Vj=V

�
H

� �

þe

Vj

V�H 1þe
� Vj=V

�
H

� �
Vj < 0;

Gþj

e

� Vj

VþH ð1þe
Vj=V

þ
H Þ
þe

Vj

VþH ð1þe
� Vj=V

þ
H Þ

Vj > 0;

8
>>>>>>>><

>>>>>>>>:

ð18Þ

where Vj is the transjunctional voltage, and Gþj ;G
�
j ;V

þ
H ;V

�
H are parameters. For the steady-

state case, we assume that the normalized gap-junction conductance follows a Boltzmann

Non-ohmic modeling of tissue cardiac conduction
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distribution [29] that reads

gj;ssðVjÞ ¼

1� gþj;min

pþe
ðAþðVj � V

þ
j0
ÞÞ
þ gþj;min Vj < d;

1� g�j;min

pþe
ðA� ðVj � V

�
j0 ÞÞ
þ g �j;min Vj > d;

8
>>><

>>>:

ð19Þ

where p; d; gþj;min; g
�
j;min;A

þ;A� ;Vþj0 ;V
�
j0 are parameters that depend on the type of channel.

To assess the performance of the NOHM model under different conductance distributions,

we considered three types of gap-junction channels: the homomeric-homotypic channels

Cx43-Cx43 and Cx45-Cx45, and the homomeric-heterotypic channel Cx43-Cx45. The nor-

malized conductance distributions for the instantaneous and steady-state cases of these chan-

nels are depicted in Fig 3. The parameters for the instantaneous and steady-state conductance

models have been reported in the literature [3], and are summarized in Table 1. The parameter

A is computed from z as A = z/kT, where kT = 25.7 meV is the product of the Boltzmann con-

stant k with the temperature T. The effect of gap-junctional coupling on conduction is studied

by modulating the maximal gap-junction conductance from β = 100% to β = 0.5%. The cardiac

strand is excited on one end with an applied transmembrane current using a pacing cycle

length of 800 ms and whose amplitudes varied between 10 μA/mm2 to 35 μA/mm2, which elic-

its a propagating pulse from left to right. Retrograde-conduction effects are studied by propa-

gating pulses from right to left. Pacing rate dependence was studied by constructing CV

restitution curves, using the pacing protocol reported by Gizzi and co-workers [30].

Fig 3. Normalized conductance of gap junctions as a function of the transjunctional voltage. (left) Cx43-Cx43 channel, (center) Cx45-Cx45

channel, and (right) Cx43-Cx45 channel. Data extracted from [3]. The (�) and (•) data corresponds to instantaneous and steady state conductance,

respectively.

https://doi.org/10.1371/journal.pcbi.1007232.g003

Table 1. Parameters for the conductance distribution of gap junctions, taken from [3]. For Vj0, gj,min, z the negative/positive values are presented. The Cx43-Cx45 case

considered a modified Boltzmann distribution to improve the fitness to data.

Instantaneous model Steady-state model

Channel Gj VH [mV] Vj0 [mV] gj,min z p d
Cx43-Cx43 1.99/2.01 -175.8/318.4 -60.8/62.9 0.26/0.25 -3.4/2.9 1 0

Cx45-Cx45 1.99/2.02 -112.7/135.0 -38.9/38.5 0.16/0.17 -2.5/2.7 1 0

Cx43-Cx45 1.93/2.0 -130.0/404.0 -15.9/149.3 0.05/0.05 -2.1/0.7 0.73 25

https://doi.org/10.1371/journal.pcbi.1007232.t001
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Results

The numerical solution of CM clamped, and CM voltage-gated resulted in dynamical systems

with 642 degrees of freedom, using cell subdomains with a length of 10 μm. In contrast, the

continuum LHM and the NOHM employed only 65 degrees of freedom, equivalent to a spatial

discretization of 100 μm. Fig 4 shows the propagating wavefronts as predicted by the four con-

duction models studied in this work for the instantaneous conduction and steady-state

Fig 4. Impulse conduction features from computational simulations. The propagating wavefront predicted by the CM clamped, CM voltage-

gated, LHM and NOHM are compared for three levels of transjunctional coupling: (top row) high coupling β = 100%, (middle row) low coupling

β = 10%, and (bottom row) very low couping β = 1%. In general, the LHM and NOHM drift ahead of their CM counterparts as the GJc is

decreased in the case of instantaneous conductance. In contrast, for the case of steady-state conductance the NOHM accurately predicts the CM

voltage-gated even for very low coupling levels, whereas the LHM substantially drifts ahead from the CM clamped wavefront.

https://doi.org/10.1371/journal.pcbi.1007232.g004
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conduction cases of the Cx43-Cx43 channel. For high GJc, β = 100%, we observe that all four

models predicted a very similar wavefront both for the instantaneous and for the steady-state

regimes of conductance (Fig 4, top row). When GJc was reduced to low coupling levels, β =

10%, continuum models (LHM and NOHM) resulted in propagating waves that drifted ahead

of their CM counterparts (CM clamped and CM voltage-gated) in the case of instantaneous

conductance. Interestingly, for the case of steady-state conductance, the NOHM accurately

predicted the response of the CM voltage-gated, whereas the LHM drifted ahead of the CM

clamped (Fig 4, middle row). Remarkably, for very low GJc, β = 1%, the NOHM still delivered

an accurate wavefront when compared to the CM voltage-gated in the steady-state conduc-

tance case, whereas considerable drift occurred in the instantaneous conductance case both for

the LHM and the NOHM (Fig 4, bottom row).

Fig 5 shows the CV as a function of the GJc, measured in terms of β, for the instantaneous

and steady-state conduction cases for homomeric-homotypic channels Cx43-Cx43 and

Cx45-Cx45. Under instantaneous conductance (Fig 5, left column) all four models converged

to CV values between 64–65 cm/s for the high-coupling case β = 100%. Cellular models deliv-

ered, in general, a very similar behavior. As GJc was reduced, both LHM and NOHM overesti-

mated the CV when compared to CM clamped and CM voltage-gated, respectively. For the

case of steady-state conductance (Fig 5, right column), the CM clamped consistently delivered

higher values of CV than the CM voltage-gated. Further, the LHM continued to overestimate

the CV when compared to the CM clamped as GJc was reduced. Remarkably, the NOHM

closely followed the behavior of the CM voltage-clamped, even for very low GJc. Cellular mod-

els predicted conduction block for β� 0.5% in all cases. Conduction block was captured by

the NOHM for the steady-state conductance regime, but not for the instantaneous case. LHM

did not predict the conduction block for the range of β analyzed. Retrograde wave propagation

experiments for Cx43-Cx43 and Cx45-Cx45 channels (not shown in the figure) resulted in CV

curves that did not differ from those obtained in normal wave propagation.

Fig 6 shows the dependence of CV on the GJc for the Cx43-Cx45 channel under normal

wave propagation (left-to-right direction) and retrograde wave propagation (right-to-left

direction). For the instantaneous conductance case (Fig 6, left column), the CM voltage-gated

predicted CVs that were slightly higher in retrograde propagation than in normal propagation.

Continuum models overestimated the CV when compared to their cellular counterparts.

While the LHM predictions were insensitive to the direction of propagation, the NOHM pre-

dicted higher CVs for the case of retrograde wave propagation. For the steady-state conduc-

tance case (Fig 6, right column), the CM voltage-gated resulted in CVs that were considerably

higher in retrograde propagation than in normal propagation, a feature not captured by the

CM clamped, which was insensitive to the direction of propagation. The NOHM was able to

capture such large differences in CV as well as the conduction block at β = 10%, whereas the

LHM only delivered reasonable predictions for the retrograde propagation, but considerably

overestimated CVs in the normal propagation case, and did not reach conduction block for

any of the β values analyzed.

The dependence of CV on the pacing rate and propagation orientation in voltage-depen-

dent models of conduction was studied by constructing CV restitution curves for the case of

channel Cx43-Cx45, see Fig 7. In all cases, the CM voltage-gate under retrograde propagation

resulted in higher CVs than in normal propagation. The NOHM captured this orientation

dependence and delivered CV curves with a similar shape but with higher values for the cases

of low and very low GJc. For the case of steady-state conductance, the NOHM also captured

the conduction block predicted by the CM voltage-gate for low and very low GJc. The cycle

length in all simulations was reduced until loss of propagation, which occurred in the range of

310-330 ms.
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The influence of the spatial discretization on the CV is reported in Fig 8. Mesh sizes, inter-

preted as cell segments in cellular modes, ranging from Δx = 0.01 mm to Δx = 0.2 mm were

considered for both the instantaneous and steady-state conduction cases of a Cx43-Cx43

channel under high GJc. In both cases, a strong dependence of the CV on the mesh size was

observed for the CM clamped and CM voltage-clamped, with higher CVs for larger mesh

Fig 5. Conduction velocity studies on a cardiac strand and the effect of gap-junction coupling for symmetric conductance distributions:

(top row) Cx43-Cx43 channel, (bottom row) Cx45-Cx45 channel, (left column) instantaneous conductance, (right column) steady-state

conductance. Black and red colors are used to indicate voltage-independent and voltage-dependent gap-junction conduction, respectively.

Voltage-dependent models delivered lower conduction velocities than voltage-independent models of gap-junction conductance, particularly

for the steady-state regime.

https://doi.org/10.1371/journal.pcbi.1007232.g005
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sizes. An attenuated yet considerable mesh dependence was also observed for the LHM and

NOHM.

Discussion

In this article, we study the gap-junction-mediated electrical conduction in excitable cardiac

tissue through a novel non-ohmic multiscale model. A unique feature of the proposed model

is that tissue-level spatial conduction is fully informed by sub-cellular communication mecha-

nisms, specifically by cytoplasmic and gap-junctional conductances. While the upscaling of

conduction properties in excitable media has been the subject of some studies in the past using

a linear homogenization theory approach [11, 12], our work offers a rigorous mathematical

framework that delivers an effective non-linear model of conduction able to represent, at the

tissue level, the non-Ohmic conduction that takes place at the sub-cellular level. Although our

focus has been on understanding gap-mediated communication between cardiac myocytes,

the present model of conduction can be extended to study the electrical propagation phenom-

ena in other areas of biology, such as the neurosciences, where electrical synapsis occurring in

the brain is highly regulated by neural gap junctions [31].

To validate the predictions and understand the unique features of the NOHM, we consid-

ered cellular models with and without voltage dependence at the gap junctions (CM clamped

and CM voltage-gated) as well as a linear continuum model of conduction (LHM). The

Fig 6. Conduction velocity studies on a cardiac strand and the effect of gap-junction coupling for the Cx43-Cx45 channel with non-

symmetric conductance distribution: (left) instantaneous conductance case, (right) steady-state conductance case. Black color denotes

voltage-independent models, red and blue colors denote voltage-dependent models. Predictions from gap-junction voltage-independent

models CM clamped, and LHM were insensitive to the direction of wave propagation, whereas voltage-dependent models resulted in CVs that

strongly depended on the direction of wave propagation for the steady-state conductance case.

https://doi.org/10.1371/journal.pcbi.1007232.g006
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behavior of all four models of conduction was studied in the propagation of waves in a cardiac

strand [24] with decreasing levels of GJc, see Fig 4. Features that arise in propagating action

potentials under decreasing levels of coupling such as a steeper upstroke and a notch in the

upstroke [5] are predicted both by the LHM and NOHM. Remarkably, this prediction is

achieved at a fraction of the computational complexity involved in cellular models, as the num-

ber of degrees of freedom in continuum models are one order of magnitude smaller. An alter-

native approach is the use of hybrid multiscale models [32], which adaptively partition the

domain to solve macroscopic cable equations in regions with low potential gradients and

impose microscopic equations of conduction in regions of high potential gradients. While

hybrid models can reduce the computational complexity of simulations, they involve a signifi-

cant increase in the number of degrees of freedom when compared to standard homogenized

models. We believe that the NOHM model offers the advantage of delivering accurate predic-

tions while maintaining the computational cost similar to that of standard macroscopic con-

tinuum models. The balance between predictive power and computational cost remains one of

the main hurdles in the development of patient-specific whole-heart simulations [33], which

highlights the importance of developing accurate yet efficient tissue-level models.

Fig 7. Conduction-velocity restitution curves for the homomeric-heterotypic channel Cx43-Cx45 for high, low and very low

GJc: (left) instantaneous conductance case, (right) steady-state conductance case. CL = cycle length.

https://doi.org/10.1371/journal.pcbi.1007232.g007
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The accuracy of the NOHM and LHM in predicting their cellular counterparts CM

clamped and CM voltage-gated was assessed by studying the CV for a wide range of gap-junc-

tional coupling levels for channels with symmetric conductance distributions, see Fig 5. In our

work, we considered two limits of the dynamic conductance of gap junctions: the instanta-

neous and steady-state conductance cases. In the case of instantaneous conductance, the CV

predicted by the NOHM was in general higher than the CV predicted by the CM voltage-

gated, which was observed to decrease as the GJc was reduced [27]. A similar trend was

observed for the LHM when compared with the CM clamped. Further, the NOHM and LHM

resulted in similar CV curves. Previous studies have confirmed that the accuracy of LHM in

predicting cardiac conduction, as dictated by CM clamped, consistently deteriorates as the GJc

is decreased to low levels [13, 16]. Interestingly, for the case of steady-state conduction, sub-

stantial differences arise between voltage-dependent (NOHM, CM voltage-gated) and voltage-

independent (LHM, CM clamped) models, with the former resulting in considerably lower

CVs, see Fig 5 (left column). These results can be explained by noting the shape of the conduc-

tance distributions associated to the instantaneous and steady-state cases. In particular, the

instantaneous conductance of the Cx43-Cx43 channel displays a flat shape with small varia-

tions within the range of transjunctional voltages (Fig 3, left), which resembles an Ohmic elec-

trical response. Thus, in this case, the NOHM is not expected to differ from the LHM, as the

conduction in both cases is fairly Ohmic, a behavior observed in our experiments (Fig 5, top

left). In contrast, the steady-state conductance distribution for the Cx45-Cx45 channels pres-

ents a narrow bell shape (Fig 3, center), which is representative of a marked non-Ohmic elec-

trical behavior. Notably, simulations associated with that conductance distribution are the

ones that deliver the most different CV curves when the voltage dependence is included (Fig 5,

Fig 8. The effect of spatial discretization of the conduction velocity: (left) instantaneous conductance, (right) steady-state conductance. The

conduction velocity in cellular models exhibit a stronger dependence on the mesh size than the continuum models of conduction.

https://doi.org/10.1371/journal.pcbi.1007232.g008
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bottom right). These results confirm the ability of the NOHM to accurately upscale the volt-

age-dependent behavior of gap junctions, a feature not offered by standard homogenization

models of conduction, such as the LHM. Further, we note here that the difference in CV

between cellular models CM clamped and CM voltage-gated for low GJc has been previously

reported in the literature [5, 27], highlighting the importance of modeling the dynamic con-

ductance of gap junctions for cases of low GJc. Decreased GJc takes particular relevance in the

study of cardiac disease, as the reduction of gap-junctional communication has been correlated

to a marked decreased of CV [34], and slow conduction is considered one of the main mecha-

nisms of sustained reentrant arrhythmias [1, 35].

A unique feature of the NOHM model is its ability to upscale the particular features of volt-

age-dependent conduction mediated by homotypic and heterotypic combinations of homo-

meric connexons. In our simulations for the steady-state regime, action potentials resulting

from channels composed by homotypic Cx43-Cx43 resulted in a considerably higher CV

when compared to simulations considering homotypic Cx45-Cx45 channels (Fig 5 right col-

umn). This result is consistent with observations from dual whole-cell patch clamp experi-

ments, where the lower CV in Cx45-Cx45 channels is explained by the higher sensitivity of

conductance to transjunctional voltage [36]. We note, however, that for the instantaneous

regime, the CV is more sensitive to the number of operational channels and unitary conduc-

tance than to gap junction voltage dependence. Further, here we showed that the asymmetry

of conductance distribution found in heterotypic channels results in propagating action poten-

tials whose CV strongly depends on the direction of propagation (Fig 6). The NOHM success-

fully captured this orientation dependence, as well as it was able to capture the conduction

block predicted by the CM voltage-gated for low and very low GJc in the steady-state conduc-

tion regime. We also studied the effect of pacing rate for the Cx43-Cx45 channel, where both

voltage-sensitive models resulted in similar restitution curves with higher CVs for the case of

retrograde propagation (Fig 7). The orientation-dependent conduction, together with con-

nexin coexpression, may partly explain the differences in CV for normal and retrograde con-

duction that have been observed in the sinoatrial node [37]. It is important to note that

voltage-independent models of conduction (CM clamped, LHM) cannot capture this orienta-

tion dependence, as well as they fail to predict conduction block, resulting in a considerable

overestimation of the CV for the case of normal wave propagation. Future developments

should focus on combining the gap-junction conductance distributions, as several connexin

types are typically co-expressed in cardiac tissue.

We assessed the effect of spatial discretization for the continuum and cellular conduction

models considered in this study. Previous studies have shown that the numerical solution of

continuum electrophysiology models depends on the level of spatial discretization [38, 39]. An

interesting finding of this work is that the mesh dependence found in continuum models is

accentuated for cellular models and that the consideration of voltage sensitivity in the conduc-

tion model does not strongly affect the relation between CV and mesh size (Fig 8). Future

developments of numerical methods for the NOHM may include the consideration of

enhanced spatial interpolation and temporal integration schemes [40, 41] which have shown

to attenuate the mesh dependence of continuum model of cardiac propagation, allowing for

the efficient simulation of larger domains.

Our current work can be extended in several directions. First, the theoretical framework for

the NOHM model should be extended to consider the 3D case of cardiac conduction, includ-

ing the case of anisotropic conduction typically observed in cardiac tissue. We include a heu-

ristic derivation in Remark 2 of the S1 Appendix that points towards this direction. Another

important limitation is the consideration of the transmembrane potential, instead of the intra-

and extra-cellular potentials, in modeling intercellular conduction and ionic ionic currents. In
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particular, (3) assumes that transjunctional voltage is the jump in transmembrane potential

rather than the jump in intra-cellular potential. We note that such consideration is valid when

the extra-cellular potential is constant, an assumption that can be debated in more general

contexts of conduction. Future contributions should revisit this assumption by explicitly

modeling the extra-cellular potential, i.e., considering bidomain formulations of the contin-

uum electrophysiology problem [9]. Second, we note that the time dependence of gap-junction

gating that dynamically modulates the conduction has not been considered in this work. Such

a dynamic effect has shown to strongly modulate the conductance response of gap junctions

[28, 29]. To date, the time-dependent gating of gap junctions has been incorporated in a few

cellular models of cardiac conduction [5, 27], showing the importance of both voltage- and

time-dependent dynamics. We note here that it takes several seconds for a gap-junction chan-

nel to reach steady-state conductance. Such a time scale can be much longer than the time win-

dow where transjunctional voltage is large during normal conduction, i.e., during action

potential upstroke. Thus, during normal conduction, the steady-state regime is not expected to

occur. In contrast, under cases of poor intercellular coupling, large transjunctional voltage can

occur for longer periods, which potentially drive the gap-junction towards a steady-state con-

duction regime [27]. In this work, we only considered two limiting regimes of the dynamic

conductance which yield very different behavior as the steady-state regime typically displays

conductance distributions that are more sensitive to transjunctional voltage than those found

for the instantaneous-conductance regime. Thus, an interesting avenue of research is the

development of multiscale formulations of cardiac tissue conduction that incorporate time-

dependent gating dynamics of gap junctions. Third, intercellular communication mechanisms

other than gap junctions should be integrated into this theoretical framework. Sodium chan-

nels have been reported to co-localize with gap junctions at the intercalated discs, creating an

ephatic coupling effect that has been associated to conduction during gap-junction blockage

[35]. Further, the spatial distribution of sodium channels around the cellular membrane and

on the intercalated discs has been studied using detailed cell-to-cell computational simulations

to conclude that channel spatial distribution strongly affect the cardiac conduction [42]. Since

the ephatic effect has been considered in homogenization schemes of cardiac conduction in

the past by including a cleft-to-ground resistance in the microscopic model of conduction [13,

32], we foresee that future versions of the NOHM could equally incorporate this effect, poten-

tially in 3D formulations with non-uniform distributions of channels. Finally, the applicability

of the NOHM model should be tested in the simulation of conduction in the whole heart dur-

ing diseased conditions [33].

Supporting information

S1 Appendix. Formulation details. Details and proofs for the asymptotic formulation and the

numerical solution for the NOHM model are presented here.
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