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ABSTRACT
Silibinin (SIL), a natural flavonolignan from the milk thistle (Silybum marianum),
is known to exhibit remarkable hepatoprotective, antineoplastic and EMT inhibiting
effects in different cancer cells by targeting multiple molecular targets and pathways.
However, the predominant majority of previous studies investigated effects of this
phytocompound in a one particular cell line. Here, we carry out a systematic analysis
of dose-dependent viability response to SIL in five non-small cell lung cancer (NSCLC)
lines that gradually differ with respect to their intrinsic EMT stage. By correlating gene
expression profiles of NSCLC cell lines with the pattern of their SIL IC50 response,
a group of cell cycle, survival and stress responsive genes, including some prominent
targets of STAT3 (BIRC5, FOXM1, BRCA1), was identified. The relevancy of these
computationally selected genes to SIL viability response of NSCLC cells was confirmed
by the transient knockdown test. In contrast to other EMT-inhibiting compounds,
no correlation between the SIL IC50 and the intrinsic EMT stage of NSCLC cells
was observed. Our experimental results show that SIL viability response of differently
constitutedNSCLC cells is linked to a subnetwork of tightly interconnected genes whose
transcriptomic pattern can be used as a benchmark for assessment of individual SIL
sensitivity instead of the conventional EMT signature. Insights gained in this study
pave the way for optimization of customized adjuvant therapy of malignancies using
Silibinin.

Subjects Bioinformatics, Cell Biology, Genetics, Drugs and Devices, Oncology
Keywords Silibinin, Custom drug response, Adjuvant cancer therapy, Transcriptome profiling,
Drug susceptibility network

INTRODUCTION
The ability of malignant cells to attain drug resistance and to escape cell death frequently
observed in different types of cancer represents the major challenge to chemical tumor
therapy. Several evolutionary conserved mechanisms mediate elevated survival capabilities
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and drug resistance of cancer cells including inhibition of apoptotic pathways, alteration
and enhancement of metabolism, DNA damage repair, drug inactivation or alteration,
genetic and epigenetic activation of stress response and proliferation programs such as
epithelial-mesenchymal transition (EMT) (Michael & Doherty, 2005; Hang, Cai & Fan,
2013; Housman et al., 2014; Hanahan &Weinberg, 2011). As a consequence of elevated
environmental adaptation and self-reprogramming capabilities, cancer cells often attain
resistance against targeted drugs and even drug combinations by bypassing affected
pathways (Patel & Rothenberg, 1994; Clarke et al., 2019). In most of the tumors, multiple
survival mechanisms and pathways are active in parallel. A network of dozens tightly
interconnected genes rather than just few linear signaling pathways maintain abnormal
survival and resistance capabilities of cancer cells (Gladilin & Eils, 2017).

A promising approach to overcome the limitations of conventional therapy is a
combination of targeted and sensitizing drugs (Chandarlapaty et al., 2010; Al-Lazikani,
Banerji & Workman, 2012). In view of often unavoidable side effects of targeted therapy,
sensitizing compounds with a low toxicity for healthy cells are preferred that are still capable
to weaken abnormally functioning tumor cells. There is an increasing body of evidence that
secondary plant metabolytes such as various polyphenolic compounds exhibit distinctive
antineoplastic properties that make them promising sensitizing agents for combined tumor
therapy (Gerhäuser, 2012; Wang et al., 2016; Dayem et al., 2016; Thomford et al., 2018).
Some of these natural compounds have a long history of usage as nutrition supplements
in traditional medicine, and were empirically proven to be well tolerated.

One of the antineoplastic phytocompounds increasingly gaining attention in the last
two decades is Silibinin (also known as Silybin or Silymarin)—a flavonolignan from the
milk thistle Silybum marianum. Silibinin is a mixture of two diastereoisomers Silybin A and
Silybin B, at a ratio of 1:1 (Agarwal et al., 2003). Originally known as a hepatoprotective
dietary drug (Machicao & Sonnenbichler, 1977; Sonnenbichler et al., 1999; Flora et al., 1998;
Vargas-Mendoza, 2014; Hellerbrand et al., 2016), in recent years Silibinin has been shown
to exhibit remarkable antineoplastic properties crossover different types of tumors which
was attributed to different molecular mechanisms and signaling pathways (Fraschini,
Demartini & Esposti, 2002; Gazak, Walterova & Kren, 2007; Ramasamy & Agarwal, 2008;
Ting, Deep & Agarwal, 2013; Polachi et al., 2016). Meanwhile more than 1,500 studies on
hepatoprotective and antineoplastic effects of Silibinin and their mechanisms in different
tissues and cells were published (Pubmed, 2019). The predominant majority of these
works were, however, performed with one particular cell line and typically focused on a
few molecular targets and signaling/metabolic pathways directly or indirectly affected by
Silibinin, see Table 1. Primary molecular targets andmechanisms of SIL action in particular
type of cancer tissue/cells were usually hypothesized and rarely investigatedmechanistically.
As direct molecular binding targets of Silibinin several drivers and mediators of malignant
transformation were reported, see Table 2.

As a multitarget compound with a broad spectrum of antineoplastic action Silibinin
combines the ability to selectively reduce viability of cancer cells in a dose dependentmanner
(Katiyar, Roy & Baliga, 2005;Mokhtari, Motamed & Shokrgozar, 2008; Zhan et al., 2011; Su
et al., 2013; Wang et al., 2014b) with low toxicity for normal tissues even in the range of
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Table 1 Overview of studies on antineoplastic effects of Silibinin in different cancer tissues/cells.

Cancer tissue, cell type Molecular mechanisms Lit.

H. lymphoma, U-937 Inh: TNF, NF-kB, MAPK8 Manna et al. (1999)
H. colon cancer, HT-29 Up: p27, p21 Agarwal et al. (2003)

Down: CCNE1, CCND1, CDC25C, CCNB1
Inh: CDK2, CDK4, CDC2

M. SKH-1 epidermis Up: p53, p21 Dhanalakshmi et al. (2004)
H. endothelium, ECV304 Up: Bax Yoo et al. (2004)

Down: Bcl-2
Inh: NF-kB
Act: CASP3, CASP9

M. keratinocytes, JB6 C141 Up: p53, Bax, CYCS Katiyar, Roy & Baliga (2005)
Down: Bcl-2
Act: CASP3, APAF1, PARP-1

H. colorectal cancer, SW480 Inh: PIK3CA-Akt-mTOR Raina et al. (2013)
Act: MAP2K1/2-MAPK1/3

H. breast cancer, MCF-7 Inh: HSP90 Zhao et al. (2011)
H. lung cancer, A549 Inh: PI3K-Akt-MAPK Chen et al. (2005)
H. breast cancer, MCF-7, MDA-MB-231 Inh: Notch-1 Kim et al. (2014b)

Down: ERK, Akt, AIF, CASP3
H. lung cancer Inh: EGFR Hou et al. (2018)
H. colorectal adenocarcinoma, LoVo Inh: GLUT1 Catanzaro et al. (2018)
H. glioblastoma, A172, SR Inh: mTor, Yap Bai et al. (2018)
H. prostate cancer, DU145, PC3 Up: p27, p21 Davis-Searles et al. (2005)

Deep et al. (2006),
Mokhtari, Motamed & Shokrgozar (2008)

Down: CDK4, CDK6, CDK2,
CCNE1, CCND1, CCNB1

H. umbilical vein endothelial cells, HUVEC Inh: NF-kB Kang et al. (2003)
Down: VCAM-1, ICAM-1, CD62E

H. lung cancer, PC-9 Up: CDH1 Cufí et al. (2013)
Down: VIM

H. bladder cancer, T24 Inh: CTNNB1/ZEB1 Wu et al. (2013)
H. breast cancer, MDA-MB-231 Inh: CXCR4 Wang et al. (2014a)
H. breast cancer, MDA-MB-231 Down: CDC42, D4-GDI Dastpeyman et al. (2012)
H. leukemia, THP-1 Inh: p65, ICAM-I Chen et al. (2014)
H. lung cancer, A549 Inh: STAT1, STAT3, NF-kB Chittezhath et al. (2008)
H. cervical cancer, HeLa; Inh: STAT1, STAT3, NF-kB García-Maceira & Mateo (2009)
H. hepatoma, Hep3B
H. breast cancer, MCF7 Up: BNIP3 Jiang et al. (2015)
H. prostate cancer, PCA Down: SREBP1/2 Nambiar et al. (2014)

Up: AMPK
H. prostate cancer, LNCaP Up: p21, p27 Zi & Agarwal (1999)

(continued on next page)
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Table 1 (continued)

Cancer tissue, cell type Molecular mechanisms Lit.

Down: CCND1, CDK4, CDK6
H. colon cancer Up: Bax Kauntz et al. (2012)

Down: Bcl-2, IL1β, TNFα, MMP7
H. colon cancer, SW480 Act: CASP3, CASP8 Kauntz (2012)
H. lung cancer, H1975, HCC827, A549, H460, H1299 Inh: EGFR, LOX Hou et al. (2018)
H. lung cancer Down: HIF1A, TNFα, NK-kB, STAT3 Tyagi et al. (2009)

Up: Ang-2, Tie-2, TIMP-1, TIMP-2
H. cervical cancer, HeLa Up: ROS, NOS Fan et al. (2011)
H. lung cancer, MCF-7 Down: Er α, mTor, ERK Zheng et al. (2015)
H. glioma, U87, U251 Down: PI3K, FOXM1 Zhang et al. (2015)
H. breast cancer, MCF7 Down: Bcl-2, BRCA1 Pirouzpanah et al. (2015)
H. colon cancer, HCT116 Inh: CD44v6 Patel et al. (2018)

Down: Nanog, CTNNB1, CDKN2A
Up: CDH1

H. prostate cancer, DU145 Inh: STAT3, pSTAT3 Agarwal et al. (2007)
H. gastric cancer, MGC803 Inh: STAT3, pSTAT3 Wang et al. (2014b)
H. pancreatic cancer, S2-013, T3M4, HEK-293T Inh: STAT3, pSTAT3, c-Myc Shukla et al. (2015)
H. breast cancer, MDA-MB468, BT20 Inh: STAT3 Kim et al. (2014a)
H. breast cancer, MDA-MB-231 Inh: STAT3 Byun et al. (2017)

Notes.
Abbreviations: Up, upregulation; Down, downregulation; Inh, inhibition; Act, activation; H, human; M, mice.

Table 2 Overview of reported direct molecular binding targets of Silibinin.

Protein name Gene symbol Lit.

Cytochrom P450 2C9 CYP2C9 Beckmann-Knopp et al. (2000),
Kawaguchi-Suzuki et al. (2014)
Bijak (2017), Por et al. (2018)

CXC-Motiv-Chemokinrezeptor 4 CXCR4 Wang et al. (2014a)
Mitogen-Activated Protein Kinase 11 MAPK11 Youn et al. (2013)
G-protein coupled receptor 12 GPR120 Chinthakunta et al. (2018)
Cyclooxygenase-2 COX-2 Malik, Manan & Kirza (2017)
Phospholipase A2 PLA2 Malik, Manan & Kirza (2017)
Aldo-Keto Reductase
Family 1 Member D1

AKR1D1 Malik, Manan & Kirza (2017)

Core 1 β1,3-galactosyltransferase C1GALT1 Lin et al. (2018)
β-catenin CTNB1 Iftikhar & Rashid (2014)
Epidermal Growth Factor Receptor EGFR Hosen et al. (2016)
Heat Shock Protein 90 HSP90 Zhao et al. (2011),

Riebold et al. (2015),
Cuys et al. (2019)

Signal Transducers and
Activators of Transcription 3

STAT3 Bosch-Barrera & Menendez (2015),
Bosch-Barrera, Queralt & Menedez (2017)
Verdura et al. (2018),
Qin et al. (2019)
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high, therapeutically relevant doses of more than 1,500 mg/day (Soleimani et al., 2019).
However, the knowledge of primary targets alone does not provide yet a reliable criterion
for quantitative assessment of SIL efficiency in application to a particular cancer tissue/cell.
One of the global factors known to be relevant to the drug dose response is the intrinsic
EMT stage of cancer cells. Accordingly, cells exhibiting mesenchymal pheno-/genotypic
profiles are more drug-resistant to antineoplastic drugs than epithelial cells (Tan et al.,
2014). It is, however, not known whether this rule also applies to Silibinin. Here, we
address this question by a systematic analysis of dose-dependent viability response to SIL
in five non-small cell lung cancer (NSCLC) lines (H1650, H1975, A549, H838, H2030)
that gradually differ with respect to their intrinsic EMT stage defined by the transcriptomic
signature from (Byers et al., 2013). The relationship between SIL IC50 viability response and
gene expression profiles of five NSCLC cell lines was compared with a reference compound,
Withaferin-A, which is known to exhibit dose-dependent EMT-inhibiting effects (Vanden
Berghe et al., 2012; Vyas & Singh, 2014; Gladilin, Gonzalez & Eils, 2014). Our experimental
results show that in contrast to WFA SIL does not exhibit a EMT-conform dose–response.
Instead, SIL viability response of NSCLC cells turns out to correlate with the expression
level of cell cycle, survival and stress responsive genes including some prominent targets of
STAT3.

MATERIALS AND METHODS
Cell culturing
Human lung adenocarcinoma cell lines H1650, H1975, A549, H838, H2030 were obtained
from ATCC and cultured in DMEM (Dulbecco’s Modified Eagle Medium) medium
supplemented with 10% fetal calf serum (FCS) and 100 U/ml penicillin G and 100 µg/ml
streptomycin sulfate at 37 ◦C in a humidified 5%CO2 incubator. To ensure the ample
number of cell count, cells were cultured three days prior to cell seeding. When the culture
plates became confluent, NSCLC cells were detached and collected in a sterile Falcon tube
with a pre-warmed medium for transfection. Cells were subjected to centrifugation (at
1000 rpm and room temperature for 5 min) and the supernatant was aspirated. The cells
were resuspended in the medium for transfection. The number of cells/ml was determined
by using Neubauer counting chamber and cells were diluted to get a concentration of
12000 cells/100 µl of the medium. After careful optimization of transfection efficiency,
12000 cells/well in 100 µl was found to show good transfection rate.

Silibinin and Withaferin-A compounds
Silibinin (C25H22O10, mol. weight 482.44) and Withaferin-A (C28H38O 6, mol. weight
470.60) both were purchased from Sigma-Aldrich (Germany). Both compounds were
dissolved in dimethylsulfoxide (DMSO; Sigma-Aldrich) to make a stock solution. The
final concentration of DMSO in the culture medium did not exceed 0.5% which has no
detectable effects on cells.

CellTiter-Blue cell viability assay
Cells seeded into 96-well plates in sextuplicate at a density of 15× 103 cells per well.
Twenty-four hours after seeding, the cells were treated with various concentrations of
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Withaferin-A and Silibinin for totally 24 h. To measure the viability of cells, CellTiter-
Blue

R©
Viability Assay (Promega, G8081) was applied according to the manufacturer’s

instructions. Incubation with the dye for 60 min was followed by measurement of the
fluorescence with the infinite F200 pro Reader (TECAN). A blank well without cells was
measured to determine the background. After subtraction of the background, cell dilution
series enabled due to a direct correlation of the signal intensities with the cell number, the
verification of absolute cell numbers.

Determination of IC50 from CTB measurements
The half maximal inhibitory concentration (IC50) was determined from series of dose-
dependent CTB measurements using following basic steps. First, the raw CTB intensity
measurements (Ii) were normalized by the intensity level (I0) of the reference (untreated)
probe:

nIi= 100
Ii
I0
. (1)

Subsequently, the average pattern of normalized dose response (anIi) from N different
measurements was calculated:

anIi=
1
N

∑
j=1..N

nIi(j). (2)

Finally, the IC50 value of a particular cell line and measurement condition (e.g., duration
of treatment) was determined from the average normalized pattern of IC50 dose response
by fitting the Hill’s sigmoid function (Spiess & Neumeyer, 2010; Sebaugh, 2011)

anI (D)=min+
max−min
1+ ( D

IC50)
H
, (3)

where D is the drug dose, min and max are the minimum and maximum values of anI ,
IC50 and H are the IC50 and the Hill’s coefficient values that are determined from the fit.
The nonlinear least square fit of the Hill’s equations was performed automatically using the
MATLAB R2019b (The Mathworks, Inc.). To characterize relative differences in viability
response (Vi) among five NSCLC cell lines (i= 1..5), normalized IC50 values (nVi)

nVi=
Vi−Vmin

Vmax−Vmin
∈ [0,1] (4)

and their ranks (Ri)

Ri= rank(Vi,[V1,V2,V3,V3,V4,V5]). (5)

were calculated.

Determination of total cell count using quantitative image analysis
Quantitative image analysis was performed to acquire the total cell count. Immediately
after the measurement of the fluorescence signal, the medium is aspirated from 96well
plate containing NSCLC cells and washed with PBS solution twice to ensure the complete
removal of dead cells. Since dead cells do not attach to the surface and freely float in the
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medium, washing twice with PBS removes approximately all the dead cells from the well.
After washing, 70 µl cell fixation solution (PFA 3% + Hoechst dye) was added to each well
for the fixation and nuclei staining of cells by a single step. Cells were incubated at 4 ◦C
for 48 h. Wells were washed with PBS twice after incubation to remove unbound Hoechst
dye and analyzed under a microscope (Olympus FV 3000) for counting the stained nuclei.
Finally, the cell counting was performed manually with the help of images obtained from
the microscope.

In vitro cell migration assay
For measurement of cell motility, 2D cell migration assay from (Marwitz et al., 2016) was
used. Cells were seeded in 24-well plate (Zell Kontakt 3231-20) at a density of 2,000–5,000
cells/well (depends from cell lines). Twenty-four hours after seeding the cells were treated
with various concentrations of Withaferin-A and Silibinin for a total of 24 h and after
stained with Hoechst (Sigma) for 1 h. Images were acquired in 20 min intervals for 48 h
using environment-controlled microscope (IX81, Olympus) equipped with an UPlanSApo
10 × /0.4 objective lens (Olympus). Nine positions per well (3 × 3 grid) were imaged and
stitched with a ImageJ plugin (Preibisch, Saalfeld & Tomancak, 2009). Single cell tracking
was performed with ImageJ Mtrack2 plugin. Speed of each tracked cell was calculated by
dividing total travelled distance by total time, for which cell was tracked. Persistence was
calculated by dividing the distance between the first and the last point, where the cell was
tracked, by total travelled distance. Resulting number was multiplied by the square root
of time, for which cell was tracked divided by maximal possible tracking time, in order to
penalize cells, which were tracked for a shorter period of time.

Immunofluorescence and microscopic imaging
Cells were fixed for 5 min in 3.7% PFA in PBS at RT, permeabilized with ice-cold 0.1%
TritonX-100 in PBS for 5 min, blocked for 30 min with Blocking solution (3% BSA, 2.5%
FCS) and stained with primary antibodies to vimentin and actin (Abcam, Cambridge,
UK) for 1 h. After staying cells were washed 3 times in PBS and stained with secondary
antibodies, Phalloidin-BODIBY (Thermo Fisher) andHoechst (Sigma) for 30min. Imaging
was performed using the confocal laser scanning microscope (Olympus FV 3000) with 64x
oil immersion lens to visualize the actin and vimentin network as well as the nucleus in the
cells.

Gene expression data
Gene expression (GE) data of H1650, H1975, A549, H838, H2030 cell lines from
GSE47206 (El-Chaar et al., 2014) were used for computational analysis of correlation
between transcriptomic and IC50 profiles of NSCLC cells. Analysis was performed only for
transcripts with the detection significance of p< 0.05 (P,M) in all five NSCLC cell lines.
Trancripts with the non-significant level of detection (A) were excluded from analysis.

GO enrichment analysis
Gene ontology enrichment analysis was performed using STRING v11 (Szklarczyk et al.,
2019) with the significance level of p< 0.05 after multiple testing correction (Benyamini &
Hochberg, 1995) for each functional classification framework (GO, KEGG, InterPro, etc.).
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Table 3 List of siRNAs used for protein knockdown by gene silencing.

Gene Full Name Sense siRNA Sequence Antisense siRNA Sequence

BIRC5 Baculoviral IAP repeat containing 5 GGACCACCGCAUCUCUACATT UGUAGAGAUGCGGUGGUCCTT
BIRC5 Baculoviral IAP repeat containing 5 GCAGGUUCCUUAUCUGUCATT UGACAGAUAAGGAACCUGCAG
BIRC5 Baculoviral IAP repeat containing 5 CAAAGGAAACCAACAAUAATT UUAUUGUUGGUUUCCUUUGCA
FOXM1 Forkhead box M1 GCUCAUACCUGGUACCUAUTT AUAGGUACCAGGUAUGAGCTG
FOXM1 Forkhead box M1 CACUAUCAACAAUAGCCUATT UAGGCUAUUGUUGAUAGUGCA
FOXM1 Forkhead box M1 GGAUCAAGAUUAUUAACCATT UGGUUAAUAAUCUUGAUCCCA
BRCA1 Breast cancer 1, early onset GGGAUACCAUGCAACAUAATT UUAUGUUGCAUGGUAUCCCTC
BRCA1 Breast cancer 1, early onset CAGCUACCCUUCCAUCAUATT UAUGAUGGAAGGGUAGCUGTT
BRCA1 Breast cancer 1, early onset CAUGCAACAUAACCUGAUATT UAUCAGGUUAUGUUGCAUGGT

Transfection of NSCLC cells
All siRNA used for knockdown of BIRC5, FOXM1, BRCA1 was purchased from
Ambion R©ThermoFisher Scientific, see Table 3.

Transfection experiments were carried out by lipofection technique using
Lipofectamine R©2000 (Invitrogen), with transient expression. Two types of transfection
methods were performed in the optimization of transfection efficiency: reverse and forward
transfection.

Forward and reverse transfection method
Forward transfection is a conventional method of transfection where cells are first seeded
for 24 h and stored at 37 ◦C and 5% CO2. After incubation, cells are transfected as per
company’s (Invitrogen) protocol. In reverse transfection, unlike conventional transfection,
the genetic material is coated on the bottom of well plates prior to the seeding of NSCLC
cells into multi-well plate. As the order of adding genetic material is reverse compared
to the conventional method it is named as reverse transfection method. Multi-well plates
are coated with required siRNA to be transfected along with gelatin, fibronectin and
transfection reagent (Lipofectamine R©2000) stored at 4 ◦C for 28 h and stored in dry place.
Later, NSCLC cells were seeded into these wells, incubated for 28 h to attain transfected
cells.

Detection of siRNA mediated gene silencing
Estimation of transfection efficiency of the NSCLC cells was performed by blocking
PLK1 (polo-like-kinase-1) enzyme using RNA silencing technique via small interfering
RNA (siRNA). Expression of PLK1 has several functions like the initiation of mitosis,
cytoplasmic separation, mitotic spindle formation and membrane formation in telophase
of mitosis by phosphorylating mitotic kinesin-like protein-1. Silencing of PLK1 leads to
mitotic cell arrest and the centrosomes lose the ability to nucleate microtubules. This effect
can be observed under a microscope with star shape nuclear phenotype. Presence of star
shape nucleus indicates that the PLK1 was successfully silenced that in turn confirms that
the cells are transfectable.
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Immunoblotting
The confirmation of knockdown efficiency was carried out using Western Blot analysis.
Harvesting and samples for analysis were prepared by removing supernatant from the cells
followed by addition of 500 µl of PBS. Cells were resuspended and transferred to 1.5 ml
for centrifugation for 5 min at 1,600 RPM. After centrifugation, PBS was removed without
disturbing cell pellet. 25 µl of 1x Laemlli buffer containing DTT (final concentration
100 mM) was added and incubated for 10 min at 95 ◦C. Proteins in the sample were
separated by SDS-PAGE in a 10% resolving gel and transferred onto methanol-activated
PVDF membranes by semi-dry blotting technique using transfer buffer at a constant
current of 130 V until the sample reaches the resolving gel. As soon as the sample reaches
resolving gel electrophoresis is run at 90V. The membrane was blocked with 5% milk
powder, 0.5% BSA in PBST for 1 h at room temperature. After blocking, the membrane
was incubated with specific primary antibody in 5% (w/v) milk powder/PBST overnight
at 4 ◦C. To remove the unbound primary antibody three subsequent washings for 10
min with PBST were performed. Then the membrane was incubated with the horseradish
peroxidase (HRP) coupled secondary antibody in 5% (w/v) milk powder, 0.5% BSA in
PBST for 1 h at room temperature. Three subsequent PBST washing were performed to
ensure complete removal of the secondary antibody. Detection of proteins was carried
out by using ECL chemiluminescent immunodetection system with different exposure
time using INTAS Fluoreszenz u. ECL Imager. Subsequently, quantitative analysis of
Western Blot images was performed using ImageJ according to a standard protocol
(http://www.openwetware.org/wiki/Protein_Quantification_Using_ImageJ). Figure S5
shows exemplary analysis of transient knockdown of target proteins FOXM1 and BIRC5 in
A549 and H838 NSCLC cells using small-interfering RNA (siRNA) vs β-actin as a loading
control.

RESULTS
The intrinsic EMT stage of NSCLC cell lines was ranked according to the expression
level of E-cadherin (CDH1) as suggested by Byers et al. (2013), see Table S1. Accordingly,
five NSCLC cell lines (H1650, H1975, A549, H838, H2030) exhibit gradual difference in
their intrinsic EMT stage: from most epithelial (H1650) to most mesenchymal (H2030),
respectively.

Dose-dependent response of all five NSCLC cell lines to 24 h, 48 h and 72 h exposure
with Silibinin (SIL) and the reference compound, Withaferin-A (WFA), measured via the
CellTiter-Blue

R©
Cell Viability Assay was used to determine IC50 values of both compounds.

Figure 1 shows dose response curves and SIL/WFA IC50 values of all five NSCLC cell lines.
As one can see from the overview of SIL/WFA IC50 ranks of all five NSCLC cell lines in

Fig. 2, the pattern of WFA IC50 values exhibits a strong correlation with the intrinsic EMT
stage of NSCLC cells, while SIL IC50 does not show such a correlation. Strikingly, all cell
lines with exception of H838 have a comparable level of SIL IC50.

To test possible dependency of the drug response on the intrinsic EMT stage of NSCLC
cells, Spearman (rank) correlation between the pattern of normalized SIL and WFA IC50
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Figure 1 Dose-dependent 24 h, 48 h, 72 h response of NSCLC cells lines to Silibinin (A–F) and
Withaferin-A (G–L): (A, G) H1650, (B, H) H1975, (C, I) A549, (D, J) H838, (E, K) H2030, (F, L) mean
SIL IC50 values for all five NSCLC cell lines. Error bars indicate stdev of measurements performed with
three replicates.

Full-size DOI: 10.7717/peerj.10373/fig-1
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Figure 2 Normalized 24 h, 48 h, 72 h and average IC50 of five NSCLC cell lines: (A) Silibinin, (B)
Withaferin-A.

Full-size DOI: 10.7717/peerj.10373/fig-2

and the EMT 58 gene signature from Byers et al. (2013) was calculated. From analysis
of correlations between expression of 58 EMT genes and the pattern of SIL/WFA IC50
response, it follows that the WFA IC50 of NSCLC cells exhibits a significantly higher
correlation with the EMT stage than the SIL IC50 response, see Table S1. Examples of
significant WFA and poor SIL correlations with two major biomarkers of EMT (e.g., CDH1
and ZEB1) are shown in Fig. 3. While gradient of WFA IC50 values from epithelial to
mesenchymal cell lines is consistent with previous observations of elevated drug-resistance
and survival potential of mesenchymal cells (Tan et al., 2014), low correlation of SIL IC50
with EMT gene expression (GE) appear to contradict this prevailing view.

In order to dissect further possible genes correlating with the pattern of SIL IC50 among
five NSCLC cell lines, correlation analysis was performed at the whole genome scale under
consideration of reliability of transcriptomic signals (i.e., M/P accepted, A excluded), see
Table S2. From this analysis 144 genes with a positive correlation and significance level of
p< 0.05 were identified. Gene ontology (GO) analysis of 144 genes positively correlating
with the SIL IC50 signature of five NSCLC cell lines shows a significant enrichment in
GO categories related to cell cycle, G2/M transition, nuclear localization, DNA-replication
and repair, and related signaling and metabolic processes and functions, see Table S2.
Furthermore, a statistically significant overlap between this group of 144 genes and 90
‘high-communicability’ genes from our previous pan-cancer analysis study (Gladilin &
Eils, 2017) was detected (12/90=13.3 %, p< 0.001 hypergeometric test: hgt(22277, 144, 90,
12) = 5.7e−13), see Table S3. Notably, this set of 12 cell cycle process related genes includes
three genes that are known to be prominent targets of STAT3 transcription factor: BIRC5
(Alvarez & Frank, 2004; Gritsko et al., 2006; Carpenter & Lo, 2014), FOXM1 (Mencalha et
al., 2012), BRCA1 (Snyder, Huang & Zhang, 2007), see Fig. 4. Figure 5 shows correlation
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Figure 3 Examples of correlation between expression of (A, B) mesenchymal (ZEB1) and (C,D) epithe-
lial (CDH1) genes with SIL/WFA IC50 in five NSCLC cell lines.While WFA IC50 strongly correlates with
the pattern of EMT gene expression in NSCLC cells, SIL IC50 does not show any significant correlation
with EMT genes; see details in Table S1.

Full-size DOI: 10.7717/peerj.10373/fig-3

between gene expression patterns of these three STAT3 target genes and SIL IC50 response
of five NSCLC cells vs. another three non-significantly correlating genes.

To evaluate the relevancy of computationally selected genes to SIL viability response of
NSCLC cells, transient knockdown of BIRC5, FOXM1, BRCA1 genes was performed. Even
though the reverse transfection method was considered to be more efficient providing
higher transfection rates with minimal nucleic acid usage (Erfle et al., 2007), here we found
out forward transfection to show a better performance crossover five tested NSCLC cell
lines, see Fig. S1. Reverse and forward transfection of siRNA targeting PLK1 resulted in
the comparable phenotype frequencies in all tested cell lines. A459 and H838 responded
strongly in both methods, whereas, H1650 and H2030 showed no phenotype. This may
be attributed either to difficulties in transfecting these cells or non-responsiveness to
PLK1 depletion. Nearly 50% of H1975 cells showed prometaphase arrest when using
forward transfection, but hardly any effect was observed under the conditions of reverse
transfection. Consequently, the forward transfection protocol was used for transfection of
H1975, A549, H838 cells with target siRNA.

Comparative viability measurements of H1975, A549, H838 cells with transiently
knocked down BIRC5, FOXM1, BRCA1 genes confirmed their relevancy to SIL response
with exception of BIRC5 knockdown in H838 cells, see Fig. 6. We draw the negative result
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Figure 4 Visualization of a subnetwork of tightly interconnected 12 genes from the overlap between
the groups of 144 SIL-response relevant genes in five NSCLC cell lines and 90 high-communicability
pan-cancer genes from (Gladilin & Eils, 2017) including three prominent targets of the STAT3 tran-
scription factor: BIRC5, FOXM1, BRCA1 using STRING v11 (Szklarczyk et al., 2019) with default set-
tings.

Full-size DOI: 10.7717/peerj.10373/fig-4

of BIRC5 knockdown in H838 cells back to constitutively low level of BIRC5 in H838
in comparison to H1975, A549 cell lines. The relative changes in SIL response between
control and knocked downNSCNC cells observed in this work are in the order ofmagnitude
comparable with previous observations for other small weight compounds and NSCLC
cell lines (Gao et al., 2020).

DISCUSSION
There is abundant evidence that Silibinin exhibits remarkable antineoplastic effects
crossover different cancer tissue/cell types by affecting multiple molecular targets and
pathways. However, not much is known about factors responsible for individual SIL
viability response of cancer cells. Here, we systematically analyzed the relationship between
the patterns of SIL IC50 and gene expression in five NSCLC cell lines exhibiting gradual
difference with respect to their intrinsic EMT stage and compared it with the reference
compoundWithaferin-A. Our experimental results showed that, differently fromWFA and
other drugs, sensitivity of NSCLC cells to Silibinin does not correlate with the intrinsic EMT
stage. Instead, a subset of cell cycle, survival and stress responsive genes including three
prominent targets of STAT3 (i.e., BIRC5, FOXM1, BRCA1) was found to exhibit significant
correlation with the pattern of SIL IC50 in five NSCLC cell lines, see Fig. 7A. Subsequent
evaluation of SIL viability response of transiently BIRC5, FOXM1, BRCA1 silenced NSCLC
cells confirmed computationally predicted dependency of SIL dose on the expression level
of these genes. Since the expression of STAT3 transcriptional targets but not STAT3 itself
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Figure 5 Examples of genes with significant (FOXM1 (A), BIRC5 (B), BRCA1 (C)) and non-significant
(TCF12 (D), FBXL11 (E), ANAPC13 (F)) correlation between the patterns of gene expression and nor-
malized SIL IC50 in five NSCLC cell lines.

Full-size DOI: 10.7717/peerj.10373/fig-5

significantly correlates with SIL IC50 of five NSCLC cell lines, we conclude that external
and/or constitutive activation of STAT3, for example, due to gain-of-functionmutations or
enhanced upstream signaling (e.g., tyrosine kinase receptors, G protein coupled receptors,
toll-like receptors, growth factor receptors) is responsible for differences in SIL sensitivity
between different NSCLC cell lines, see Fig. 7B. In this point, our study confirms previous
findings that inhibition STAT3 and its downstream targets is one of the major mechanisms
of Silibin antineoplastic action. Furthermore, our observations confirm previous findings
that expression of known drug targets does not necessarily exhibit a significant correlation
with IC50 (Parca et al., 2019), and that downstream targets of those drug targets may
instead represent a more reliable reference for IC50 correlation studies.
Our correlation analysis between viability and whole trascriptome profiles of five NSCLC

cell lines provides a rich source of information for further investigation of anti-neoplastic
and EMT-inhibiting effects of Silibinin in cancer cells. Among the group of 144 proteins
whose expression positively correlates with the SIL IC50 there are also significantly enriched
ontological categories related to cytoskeleton regulation and organization, see Table S2.
Our previous studies (Gladilin, 2015) indicated remarkable inhibiting effects of Silibinin
on cancer cell migration and overall reorganization of vimentin and actin networks
(Supplementary Figs. S2 and S3) that can be attributed to these cytoskeleton-related genes,
see Fig. S4. While GO enrichment in this work was performed using conventional statistical
testing, rapidly evolving deep learning techniques (e.g.,Cao et al., 2018; Le et al., 2019) hold
the promise of proving more in-depth insights into large gene expression and cell viability
data in the future.
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Figure 6 Summary of cell viability measurements of BRCA1 (A–C), BIRC5 (D–F) and FOXM1 (G–I)
knocked down NSCLC cell lines with and without Silibinin treatment of H1975 (A, D, G), A549
(B, E, H) and H838 (C, F, I) NSCLC cell lines (see Table S4 for raw data for these plots). Error bars
indicate stdev of measurements performed with three replicates. Negative control = NSCLC cells +
lipofectamine R©2000 + scramble siRNA, knockdown = NSCLC cells + lipofectamine R©2000 + siRNA. NS,
p> 0.05 (non-significant); *, p< 0.05; **, p< 0.01; ***, p< 0.001.

Full-size DOI: 10.7717/peerj.10373/fig-6

Furthermore, our experimental results suggest that the intrinsic EMT stage is not a
suitable biomarker of SIL dose response of cancer cells. Instead, the subset of SIL IC50
correlating genes determined in this work can be used for dose optimization in adjuvant
tumor therapy using Silibinin. Further investigations with a broader spectrum of NSCLC
cells and other cancer cell lines are required to generalize preliminary findings of this study.

CONCLUSION
Silibinin inhibits NSCLC cell viability and motility in a dose-dependent manner. Thereby,
SIL IC50 of different NSCLC cells does not correlate with their transcriptomic EMT
signature. Instead, it was found that SIL dose–response correlates with the expression level
of a network of 144 cell cycles, stress responsive and survival proteins including some
well known targets of STAT3. It was shown that selected downstream targets of STAT3
including BRCA1, BIRC5, FOXM1 have impact on Silibinin dose response.
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Figure 7 Overall scheme of the study (A) andmechanistic explanation of experimental results (B).
Full-size DOI: 10.7717/peerj.10373/fig-7
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