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ANN — Artifical Neural Network;

Ay — interstellar extinction in the V band;
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HST — Hubble Space Telescope;

IMF - Initial Mass Function of a cluster’s stars;

MW — Milky Way Galaxy;

PHAT - The Panchromatic Hubble Andromeda Treasury;
r. — star cluster’s core radius of the King model;

ry — star cluster’s tidal radius of the King model;

Ry — total-to-selective extinction factor;

WEFC3 - Wide Field Camera 3, Hubble Space Telescope instrument.
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Introduction

Star clusters are gravitationally bound groups of stars that form in molec-
ular clouds. The vast majority of all stars are formed as parts of clusters (Lada
& Lada 2003), therefore star clusters are invaluable objects of study for stel-
lar dynamics and evolution. There have been numerous studies on star cluster
detection and parameter inference. Prominent examples include Stochastically
Lighting Up Galaxies (SLUG) (Krumholz et al. 2015), which is one of the
most mature codes in stochastic cluster population simulation and inference,
and The Panchromatic Hubble Andromeda Treasury (PHAT) survey (Dalcan-
ton et al. 2012), which is one of the largest homogeneous star cluster studies
based on the Hubble Space Telescope (HST) data.

Convolutional neural networks (CNNs) have been established as the go-to
method for fast object detection and classification on natural images. As of
now, a number of these tasks can be solved with a better accuracy than that
of a human (Russakovsky et al. 2015). Examples of image recognition com-
petitions where CNNs have recently driven progress include ILVSCR! (Rus-
sakovsky et al. 2015), PASCAL VOC? (Ren et al. 2017) and Microsoft COCO3
(Lin et al. 2014).

The uptake of CNN-based methods has also been accelerating in the field
of astronomy. Prominent examples include galaxy classification (Dieleman
et al. 2015; Huertas-Company et al. 2018; Dominguez Sanchez et al. 2018),
gravitational lensing (Petrillo et al. 2017; Lanusse et al. 2018; Pourrahmani
et al. 2018) and transient detection (Cabrera-Vives et al. 2017; Lanusse et al.
2018; Sedaghat & Mahabal 2018). There has also been work on astronomi-
cal image reconstruction (Flamary 2016), exoplanet identification (Shallue &
Vanderburg 2018), and point spread function modeling (Herbel et al. 2018).

ImageNet Large Scale Visual Recognition Competition

2The PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) Visual
Object Classes

3Common Objects in Context



This opens the door for astrophysical parameter inference on the exponentially
increasing amount of sky survey data. However, star cluster parameter estima-
tion has not yet been attempted with these methods, even though the field is an
ideal candidate since accurate inference from imaging data is sorely needed.
Until now, the vast majority of star cluster analysis was based on integral or
resolved stellar photometry, which limits the amount of information that can
be extracted from individual pixels of cluster images. The usefulness of such
information has been shown in studies such as Whitmore et al. (2011).

This work focuses on the problem of star cluster detection and parameter
inference using CNNs. A full pipeline is constructed that can perform star
cluster analysis starting from multi-band sky survey data and concluding in
evolutionary, structural, and environmental parameters with several metrics
describing star cluster detection likelihoods.

The use of the methods created during the course of this work were demon-
strated on PHAT data of the M31 galaxy (Dalcanton et al. 2012) as well as
the M83 galaxy HST survey (Blair et al. 2014). Cluster age, mass, and size
derivation was demonstrated on the M31 galaxy cluster images. Extinction
derivation as well as the cluster detection pipeline was demonstrated on the
MS83 galaxy. The use of different surveys illustrated the applicability of the
method for the analysis of data of any galaxy with a small amount of human
supervision.

In Chapter 1 we present an overview of current star cluster detection and
analysis methods. In Chapter 2 a CNN-based method to perform the inference
of star cluster age, mass, and size is presented. In Chapter 3 the method is
extended to allow the inference of extinction and a method to perform star
cluster detection is introduced. In Chapter 4 the full pipeline for performing
star cluster detection and parameter inference is described and used to analyse
cluster candidates of the M83 galaxy.

Goal and tasks of the thesis

The goal of this thesis was to develop a method capable of simultaneously
deriving evolutionary, structural, and environmental star cluster parameters, as
well as localizing them in multi-band images.

To this end the following tasks were formulated:

1. Develop a CNN-based method to infer age, mass, size, and extinction
parameters of star clusters.
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2. Develop an approach that allows to account for degeneracies between
the derived parameters.

3. Develop a method to identify the presence of clusters in multi-band pho-
tometric images of galaxies.

4. Develop codes for generating mock images of star clusters used for CNN
training.

5. Apply the codes to the M83 galaxy Hubble Space Telescope images to
demonstrate a full pipeline for star cluster search and parameter infer-
ence.

Statements of the doctoral thesis

1. A CNN-based method suitable to derive evolutionary (age, mass), struc-
tural (size), and environmental (extinction) parameters of star clusters
and represent their degeneracies was developed, trainable on as little as
50,000 mock cluster image samples with minimal human supervision.

2. The degeneracies between age and extinction can be accounted for by
using three HST photometric passbands (F336W, F438W, and F814W)
for clusters of age log;,(¢/yr) < 8 and mass between log,,(M /M) =
3.5 and 5.5 in the M83 galaxy.

3. A novel star cluster detection method was proposed, which achieves
a recall of ~90% for mock clusters of age log;,(t/yr) = 7 and mass
log,o(M/Mg) = 4 in the M83 galaxy, utilizing the inference of the like-
lihood of a cluster’s presence in a given field, as well as a proxy for the
cluster’s signal-to-noise.

4. The analysis of M83 cluster candidates with age log,,(f/yr) > 8.5 re-
vealed the presence of more dense clusters near the galactic center, with
densities decreasing from log(p; /(Mg -pc—3)) = 3.5 at the distance of
0.5 kpc to log(p;/ (Mg -pc3)) = 2 at the distance of 5 kpc from the
galactic center.

5. Using images of the M83 galaxy in F336W, F438W, and F814W HST
passbands, 3,380 star cluster candidates were detected and their age,
mass, size, and extinction have been determined.
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6. An age gradient of M83 cluster candidates with respect to the spiral

arms of the galaxy is observed, with the younger population of cluster
candidates (log(7/yr) < 7) peaking at ~0.4 kpc leading the spiral arms
and the older population (7 < log,,(t/yr) < 7.7) shifted towards 20.7
kpc, which is consistent with the density wave theory.

Scientific novelty

1.

For the first time a CNN was applied to the problem of star cluster de-
tection and parameter inference.

A method to represent star cluster parameter degeneracies in the outputs
of a CNN was developed and verified.

. A method to account for multiple passbands of astronomical observa-

tions as well as information present in all individual pixels of the anal-
ysed image when performing star cluster parameter inference was pre-
sented.

A full pipeline for detecting star cluster candidates and inferring their
evolutionary, structural, and environmental parameters has been devel-

oped and verified.

Using images of the M83 galaxy in F336W, F438W, and F814W HST
passbands, 3,380 star cluster candidates were detected and their param-
eter analysis was performed in a self-consistent manner.

Contributions of the author

The adaptation of CNN-based methods for star cluster analysis, the simu-

lation of star clusters, as well as the writing of all of the software created for

this purpose was done by the author. The astronomical survey data prepara-

tion, analysis of results and the writing of papers was the result of teamwork

between co-authors of the respective papers.

Publications included in the thesis

1.

J. Bialopetravicius, D. Narbutis, V. VanseviCius, Deriving star cluster
parameters with convolutional neural networks. I. Age, mass, and size,
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Chapter 1

Overview

1.1 Introduction

In the most general sense star clusters are groupings of stars formed in the
same molecular cloud. Because of this the stars in a cluster are of very similar
chemical composition and age. With some exceptions, such as the age spread
of very young clusters, these values can be assumed to be constant throughout
the cluster. In effect the member star properties vary solely as a function of
their mass. The vast majority of all stars are formed in clusters (Lada & Lada
2003), therefore they are an invaluable subject of study for stellar dynamics
and evolution.

Precisely defining a star cluster from an observational perspective can be
quite difficult. As our sensors simply capture noisy projections of actual dis-
tributions of stars in space, the question of which stars belong to a cluster and
which don’t could be hard to answer. In some cases we may not even be able
to account for enough stars to be reasonably sure if what we’re observing is a
cluster, or simply a density enhancement observed purely by chance. In light
of this the Encyclopedia of Astronomy and Astrophysics offers to define a star
cluster as “an obvious concentration of several stars or more above the sur-
rounding stellar background, apparently localized in space and identifiable on
visual or infrared images covering a suitable field of view”” (Baugh 2001). This
is not a precise definition and does not even attempt to distinguish gravitation-
aly bound and unbound systems. Nevertheless this gives us a starting point for
further categorization.

In this chapter we present an overview of star cluster detection algorithms,
most of which focus on resolved Milky Way (MW) clusters. In Section 1.2 we
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overview the main cluster types, their properties, useful parametrizations and
observational biases. Section 1.3 details cluster detection methods described
in literature, mainly dealing with near-infrared surveys and their aggregations,
such as MWSC! (Kharchenko et al. 2012) and PPMXL? (Roeser et al. 2010).
In Section 1.4 the limitations of current methods are discussed and an alterna-

tive is proposed.

1.2 Star cluster properties

1.2.1 Types

Two main types of star clusters are observed in the Milky Way galaxy:
open and globular. These are by no means the only types that are distinguished
in observations. For example, searches for open star clusters, especially in
the context of surveys in the infrared spectrum, almost unavoidably detect em-
bedded clusters as well. However the question of how we can recognize their
differences and categorize them will not be discussed in this work.

Open clusters are found in galaxies where star formation is still active,
such as our own. In the case of MW (or spiral galaxies in general) these clus-
ters mainly reside in the spiral arms, where gas densities are highest and most
of the star formation happens. These are relatively recently formed systems
populated by young, metal-rich stars, with metallicity values approximately in
the range of —0.7 < [Fe/H] < 0.3. This also reflects in their color-magnitude
diagrams as most of the stars can still be found on the main sequence. The total
masses of such clusters ranges roughly anywhere from 10M, to 10*M,(Baugh
2001), with some rare systems having substantially higher masses in the order
of 10°M,, (Portegies Zwart et al. 2010a). Spatially, open clusters are relatively
sparse systems. This property allows our instruments, at least in the case of ob-
servations in the MW, to resolve most of the individual stars. Nevertheless the
observations are still troubled by interstellar extinction, as well as the difficult
problem of star membership. As most of these clusters are lightly gravitation-
ally bound, their appearance is usually fairly irregular. This not only makes
them difficult to find, but also makes it hard to characterize them paramet-
rically, with such parameters as the tidal radius of the King model (i.e. the
radius at which the density profile reaches zero), for example. Usually the ap-

'Milky Way Star Clusters
ZPosition and Proper Motion eXtended-L
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parent angular diameter is measured instead. Most open clusters are yet to be
found, as the fact that they’re localized in the Galactic disk means that they
also have a high chance of being heavily obscured.

Globular clusters, in contrast, are massive, strongly gravitationally bound
systems residing mainly in the galactic halo. The mass of these systems ranges
anywhere from 10*M, to 10°M,, and more, such as is the case with the M22
cluster. The stars in globular clusters are distributed roughly spherically, with
their density increasing towards the cluster’s center. This can often cause
problems when trying to resolve individual stars, as the concentration is high
enough to hide less luminous stars near the center of a cluster due to image res-
olution effects. They are composed of old, metal poor stars, with metallicity
values roughly between —2.3 < [Fe/H] < 0.2 (Baugh 2001).

1.2.2 Spatial distribution and selection effects

Observations of open clusters, embedded in the galactic disk, are especially
vulnerable to selection effects. The high density of interstellar dust blocks our
view to most of these structures and so we mainly observe open clusters only
a few kiloparsecs around the Sun. If we wish to study a complete open cluster
sample we have to confine ourselves to an extremely close distance range. For
example, the databases compiled by Kharchenko et al. (2005) and Piskunov
et al. (2008) are likely complete only up to the 600 pc range. This excludes
all of the clusters in the MW’s major spiral arms, where cluster formation is
more active than in our immediate neighborhood. Nevertheless, we currently
know of approximately 3,000 open clusters in our galaxy (Kharchenko et al.
2013). The real number, due to the aforementioned difficulties in observing
these clusters, is much larger. Since interstellar dust is most opaque to shorter
wavelengths there has been progress in cluster detection in the infrared spec-
trum. For example the new catalog of Kharchenko et al. (2013) - MWSC —is
(mostly) complete up to the 1.8 kpc range. Knowing the large potential num-
ber of undiscovered open clusters, increasing amounts of such observations
will greatly benefit from automatic analysis.

The interstellar dust blocking our field of view isn’t the only effect biasing
catalog samples. Open clusters, at least in comparison to globular clusters, are
already short lived. At low galactic latitudes clusters can get easily disrupted,
especially considering their low mass and the fact that they are loosely gravi-
tationally bound. Closer to the galactic center, where tidal forces are stronger
and the chances of collision with molecular clouds are higher, these clusters
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tend to get disrupted even earlier. All of this, in effect, produces a distribution
skewed towards older clusters further away from the galactic center (Portegies
Zwart et al. 2010a).

In comparison the samples of globular clusters are much more complete.
The sparse field of the galactic halo allows us to probe most of this type of
cluster. It is estimated that there are approximately 200 globular clusters in the
MW galaxy, and we have good distance measurements to about 150 of them.
Main issue for completeness is again due to extinction. Intuitively most of
the globular clusters behind the galactic center cannot be detected. This also
applies to the whole galactic bar, as shown by Nikiforov & Smirnova (2013).

The remaining undetected clusters are likely to be obscured by dust on the
far side of the Galaxy.

1.2.3 Density distribution profiles

Density profiles are functions connecting the stellar density of a cluster to
the distance from its center. They are usually empirically derived functions
that allow us to infer a cluster’s structural parameters. Density profiles are
not used for the detection of clusters directly, but are often a good character-
istic for highlighting any anomalous properties that might indicate bad cluster
membership assignments.

The King density profile (King 1962) is one of the most widely used in
literature. This model fits old globular MW clusters well, due to the truncation
of the power law in the outer parts of the profile. This is due to the fact fact that
as a cluster ages it keeps losing its outer stars due to tidal effects, while more
massive stars slowly concentrate in the middle region. In such cases something
like a simple Plummer profile predicts densities that are too high in the outer
parts of the cluster. The King model can be characterized by three parameters
— central surface brightness Iy, core radius r, and the tidal radius ;. The core
radius is defined as the radius at which the surface brightness drops to a half
of the central value. The King profile is constructed by approximating two

Iy

power-law functions: I(r) = k(L — 71[)2 and I(r) = T/ The result of this

182

2

1 1
1 (r ) =1 T 1
(L4 (r/re)?)2 (14 (r/re)?)?
The Elson-Fall-Freeman (EFF) model (Elson et al. 1987) was derived for
fitting young (< 300 Myr) clusters in the Magellanic Clouds. These clusters

(1.1)
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don’t exhibit the same tidal truncations and in effect are better fit by continuous
functions. The EFF profile is defined as:

2 -v/2
I=1I, <1+2) , (1.2)
a

where, again, [y is the central surface brightness, a is the characteristic
radius and v is the power-law slope.

1.3 Star cluster detection

1.3.1 As overdensities

Star clusters are relatively tightly packed collections of stars. One can then
expect for a field of stars containing a cluster to have a higher count of point
sources than its immediate neighbourhood. This is one of the most intuitive as-
sumptions to exploit when designing automated detection methods. However,
high relative densities by themselves cannot confirm the existence of a cluster
and other methods have to be employed for verification. Color information,
proper motions and profile fitting all could be used to select only highly prob-
able clusters from a candidate list of overdensities.

Although the idea is sound, star clusters as well as background fields
demonstrate a highly variable range of densities. This becomes increasingly
relevant the closer we get to the galactic disk. Small open or embedded clus-
ters often are barely visible on a dense field of galactic stars and dust. This
requires robust methods that are capable of dealing with such difficult cases
uniformly in our observation.

In essence overdensity based methods firstly need a way to estimate star
densities, either in predefined regions (e.g. a rectangular grid) or in the imme-
diate neighbourhood of point sources themselves. And secondly some sort of
measure defining what counts as a deviation from the background is needed.
For the first step there is a variety of graph algorithms that can be applied di-
rectly on point source catalogs. A thorough overview of methods that have
been applied for the search or analysis of clusters has been done by Schmeja
(2011). As noted by the author there isn’t much difference between the algo-
rithms when applied to real data, so simpler methods, such as binning of star
counts, tend to be of more use. For completeness, however, all four types of
algorithms are presented and discussed here.
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Binning of star counts

The simplest method to estimate local density enhancements is binning
stars in patches of the sky. The patches are usually chosen to be rectangular
for ease of computation, sometimes having overlapping edges if robustness
to noise is important. “Hot” bins, which have collected a large number of
point sources, could then be selected as candidates for further analysis. Be-
sides being very computationally efficient this method also allows us to look
at the problem in a more statistically rigorous manner. As we’re dealing with
a large number of point sources, if we keep our bins small enough the number
of stars that fall into a bin could be regarded as following the Poisson distri-
bution. One example of such approach is the work of Mercer et al. (2005).
Square bins of 0.01 degrees in size were used. If the average count of stars
that fall into a bin is approximately constant throughout all bins, the counts
can then be characterized by a single Poisson distribution. This allows us to
simply select bins that have a sufficient number of stars as candidates. Al-
though the homogeneity assumption doesn’t hold in reality, as densities tend
to increase towards the galactic disc and bar, Mercer et al. (2005) still found
~ 30 cluster candidates, half of which matched previously cataloged clusters.
An improved, region-adaptive method is proposed to more realistically model
fields of varying densities. The improved method assumes areas of 5’ x 5’
(or ~0.1 degrees) are homogeneous and therefore can be described by single
Poisson distributions. The areas over denser fields tend to be more noisy, as
the mean of the Poisson distribution is equal to its variance. In order to apply
a global threshold of density these values need to be normalized. This is done
by estimating the mean and variance of star counts with a circular median filter
covering a 3’ x 3’ area. The bins are then mean-subtracted and divided by the
standard deviation. This effectively gives us values following the standard nor-
mal distribution. These values could then be searched for deviating densities as
before. This simple improvement more than tripled the number of detections
compared to the globally homogeneous model.

This method has been extensively applied to MW (Kirsanova et al. 2008;
Kumar et al. 2006; Borissova et al. 2005), as well as other galaxies (Karam-
pelas et al. 2009).
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The nearest neighbour method

Nearest neighbour methods approximate the density around a point source
with its distance to its j-th nearest neighbour. The density estimate, p;, of said
point is the inverse of this distance:

i1
m7
S(rj)

where r; is the distance of a given point source to it’s j-th nearest neigh-

pj= (1.3)

bour, S(r;) is the area of a circle with radius r; and m is the average mass.
Varying j can have drastic effects on density estimates. Small values capture
more localized structure, but are susceptible to noise, while large values rem-
edy this in exchange for reduced sensitivity to small density variations. This
method has been applied in search for proto-star clusters in the Small Magel-
lanic Cloud by Schmeja et al. (2009). The value of j = 20 is used and points
exceeding 30 were selected as cluster candidates.

Voronoi tesselation

Voronoi tesselation divides space into convex polygons, such that all of the
polygon edges are on equidistant lines between points. Density then can be
estimated by the inverse area of the polygon the point lies on. Although not
yet used for star clusters, Voronoi tesselation has been applied to the detec-
tion of galaxy clusters by van Breukelen et al. (2006). Much like in the case
of the nearest neighbour method, sufficiently deviating densities can then be
identified as cluster candidates.

Minimum spanning trees

In graph theory the minimum spanning tree (MST) is a tree connecting
all vertices in a graph such that the combined sum of edge weight is mini-
mal. When applied to point sources the edges are simply connections between
nearby points (in the sense of Delaunay triangulated edges) weighted by Eu-
clidean distances. Cutting off longer edges can then give you smaller sub-trees
that hopefully make up clusters. Unfortunately, this method is not very robust
to noise, but nevertheless has been used for cluster identification. Maschberger
et al. (2010) used a MST algorithm for cluster identification in simulations.
Meanwhile Beerer et al. (2010) has used MST to identify clusters in the star
forming region of Cygnus-X in the infrared spectrum.
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Though some effort has gone into using MST as a criteria for cluster selec-
tion its main use remains in analyzing and describing the structure of clusters.
Being formed in molecular clouds of a fractal nature clusters themselves tend
to retain some fractal structure. Sanchez & Alfaro (2009) analyzed 16 open
clusters in the MW and found a correlation between the Q parameter (Q = m/5,
where m is mean edge length and § is the normalized correlation length) of a
cluster’s MST and T'/r;, where T is age and r; is the tidal radius.

Although not directly applicable to detection, methods like this could serve
as another indicator of a cluster’s existence.

1.3.2 From motions

The stars of a cluster all generally move together. Knowing the velocities
of stars it should be possible to segment out these moving groups from the
background. This does not, by itself, differentiate between moving associa-
tions and actual gravitationally bound clusters, but is still a strong indicator of
cluster membership that can be later verified using other methods. Usually full
3D motions aren’t available for a large number of object, so we have to make
do with proper motions.

Scholz et al. (2015) attempted segmentation with proper motions using the
PPXML catalog, which has proper motion information on nearly 900 million
objects. The idea is similar to the previously outlined overdensity search —
point sources are binned spatially. Scholz et al. (2015) chose 0.25 x 0.25 deg
spatial bins. The main difference being — separate bins are used for objects
with different proper motions. These were chosen to fall within the error bars
of the majority of proper motion estimates — 15 mas/yr. Clusters can then be
identified as “hot” bins of a specific proper motion, indicating a concentration
of objects that are co-moving.

A new generation of methods is being developed for Gaia data, which in its
first data release contains the positions of over a billion sources (Gaia Collabo-
ration et al. 2016). Castro-Ginard et al. (2018) used positions, proper motions
and parallaxes of the Tycho-Gaia Astrometric Solution (Michalik et al. 2015)
to perform cluster search using the DBSCAN algorithm (Ester et al. 1996).
The clustering algorithm DBSCAN is utilized to search for overdensities in
the 5D space of positions, proper motions and parallaxes of point sources. The
algorithm requires two parameters: € and minPts. A hypersphere around each
point source with radius € is defined, and if the number of sources that are
nearby is greater than or equal to the minPts parameter (as measured by eu-
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clidean distance), the points are considered a part of the same cluster. Each
parameter is standardized separately, instead of using weights, when calculat-
ing the distance. These clusters are then verified by using an artificial neural
network, which is trained on CMDs of previously found real clusters available
in the Gaia data. The use of DBSCAN for object search in source catalogs is by
no means new, being attempted by Caballero & Dinis (2008) for finding over-
densities, Wilkinson et al. (2018); Xin-hua et al. (2014) for identifying cluster
members. However, the utilization of an artificial neural network for verifica-
tion of candidates is an important step in automating the whole pipeline, which
is essential when working with sources of large amounts of data, such as Gaia.

1.3.3 The cluster membership problem

Detecting purely spatial density enhancements or correlations in proper
motions is enough to determine cluster existence only in the most simple of
cases. Massive globular clusters in sparse fields, for example, are already quite
apparent in images and no further verification might be necessary. Neverthe-
less even in such cases accurate cluster star membership is useful for further
analysis. For smaller clusters this is even more true. The limited number of
members can have adverse effects on any parameter determination method. In
some cases if accurate fits cannot be obtained, for example, in a CMD, the stars
could even be discarded as a non-cluster. In this sense the estimation of pa-
rameters is an essential part of cluster detection. If we wish to search for small
clusters in dense fields, simply thresholding on density deviations will produce
a lot of false positives — random fluctuations in density concentration of back-
ground stars. Proper motions aren’t always available for a sufficient number
of stars, or might not be available at all. Even knowing proper motions is no
guarantee that we’ll be able to find a separation between background and clus-
ter stars, if it exists, as their errors can be quite large, especially for distant,
severely obscured objects.

In light of these difficulties statistical methods are preferable for this task.
Not only can we factor noise and measurement errors directly into the model,
but also reason about inclusion criteria with varying levels of confidence.
These ideas are by no means novel. Vasilevskis et al. (1958) proposed a
model where cluster star proper motions are assumed to be distributed by
a circular Gaussian distribution, and the field stars — an elliptical Gaussian.
Sanders (1971) extended this model in a more statistically rigorous manner,
using maximum-likelihood estimation. However, modeling both field stars and
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cluster members as Gaussians is problematic. Firstly, because field stars are
rarely normally distributed, especially spatially and secondly, because extend-
ing these methods with more realistic assumptions quickly yields algorithms
that are unwieldy to apply and lack universality.

Spatial and kinematic methods

More recently, Mercer et al. (2005) took a heavily spatial approach to this
problem. Clusters are described by two dimensional Gaussians, the mean u
defining their position and the covariance matrix X describing their size and
ellipticity. The probability density function of star membership in the sky area
A at position x = (x,y) is defined as:

f(x) +Z{ |Z] [ ;(X_.ui)TZil(x_.ui)]}7 (1.4)

where the first term defines the density of the stellar background as described
in Section 1.3.1. The second term is a sum of k Gaussians each describing
a probable cluster or subcluster, where 7; is the weight given to each mixture
component (7y being the background weight). With N stars being observed
in the sky area A, approximately To/N stars should belong to the background,
and ;N stars — to the i-th cluster. The parameters of this model are then found
using expectation-maximization (EM), which finds the set of parameters (7, 1
and X in this case) which maximize the likelihood of the model for all point
sources in the sky area A:

L(X|t,u,X) = Hf (1.5)

where X; is the j-th point source.

Since k is a fixed parameter some of the Gaussians can describe non-
cluster groupings or just statistical noise. Mercer et al. (2005) used the
Bayesian information criterion (BIC) for the removal of these false clus-
ters. Clusters are iteratively removed until the maximal BIC value, defined
as BIC =2In(L) —mIn(N), is found, where m is the number of free param-
eters. This allowed Mercer et al. (2005) to find 91 cluster candidates in the
GLIMPSE survey, 59 of which were confirmed by visual inspection to be open
or embedded clusters. A variant of this method has also been applied for clus-
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ter detection in the UKIDSS (Solin et al. 2012) as well as the VISTA variables
in the Via Lictea (VVV) survey (Solin et al. 2014).

Cabrera-Cano & Alfaro (1990) proposed a non-parametric method that
only assumes that separate groups (cluster members and non-members) ex-
ist, but places no constraints on their distributions. This is done using a kernel
density estimation method. The probability density function f is estimated
with kernel K at point (L, iy, x,y) as:

1 P — Mo My —Hyi X—X;i y—Yi
y My, X)) = K ) ) 3 ) 1.6
where hy, and h, are smoothing parameters. If we make the assumption that po-
sitional and kinematic variables are independent, we can factorize the function

f’ leaving us Wlth f(:uxnuyaxvy) = fli (.uxnuy)fr (xay)’ Where

fu (Mo lty) = TZZ < “x",”yh”y"> (1.7)
oi=1 hy U
and
1 X—X; Y—Yi
fr(xny)_nh%;K( hr 9 hr ) (18)

The kernel chosen by Cabrera-Cano & Alfaro (1990) was Gaussian, de-
fined as K(&) = \/% exp {—%52} The only free parameters in these equa-
tions are hy, and h,. They were estimated from data in the maximum likelihood
sense. The rest of the algorithm is simple: density estimates are calculated for
each star, and those that match a set threshold are counted as cluster members.

Including photometry

Kharchenko et al. (2012, 2013) took a more elaborate approach to the ones
discussed previously, putting less emphasis on spatial distribution and instead
analyzing star movement and photometric fits. Although Mercer et al. (2005)
used EM to iteratively fit their parameters, the method of Kharchenko et al.
(2012, 2013) relies on iterative fitting in a more explicit manner. This is be-
cause some decisions cannot be stated in probabilistic terms and have to be
continuously reevaluated. For example, fitting isochrones accurately requires
knowing which stars belong to a cluster, but the isochrone fits themselves are
used for calculating membership probabilities. The whole procedure then has
to be repeated several times until some sort of convergence is achieved. First,
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initial cluster position and size values are taken from catalogs. Only stars in an
area r, around a cluster were analyzed. This radius is defined as r, = r¢; +Faq4,
where r,4;; = 18 arcmin and r; is taken from literature (r.; = r,qq if it’s not
available). Then each star within this radius is characterized by its membership
probability, which is made up of four separate components: spatial probability
P;, kinematic probability P;;,, and two photometric probabilities Py and Pjg,
derived from three near-infrared filters available to the authors (J, H and Kj).
The spatial probability is simply defined as 1 within an outer cluster radius r
(determined by eye) and 0 everywhere else. The kinematic probability for the
i-th star is defined as:

g L (Bh - el (1.9)
kin 4 € &y ’ '

where [1 is the mean proper motion of the whole cluster, ' is the proper motion
of the i-th star and & is the proper motion error with a lower bound of 1.5
mas/yr. For the calculation of photometric probabilities isochrones are fit to
two color-magnitude diagrams: K;,(J — H) and Kj, (J — Kj). For a given K;
magnitude of a star, its assumed that it belongs to a cluster with probability
1, if its color is within the bounds of two smoothed isochrones: one fit for
single stars, the other for unresolved binaries of equal mass. The points on
these isochrones for a given K,are denoted as ¢, and c,. If the star’s color lies
outside these bounds, the photometric probabilities are defined as:

P —exp{ 5 [ASC} } (1.10)

where Ac’ = ¢! — ¢y if ¢ < ¢y and Ac? = ¢’ — ¢, if ¢! > ¢,. €| is the error of the

stars color index c'.

The final membership probability is then defined as P = P -
min { Pyin, Prer, Prxc }-

This method shows how more elaborate cluster parameters can be built
directly into the member selection criteria.

1.4 Discussion

To date most of the cluster detection algorithms are heavily heuristic ap-
proaches. Usually they can be separated into two steps: candidate selection, for

25



finding probable clusters, and detailed analysis, which is a more labor intensive
step for verifying found clusters and calculating star membership probabilities.
The first step is done for a few reasons. First of all, performing a detailed anal-
ysis on each patch in the sky is computationally infeasible. The number of
patches that need to be processed can easily be of the order of 10°. This is
exacerbated by the fact that some steps of cluster verification may need to be
done by hand, which would make such an exhaustive pipeline completely im-
practical. Secondly, most algorithms operate under the assumption that our
candidates are clusters with a high probability. This prevents simply extending
these methods for the analysis of the whole field, as the vast majority of sky
patches don’t contain resolved clusters. In order to achieve higher detection
rates we should strive to include as much information as possible in the candi-
date selection step without sacrificing performance. Assuming resolved point
sources, generally three types of data are available to us: spatial, kinematic and
photometric. As discussed previously, kinematic information is an easy way
to identify clusters, with some authors even using this information to perform
candidate selection. Unfortunately, even proper motions are not available for
a large number of point sources, especially in deeper, less imaged regions of
space. As object locations by themselves are a poor source of information, this
leaves us with photometric measurements.

Ideally an algorithm would account for all information jointly and for
each point source, modeling any dependencies intrinsically instead of using
heuristic rules, possibly even leaving only the final verification step to hu-
mans. Lately, with increasing computational resources there has been a push
for generative statistical models describing whole fields. However, finding the
parameters (such as star positions) w.r.t. observations in such models is an in-
tractable problem. There are ways to get approximate answers, such as replac-
ing the posterior distribution with an approximation (as is done in Regier et al.
2015) or sampling from the posterior directly by Markov chain Monte-Carlo.
Unfortunately, getting good quality solutions is still notoriously difficult even
for relatively simple models. All effort so far has gone into solely modeling
point sources and their parameters, sometimes including unresolved structures,
such as galaxies. The results look promising for small-scale experiments, but
it is unclear how difficult it would be to include more relational information,
such as the concept of a cluster. To the best of the author’s knowledge there
has been no work on this so far. The posterior is difficult to calculate as is
without imposing higher level variables that are heavily dependent on various
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other parameters.

In the author’s opinion a compromise is needed between the purely heuris-
tic, hand-tuned methods and modeling everything as a part of a joint distribu-
tion. If we look at detection as a classification problem, discriminative models
become a good alternative. We lose the ability to infer the values of variables
in an unsupervised manner, but this can be remedied by large amounts of la-
beled data — cluster and non-cluster samples — which can be easily obtained
using tools such as SimClust (Deveikis et al. 2008).

1.5 Conclusion

As a first step most star cluster detection methods found in literature rely
on binning stars either spatially or, in some cases, kinematically. The purpose
of this is finding density enhancements that are distinct from the surrounding
field. In theory this could be easily extended with more sophisticated methods
for density estimation. There has been some effort going in this direction, but
the performance differences are found to be negligible by most authors.

Density enhancements alone cannot lead to reliable detection methods, as
they can be caused by purely random fluctuations in star counts. This is espe-
cially true when looking for small clusters in dense fields — which is precisely
where most of the as of yet undiscovered clusters are located. These dense
candidates are usually verified by eye, before moving on to later stages of the
pipeline.

Verifying and collecting the member stars of a cluster could be called the
second step of detection. There has been effort in automating this procedure,
usually by trying to probabilistically reason about the separation of cluster
and field stars in spatial and kinematic terms. Kinematic information is an
especially good indicator of cluster membership, but looking ahead a lot of
significantly dust-obscured or distant observations are unlikely to have proper
motions within any reasonable error bounds. Reasoning about other indicators
of membership, such as photometric properties, although limited, has shown
good results. A good example are the methods of Kharchenko et al., detailed
in Section 1.3.

There is still a lot to be done in terms of aggregating all of the observational
information in a plausible and effective manner. Current systems require a lot
of human intervention in multiple stages of their pipelines, in effect negating
some of benefits of reasoning in a probabilistic manner. The role of people in
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judging the results is still far from being replaced, but with increasing amounts
of observational data, automation has to play a bigger role in cluster detection.
Unavoidably, machine learning methods will have to be an essential part of
such solutions. Hand-coded cases and simple heuristics don’t lend themselves
well to problems of increasing complexity.

Increasingly convolutional neural network models have gained a foothold
in computer vision research, oftentimes surpassing methods reliant on hand-
coding and heuristics, and sometimes exceeding even human performance on
said tasks. CNNs excel in discriminative tasks, which can be extended to
encompass cluster detection, classification and parameter inference. Further-
more, CNNs directly use the information from all pixels of an observation
instead of relying on compressed data, such as star catalogs. This makes them
ideal for unresolved and semi-resolved star clusters as well as different levels
of noise and cluster environmental factors, as modelling them only requires
data instead of sophisticated, hand-crafted generative models.
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Chapter 2

Inference of cluster age, mass,
and size

One of the benefits of CNN architectures is that parameter inference tasks
can be solved in much the same way as object type classification. This opens
up the possibility to perform astrophysical parameter inference from star clus-
ter images both accurately and efficiently, utilizing all of the available infor-
mation in each pixel of an image. However, the method first has to be trained
on either human-annotated or simulated mock observations.

The Panchromatic Hubble Andromeda Treasury (PHAT) (Dalcanton et al.
2012) provides high quality multi-band imaging data! along with human-
annotated star cluster catalogs (Johnson et al. 2012, 2015). These catalogs have
previously been analysed by Fouesneau et al. (2014) and de Meulenaer et al.
(2017), who provided cluster age and mass estimates using integrated photom-
etry. Based on resolved star photometry, Johnson et al. (2017) derived cluster
ages and masses. Previously, Caldwell et al. (2009) had derived cluster param-
eters of massive clusters in M31 based on spectroscopy. Sizes were estimated
from images using aperture photometry by Johnson et al. (2015). Therefore,
the PHAT dataset provides a good basis for testing CNN-based methods.

In this chapter, we propose a CNN architecture to estimate the ages,
masses, and sizes of star clusters. The network is trained on realistic mock
observations, with backgrounds taken from the PHAT survey. The method is
tested on a different set of artificial clusters. The chapter is organized into
the following sections: Section 2.1 gives details about the PHAT survey data,
Section 2.2 gives a summary of used deep learning based methods, Section 2.3

Uhttps://archive.stsci.edu/prepds/phat/
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describes the proposed CNN and its training methodology, Section 2.4 presents
the results of testing the method on artificial clusters.

2.1 Data

The PHAT survey data is extensively described by Dalcanton et al. (2012).
We have used stacked, defect-free mosaic (“brick”) images, which are pho-
tometrically (pixel values are in counts per second) and astrometrically (with
available world coordinate system information) calibrated. Multi-band images
for four bricks (19, 20, 21, 22) were obtained from the PHAT archive?. The
bricks were chosen to be located in the outer part of M31 disk for low stellar
background contamination. Although the PHAT survey was conducted in six
passbands, only three (F336W, FA75W, F814W) were used in this work be-
cause of their high signal-to-noise ratio. The frames in these passbands were
observed with WFC3 and ACS instruments, and have different PSFs as well as
exposure times.

Each passband image of a brick was transformed into a tangential projec-
tion with a common scale (0.05 arcsec/pixel) and size, oriented in such a way
that the pixel grids of the images are aligned with the north and east directions.
First, the world coordinate systems of images were aligned and then pixel val-
ues were transformed using the reproject® package from Astropy?, conserving
flux. Bicubic interpolation was used, providing appropriately resampled im-
ages for CNN training purposes.

The brick images contain a lot of saturated stars and extended objects,
which could introduce bias to the CNN training procedure. To deal with this,
we masked out real clusters and galaxies listed in catalogs by Johnson et al.
(2012, 2015) as well as stars brighter than 18 mag in the G passband of the
Gaia catalog (Gaia Collaboration et al. 2016). These regions were omitted
when generating backgrounds for artificial clusters.

To generate mock clusters of various ages, masses, and sizes, PARSEC
isochrones’, release 1.2S (Bressan et al. 2012), were used to sample stellar
masses according to the Kroupa (2001) initial mass function. A fixed metal-
licity of Z = 0.009 and no interstellar extinction was assumed. From the

Zhttps://archive.stsci.edu/prepds/phat/
3https://reproject.readthedocs.io/
“http://www.astropy.org/
Shttp://stev.oapd.inaf.it/cgi-bin/cmd
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Figure 2.1. An example of a mock cluster drawn with GalSim, without (top)
and with a random background from PHAT (bottom). Passbands are indicated
on top of each panel. A cluster with typical parameters of log,,(z/yr) = 8.0,
log,o(M/Mg) = 3.0, and r;, = 0.6 arcsec is shown. The red circle of r;, radius
encloses half of the cluster’s stars. The intensity of the images is normalized
with the arcsinh function.

isochrones the absolute magnitudes were taken, stars were placed at a distance
of M31 (McConnachie et al. 2005, 785 kpc) and their fluxes were transformed
to HST counts per second using HST calibrations for ACS (Avila 2017) and
WEC3 (Dressel 2012) cameras.

The spatial distribution of stars was sampled from the Elson-Fall-Freeman
(EFF) model (Elson et al. 1987), placing the cluster in the center of the image.

TinyTim® PSFs (Krist et al. 2011) were used to draw the individual stars
of the clusters. The PSFs used were 6x6 arcsec in size and drawn with the
GalSim package (Rowe et al. 2015) in the coordinate system of aligned PHAT
bricks. Artificial clusters were then placed on backgrounds taken from the
transformed PHAT bricks. An example of a mock cluster without and with a
background is shown in Fig. 2.1.

Ohttp://tinytim.stsci.edu/cgi-bin/tinytimweb.cgi
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2.2 Deep learning

2.2.1 Artificial neural networks

For a comprehensive review of artificial neural networks (ANNs) and the
algorithms for their training, we refer the reader to Haykin (2009). Here, a
short summary is presented as a basis for the methods used in this work.

The convolutional neural network used in this work is a type of ANN,
which is a machine learning model comprising multiple artificial neurons, each
taking a vector of inputs and producing a single output. The vector of inputs
is multiplied by a vector of weights, summed and then passed through a non-
linearity, called the activation function. One of the most common activation
functions is the rectified linear unit (ReLU), defined as f(x) = max(0,x) (Nair
& Hinton 2010).

An ANN can be trained using the gradient descent algorithm. This requires
training samples, which consist of inputs to the network (or observations), and
the expected outputs (targets). A loss function .7 is used to determine how
well the outputs of the network match the expected outputs in the training set.
The gradient of this loss function is computed for each sample with respect to
the weights of the neural network, and then the weights are adjusted according
to the gradient. In essence, the network’s weights w,; at iteration ¢ 4 1 are
updated from the weights w; at iteration ¢ by the formula w,;| =w;, — nV.Z,
where 1) is called the learning rate and is used to control the speed of the learn-
ing process. Large values of the learning rate result in quick learning, but the
model converges poorly due to large parameter steps near optima; meanwhile,
small learning rates have the opposite effect. It is important to control this
variable during training so that the training procedure converges.

In the most common form of an ANN, neurons are arranged in multiple
layers, where each layer has some number of neurons taking inputs from the
previous layer and producing activations for the next layer to process. Such
an arrangement is called a feed-forward network. The algorithm used for opti-
mizing such networks is called backpropagation, which provides a convenient
way to calculate gradients at each layer using the chain rule. With this algo-
rithm, the inputs are passed through the network, obtaining outputs. Gradients
are then calculated and propagated backwards, adjusting the weights layer by
layer so that the training error (loss) is minimized.

Since each neuron performs a non-linear mapping of its inputs, stacking
many layers of neurons results in a deeply non-linear model, which is bene-
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ficial in many real world tasks. However, backpropagation-based algorithms
often result in gradients vanishing and learning stalling in the lower layers, or
in gradients exploding, which results in divergence. Usually, these problems
are solved by either minimizing the number of optimizable parameters with
more restrictive neural network architectures, or restricting the possible values
of the network’s weights that can be obtained during training.

2.2.2 Convolutional neural networks

A convolutional neural network is one way to regularize the weights of a
neural network via architectural constraints. In a regular ANN, each neuron
takes input from every neuron in the lower layers. Meanwhile, in a CNN each
layer consists of learnable convolutional filters with a small number of param-
eters that exploit the 2D structure of images. Each convolutional filter may be
as small as a 3 x3 matrix, resulting in 9 optimizable parameters. The filter is
applied many times to its input by moving it by a step, called a stride, and a
lot of outputs for the next layer are produced. Training such models results in
increasingly more abstract feature detectors in the form of convolutional fil-
ters. The lower layers look for simple features, such as corners or edges of
objects. Deeper layers combine these features to form more abstract concepts
about objects present in an image, while discarding irrelevant information and
noise. It seems that this hierarchical pipeline of feature extraction is essential
to solving computer vision problems, as the neocortex of animals is known to
work in a similar way (Kruger et al. 2013).

In classical computer vision, hierarchy was usually implemented by hand.
Simple features were first detected and extracted, then combined into more
complex aggregates, that can describe whole objects, and later processed with
simple machine learning algorithms. These hand-engineered approaches, how-
ever, had subpar performance as real world data has a lot of noise, irregular-
ities, irrelevant correlations and a high level of variation. Meanwhile, CNNs
learn the necessary regularities from the data itself without any feature engi-
neering. This is also why CNNs are such a favorable algorithm to apply to star
clusters.

2.2.3 Residual networks

During the past few years, many variants of CNN architecture have been
proposed. It has become quite common in literature to reuse these standardized
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Figure 2.2. Example building block of a residual network (ResNet), consisting
of three sequential convolutional layers. The input is a 128-channel activation
map, which is passed through 64 1x 1 convolutional filters. The filters extract a
64-channel feature map. These features, after applying a ReLLU activation, are
then passed through 64 3x3 convolutional filters. The purpose of the first layer
is to compress the channels for the 3 x3 convolutional layer, which results in
less optimizable parameters. Then, the ReLLU activation is applied again and
the final 1x 1 convolutional layer expands the number of channels back to 128.
Finally, these outputs are summed with the inputs via a skip-connection and
passed through a ReLLU activation.

architectures in order to have a common ground of reference for measuring
improvements.

One such architecture is called the ResNet (He et al. 2016). Convolutional
layers in a regular CNN learn feature detectors, taking inputs from lower lay-
ers and mapping them to a representation, called a feature map. The idea of
a ResNet is that instead of learning to produce a simple feature map, a resid-
ual mapping on top of the features of the previous layer is learned. Denot-
ing the inputs of a layer as x, we’re looking for a mapping 7 (x), such that
F (x) = (x) —x (the residual function). This gives the desired mapping
as J(x) = #(x) +x. This has a convenient implementation for CNNs as a
skip-connection, which consists of simply taking the activations of a layer and
adding it to a deeper layer in the network’s graph (see Fig. 2.2).

The ResNet architecture has allowed He et al. (2016) to reach state-of-the-
art results on a few standard image recognition datasets with a lower number of
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network weights than the alternatives at the time. The training of ResNet type
networks is stable regardless of network depth since good results are achieved
with networks as shallow as 20 layers (ResNet-20) and as deep as 1202 layers
(ResNet-1202). Such networks also seem to work well on object classification
as well as detection and regression tasks. Therefore, they are ideal candidates
for application in clusters.

2.3 Methods

2.3.1 CNN architecture

In this work, the ResNet-50 version was used as a basis for the constructed
CNN. The network was adapted from the variant used for the ImageNet dataset
(Russakovsky et al. 2015). The usual inputs of this network are 224x224
pixel natural photographic RGB images (3 channels), which get compressed
very quickly in the lower layers to narrow feature mappings, because of the
large stride by which the convolutional kernels are moved. Meanwhile, our
inputs are 80x80 pixels in size (3 channels: F336W, F475W, F814W), but
we operate in a low signal-to-noise ratio regime. Therefore, we reduced the
stride of the earliest convolution operations, which should allow the network
to extract more low-level information. The network was implemented with the
TensorFlow package’ and is depicted in Figs. 2.3 and 2.4.

Considering that star clusters have rotational symmetry, rotating an image
should not impact what the network infers about it. One way to alleviate this
problem is with a method proposed by Dieleman et al. (2015): the original
image of a cluster is rotated by 90 degrees 3 times and passed through the same
convolutional layers. The resulting layer activations are then averaged before
the output of the network is computed (2nd block from the bottom in Fig. 2.3).
This enforces the idea that a rotated image of a cluster should result in the same
high-level representations in the network’s activations, as the parameters do not
depend on the rotation angle. The outputs of the network were represented as
a separate neuron for each parameter (age, mass, and size).

2.3.2 CNN training

The training procedure consists of propagating the images through mul-
tiple layers of convolutions until the outputs (in our case — the three cluster

https://www.tensorflow.org/
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Figure 2.3. A block diagram of the used CNN. The input image of a cluster
passes through the network top to bottom, with the output result being age,
mass, and size. All blocks with sharp corners depict singular layers, while
blocks with rounded corners are groupings of layers (see example in Fig. 2.2),
with the number on the left indicating how many times the group is repeated
sequentially and the name on the right corresponding to the layer names in Fig.
2.4. The blocks in color are parts of the network with optimizable parameters.
The last number in each row is the number of output channels from that layer.
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Layer Sizeorg)l?:nnels Operation
input | 80x80 3
convl |80x80 64 <7
max_pool | 40x40 64 3%3 max pool /2
1x1, 64 ]
conv2_x |40x40 128 3%x3,64 |X3
| 1x1,128 |
[ 1x1,64 |
conv3_x |20x20 256 3%x3,64 |x4
| 1x1,256 |
[ 1x1,128 ]
conv4d_x | 10x10 512 3%3, 128 |x6
| 1x1,512 |
1x1, 256
conv5_x | 5%5 1024 3%3,256 [x3
[ 1x1, 1024
avg_pool | 1x1 1024 | global average pool
fc1024 1x1 1024 fully connected
output 1x1 3 linear

Figure 2.4. The designed 50-layer CNN, based on the ResNet architecture. The
network’s layers are listed top to bottom, starting from the images of clusters
and with the final layer producing the cluster’s age, mass, and size. The con-
volutional layers are actually groups of blocks depicted in Fig. 2.2, with the
"_x" in the name standing as a placeholder for the block number. The size of
the outputs of each layer, both in spatial dimensions and in channel count, are
listed on the second and third columns. The last column lists the operations
that each layer performs. The layers or blocks with a stride of 2 are: max_pool,
conv3_1, conv4_1, and conv5_1; as can be seen when input and output sizes

differ by 2.
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parameters) are obtained. These outputs are directly determined by the net-
work’s structure and weights. The structure is fixed beforehand; however the
weights start out random and need to be optimized in order to construct an
accurate inferential model, mapping images of clusters to their parameters.

At each iteration of the training procedure, a batch of 64 clusters (which
includes all 3 passband images and their 4 rotated variants) is taken and propa-
gated through the network. The inferred output parameters are then compared
to the expected outputs and all the weights are updated according to a loss
function:

3
Z(targets,out puts) = Z smooth ¢, (targets; — out puts;), (2.1
i=1
where targets refers to the true values of a given cluster’s parameters, while
out puts refers to the parameters given by the network; i indicates parameter
number (age, mass, and size).

For comparing these values and deriving the training gradient for each of

the parameters, the following function was used:

0.5x2 if x| <1,

2.2
|x| —0.5 otherwise, @2

smooth ¢, (x) = {
which is a robust Manhattan distance based loss function (Girshick 2015); it is
more resilient to large prediction outliers than the more commonly used mean-
squared-error loss. The Adam optimizer (Kingma & Ba 2014) was used to
compute the network’s weight gradient updates.

The constructed CNN has ~7 million parameters. Even with a large
number of training samples, optimizing this many parameters is problematic.
Memorizing the images or unimportant peculiarities in the training data can
become much easier than learning actual generalized tendencies that produce
the output parameters we seek, resulting in overfitting. To combat this, we
used the dropout method (Hinton et al. 2012), which discards neurons ran-
domly during training from the network with probability pgropour. An example
of this can be seen in Fig. 2.5. This reduces overfitting by preventing neu-
rons from adapting to each other, in effect making the network more robust
to missing outputs from neurons in other layers. This was only done during
training with pgropour = 0.5, in the last fully connected layer seen in Fig. 2.3
(2nd block from the bottom). For inference, the fully trained network with all
of the neurons is used.
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Figure 2.5. Illustration of the dropout method (Hinton et al. 2012). The left
panel shows a fully connected feed-forward neural network, while the right
panel shows the same network with some of the neurons disconnected by
dropout.

2.3.3 Artificial clusters

Each cluster’s age was sampled from the logarithmic range of log(z/yr) =
[6.6,9.5] with a step of 0.05 dex; mass was sampled uniformly as a real number
from the logarithmic range of log(M /M) = [2.0,4.0] to cover the majority of
real young, low-mass M31 clusters studied by de Meulenaer et al. (2017). The
cluster’s star count surface density radial profile (r) was sampled from the
EFF (Elson et al. 1987) model:

w(r) = po(1+r*/a*) 12, (2.3)

The parameters a = [0.05,6.4] arcsec and y = [2.05,8.0] were sampled in a
logarithmic space within the curves defined by constant r;, values (between 0.1
and 1.6 arcsec), as shown in Fig. 2.6. We define ry, as the radius of a circle on
the sky enclosing half of a cluster’s stars. These values at the assumed M31
distance (785 kpc) roughly correspond to real cluster sizes in M31 (Vansevicius
et al. 2009; Narbutis et al. 2014). The setup was chosen to target low mass
semi-resolved star clusters in order to demonstrate the CNN’s capabilities in
low signal-to-noise ratio conditions.

Samples of artificial clusters were generated with these parameters and
combined with backgrounds of M31 stars. In order to accurately model photon
noise the process is as follows. A random image of a background is selected
and its photon count median value is determined. This median is then added
to the image of an artificial cluster and then each pixel is sampled from a
Poisson distribution, with its mean set to the pixel’s value. The median is then
subtracted back from this image and the real background image is added. The
counts per second of the images were then transformed with the logarithmic
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Figure 2.6. Used EFF parameter space and corresponding lines of constant ry,.
Clusters for CNN training were sampled from lines, while dots correspond to
the values of r;, used to construct a grid of the artificial test samples.

function log(x+ 1). The resulting images were 80x80 pixels in size, which
correspond to 4 x4 arcsec, or 15x 15 pc at the distance of M31 (785 kpc).

Examples of the generated clusters with different ages, masses, and sizes,
covering most of the parameter space, are shown in Fig. 2.7, the background
is the same for all of the displayed clusters. For more examples drawn in all
passbands available in PHAT data see Figs. A.1-A.4.

We generated 200,000 images of artificial clusters as a training sample for
our CNN. A batch size of 64 images per training step was used. To ensure that
the training procedure of our CNN would converge, we experimented with var-
ious learning rates, starting from 1 = 0.1, down to 1 = 0.0001. The learning
rate of 1 = 0.01 gave the best performance on the validation set, so this was
the value used for the final training of the network. A few different learning
rate schedules were also tried out. Decreasing the learning rate twofold after
every pass over the data gave the best results in our case. In order to control
for overfitting we trained the network for 10 passes over the data while contin-
uously monitoring its performance. The results on the validation set remained
stable after about 3 passes, therefore, we chose to stop after 5 passes over the
training data.

In addition, to test whether our training sample of 200,000 clusters is suf-
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Figure 2.7. Examples of generated clusters on a real background image. The
ages of all of the displayed clusters are: a) log(¢/yr) = 7.0, b) 8.0, ¢) 8.5, d)
9.0. The masses and ry, values are varied as shown on the axes. The intensity
scale of the images was normalized with the arcsinh function. The background
is the same for all of the displayed clusters for clarity.
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ficient for the network to generalize, we also trained our network with as little
as 50,000 and as many as 400,000 cluster samples. During these experiments
we didn’t observe a significant difference between the inference results when

trained with smaller or larger sample sizes.

2.4 Results and discussion

The data sets for testing the CNN were prepared by drawing from the same
age and mass ranges as described in Section 2.3.3. However, for ease of analy-
sis, the EFF model parameter ¥ and a pairs were chosen in such a way that the
value of r, would be equal to one of the following values: 0.16, 0.25, 0.4, 0.63,
1.0 arcsec (see Fig. 2.6). The procedure of image creation was also identical
to that of the training data. The backgrounds for clusters were picked making
sure that they would not overlap with the backgrounds used for the training set.

2.4.1 Parameter accuracy

To test the performance of the CNN, we built a bank of 10,000 artificial
clusters by varying all 3 cluster parameters. The ages were sampled from
the range of log(z/yr) = [6.75,9.25]; mass was sampled from the range of
log(M/Mg) = [2.25,3.75] and ry, as shown in Fig. 2.6.

Differences between true and CNN-derived parameters vs. true parameter
(age, mass and ry,) values of the testing set’s artificial clusters are shown in
Fig. 2.8. For the comparison in the figure the true ages are binned into 0.5
dex width bins, and the true masses into 0.3 dex width bins. The r, value bins
correspond to combinations of a and y parameters denoted as dots in Fig. 2.6.
The spread of the parameter differences within bins is displayed as box plots.
The line in the middle of each box is the median difference between the true
and derived values. Boxes extend from the 1st to the 3rd quartiles. Whiskers
denote the range between the 2nd and the 98th percentiles. Anything above
and below the whiskers is plotted as separate points.

Fig. 2.8a shows no significant age difference between the true and derived
values. The typical standard deviation of the age difference is estimated to be
~0.1 dex. The youngest clusters show a slight systematic bias towards older
ages, as can be seen by the non-symmetric whiskers. This is also true for the
oldest clusters in the test sample; only the bias is reversed. This could be ex-
plained as an age boundary effect due to the stellar isochrone age range limits
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Figure 2.8. Differences between CNN derived and true parameters vs. true pa-
rameter (age, mass, and size) values of artificial clusters. The ages are binned
into 0.5 dex width bins, and the masses into 0.3 dex width bins, while r;, bins
correspond to EFF model parameters indicated by dots on the constant r;, val-
ues in Fig. 2.6. The widths of the boxes for age and mass correspond to half
the widths of the bins. The spread of the parameter differences are displayed as
box plots. The line in the middle of each box is the median error. Boxes extend
from the 1st to the 3rd quartiles. The whiskers denote the range between the
2nd and 98th percentiles. Anything above and below the whiskers is plotted as
separate points.
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used for the CNN training. Fig. 2.8b shows the true and derived age value dif-
ferences plotted against the true cluster masses. The median differences have
no systematic shifts. However, the least massive clusters show a larger mass
error spread, with standard deviation of the differences as high as ~0.15 dex.
The errors get systematically lower as we move towards the higher masses,
stabilizing at a standard deviation of ~0.05 dex for the most massive clusters.
This could be explained by the low signal-to-noise ratio of log,,(M/Mg) =2.4
clusters, as can be seen from Fig. 2.7. In Fig. 2.8c the error standard deviations
are equal to ~0.1 dex across the whole range of the true r;, values with a slight
systematic bias for the least and most massive clusters.

Fig. 2.8d shows no systematic errors when deriving cluster mass as cluster
age varies. However, the spread of errors does get larger towards older clusters,
as they tend to be dimmer and of lower signal-to-noise. In Fig. 2.8e there
are no systematic shifts; however errors are again larger for the lowest mass
clusters. This could also be explained by the very low signal-to-noise ratio of
log;o(M/Mg) = 2.4 clusters. In Fig. 2.8f the derived mass values do not seem
to vary with changing r;, values and only a very slight bias can be observed for
the smallest and biggest clusters.

Fig. 2.8g shows consistently derived r; values with changing ages. Fig.
2.8h shows systematically larger derived r, values for low mass clusters, as
well as clearly larger errors. Fig. 2.8i shows a clear systematic trend deriving
larger ry, values for small clusters, as well as lower values for large clusters.
The shift in large clusters, with r;, as high as 1.0 arcsec, could be explained by
the fact that a significant portion of a cluster’s stars do not fit into the 4 x4 arc-
sec images, the size of which is restricted by the chosen network architecture
to minimize the background area for the majority of clusters.

2.4.2 Star cluster stochastic effects

In order to analyse the effects of star cluster stochasticity (initial mass func-
tion and star position sampling) on the CNN'’s inference results, we built a grid
of clusters (200 per node) with fixed age, mass, and size parameters. The only
random effects were background, star position, and mass sampling.

Fig. 2.9 shows three panels with different ages: log,,(¢/yr) = 7.0, 8.0 and
9.0. Each black dot corresponds to a node of 200 clusters of fixed true mass and
ry, as denoted on the axes. Ellipses show the spread of the derived parameter
values of these nodes. The arrows show the shift of the mean of the values
and the boundary of the ellipses enclose 10 of the 2D distribution (~39% of
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Figure 2.9. Tests results of CNN performance. Each black dot corresponds to
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Figure 2.10. Same as Fig. 2.9, but panels show r; vs. age for three different
masses.

the clusters). The size of the ellipses at low masses are approximately three
times larger than at high masses, especially so with the oldest ages. This is
because of the low signal-to-noise ratio of the old low mass clusters, as can be
seen in Fig. 2.7d. Low mass clusters tend to have slightly overestimated sizes.
No significant correlated systematic shifts between the biases (red arrows) of
derived mass and size can be seen.

Fig. 2.10 shows three panels with different masses: log,,(M /M) = 2.4,
3.0, 3.6. Black dots mark nodes of age and size as denoted on the axes.
The spread of the derived age and size values is largest for the lower mass
clusters, being at least three times larger for log;,(M/Mg) = 2.4 than for
log,o(M/Mg) = 3.6. However, at a fixed mass, there’s no correlated sys-
tematic shift between the derived cluster’s mass and size biases. The slight
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Figure 2.11. Same as Fig. 2.9, but panels show mass vs. age for three different

ry, values.

overestimation of sizes can be seen again for the lowest mass clusters.

Fig. 2.11 shows three panels with different sizes: log,,(r;/arcsec) = —0.8,
—0.4, 0.0. Black dots mark nodes of age and mass as denoted on the axes. As
seen in the previous figures, the spread of derived values tends to increase
towards the lower mass clusters. However, there is no obvious influence of
cluster size on the spread. A slight elongation of ellipses along the diagonal
can be observed between the derived mass and age for the older grid clusters.
This is because of the age-mass degeneracy, as the CNN has learned that older
clusters have lower flux, and lower flux can be explained either by an older
age or a lower mass. For log;(¢/yr) < 8.0 (as seen in Figs. 2.7a and 2.7b)
stochastic effects are dominant; however for log;,(¢/yr) > 8.0 (Figs. 2.7c and
2.7d) flux becomes the main factor in the mass-age correlation.

2.4.3 Overall CNN performance

The proposed CNN was verified on mock images of artificial clusters. It
has demonstrated a high precision and no significant bias for semi-resolved
clusters with ages between log;,(z/yr) = 7.0 and 9.0, and masses between
log,o(M/Mg) = 2.4 and 3.6. Artificial cluster tests have demonstrated the
effectiveness of CNNs in deriving star cluster parameters.

Even in the low mass regime it is possible to recover both age and mass
as seen in Fig. 2.11. However, the plots show only one ¢ (~39%) of the 2D
distributions, which means that for the lowest mass clusters five age groups can
be identified. As mass increases, the number of identifiable groups increases.
The same trend is also seen in Fig. 2.8b and holds regardless of cluster size
(see Figs. 2.8c and 2.8f). Note that even though this is true on average, there
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are still outliers with a parameter derivation error as large as 0.6 dex for the
low mass clusters (Fig. 2.8b).

The low mass clusters shown in Fig. 2.7d are not visible to the naked
eye. Nevertheless, the network still learns on the limited amount of signal
and manages to produce valid parameter estimates. Even though the old age
lowest mass clusters have been included, in real surveys they would be omitted
because they would fall below the detection limit.

Meanwhile, for the cluster size, only three categories can be identified in
the lowest mass regime as can be seen in Fig. 2.9. This is, however, unsur-
prising as the signal-to-noise ratio of these clusters is low (see Fig. 2.7). This
is especially true for the oldest clusters. However, higher masses allow us to
identify up to five size groups. Fig. 2.8h also confirms this finding.

Currently, evolutionary and structural parameters of semi-resolved clusters
are estimated separately and in two completely different ways. Usually, for age
and mass estimates a grid of models is constructed by varying the parameters
of interest and comparing the resulting mock observations to real observations
(Bridzius et al. 2008; de Meulenaer et al. 2013). Meanwhile, a common ap-
proach for structural parameters is Markov chain Monte Carlo sampling of
the parameter space (Narbutis et al. 2015). Both of these methods essentially
sift through a large number of possible observations to get a likely parameter
estimate or the distribution over the parameters.

CNNs, while still requiring a sample of mock clusters for their training,
are able to learn the properties of the system they’re modeling within their
weights and generalize better to new examples. This also allows the derivation
of both evolutionary and structural parameters in a unified way, using all of the
available information in image pixels.

The information registered in image pixels is affected by many additional
factors, which were not included in the CNN training; the PSF shape is ex-
pected to be the most significant among them for cluster size. In this work, a
fixed PSF, simulated for the center of the detector, was used. This was done
for both the training cluster images and the test sets. In order to find the effects
of variable PSFs on the network’s performance, tests were done with the PSF
taken from a corner of the detector; however the effects of this were negligible.
In order to test the network’s robustness to different views of the cluster, we
also tried running the CNN on shifted and rotated cluster images. This, how-
ever, proved to have a negligible impact on the uncertainty of derived values.

Extinction and metallicity are also significant factors in age and mass
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derivation (de Meulenaer et al. 2014, 2015a). Since for the first time we at-
tempt to derive both evolutionary and structural parameters, we assumed zero
extinction and fixed metallicity just to demonstrate CNN performance. At
fixed extinction and metallicity the CNN demonstrates good accuracy for age
and mass derivation.

In comparison to methods where any sort of fitting or sampling procedure
needs to be performed, a CNN can obtain parameter inference results from
an image very efficiently. All experiments in this work were performed us-
ing a GeForce GTX 1080 graphics card. The initial training procedure on the
200,000 clusters takes ~6 hours; however this only needs to be run once. In-
ference runs much faster, taking 40 seconds per 10,000 images of all three
passbands.

2.4.4 Tests on real clusters

To validate our method on real star clusters we took the sample of clusters
used by de Meulenaer et al. (2017). From those clusters we selected only
objects located on PHAT bricks 19-22. The CNN in our study was trained
ignoring extinction entirely, therefore it is not possible to derive the parameters
of significantly reddened clusters correctly. However, extinction estimates for
the chosen clusters have been published by de Meulenaer et al. (2017). In order
to run our experiments, we corrected the cluster images in each passband for
the extinction effect by increasing their corresponding flux.

We then used our CNN to infer the cluster age and mass. Figure 2.12 shows
a comparison between our results and those of de Meulenaer et al. (2017). A
good agreement between the derived values can be seen. However, this result
can only be used for a preliminary validation of the method. By increasing the
flux of our real cluster sample to remove the effects of extinction, we change
the flux of not only the cluster itself, but also of its background. On the other
hand, the artificial clusters used in this work, while themselves drawn with-
out extinction, are superimposed on real backgrounds which are affected by
extinction. This makes any results on real clusters unreliable, introducing pos-
sible degeneracies. However, the preliminary results are promising and show
a clear applicability to real clusters.

In order to deal with real clusters correctly our CNN needs to be trained on
images with various extinction levels, as well as to be able to predict extinction
in the same way it currently predicts age, mass, and size. However, for a
reliable derivation of extinction more photometric filters are required.
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Figure 2.12. Comparison of ages (a) and masses (b) derived by de Meulenaer
et al. (2017) and our CNN for 157 real PHAT clusters located in bricks 19-22.
The correlation coefficient p between values is displayed in the top-left of each
subfigure.

2.5 Conclusions

We have proposed a convolutional neural network based on the ResNet
architecture for simultaneous derivation of both evolutionary and structural
parameters of star clusters from imaging data. Artificial cluster images were
combined with real M31 backgrounds observed with the HST and used for
training the neural network.

The proposed CNN was verified on images of artificial clusters. It has
demonstrated a high accuracy and no significant bias for semi-resolved clusters
with ages between log(¢/yr) = 7.0 and 9.0, masses between log,,(M /Mg) =
2.4 and 3.6, and sizes between log,(r;,/arcsec) = —0.8 and 0.0.

We have shown with artificial tests that CNNs can perform both structural
and evolutionary star cluster parameter derivation directly from raw imaging
data. This allows dealing with both unresolved and semi-resolved cases homo-
geneously, as well as utilizing multiple photometric passbands in an integrated
manner.
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Chapter 3

Extinction and
cluster/background
classification

In Chapter 2 we have implemented a CNN-based algorithm to simultane-
ously derive age, mass, and size of clusters in the low signal-to-noise regime.
The algorithm was applied to M31 clusters, cataloged by The Panchromatic
Hubble Andromeda Treasury (PHAT) survey. We have found that even when
including information from all pixels and using accurate flux calibrations, in-
terstellar extinction still plays a major role in influencing the results of param-
eter inference.

Numerous previous studies have explored physical parameter inference by
taking into account the extinction problem, but were focused on the cases of
resolved stellar or integrated cluster photometry. Among them are works by
BridZius et al. (2008), who used analytically integrated stellar luminosities,
Fouesneau & Lancon (2010) and de Meulenaer et al. (2013, 2014), who used
stochastically sampled stellar luminosities according to the stellar initial mass
function (IMF), and SLUG, developed by Krumholz et al. (2015), which is
one of the most mature codes in stochastic cluster population simulation and
inference.

In this chapter we extend the CNN architecture proposed in Chapter 2 to
allow the inference of a cluster’s interstellar extinction directly from images.
With an eye towards automated star cluster detection, we also explore indica-
tors of cluster presence in images. The outputs of the network were modified
to infer multiple cluster parameters jointly, which allows the degeneracies be-
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tween them to be expressed in the outputs of the network, instead of relying on
single-point estimates. This is especially useful when visualizing and dealing
with age-extinction degeneracies.

We used the M83 galaxy HST survey (Blair et al. 2014), which covers the
entire disk of this face-on galaxy in a number of passbands. This allows us
to investigate the effects of extinction in a variety of dense and sparse envi-
ronments. Previous studies of the M83 star cluster population were based on
aperture photometry, such as Ryon et al. (2015) covering the whole galactic
disk, Bastian et al. (2011) who studied a smaller part of the galaxy in detail,
and Harris et al. (2001) covering its central region.

We trained the CNN on realistic mock observations and tested on mock
clusters, as well as validated on the aforementioned real cluster catalogs.

We also experimented with the re-normalization of image fluxes for each
passband separately when training the network, suggesting that precise pho-
tometric calibrations may not be necessary to derive star cluster parameters.
This was done in the vein of Dieleman et al. (2015), where JPEG color im-
ages were used to classify galaxies, achieving reliable results. This brings the
approach of analysis of astronomical images closer to the methods used on
natural images, which rarely have accurate flux calibrations.

The chapter is organized as follows. Section 3.1 provides details about the
MS3 survey data, the mock cluster bank construction, the added new param-
eters, and training data preparation. Section 3.2 describes the proposed CNN
and its training methodology. Section 3.3 presents the results of testing the
method on mock as well as validating on real M83 clusters previously studied
using integral photometry. Section 3.4 discusses the CNN parameter inference
results in an astrophysical context.

3.1 Data

3.1.1 MS83 mosaics

The M83 mosaic project data observed by the HST Wide Field Camera 3
(WFC3) (Blair et al. 2014; Dopita et al. 2010) was obtained from the Mikulski
Archive for Space Telescopes!. We use stacked, defect-free mosaic images
of 7 WFC3 fields, which are calibrated photometrically (pixel values are in
counts per second) and astrometrically (with available world coordinate system

Uhttps://doi.org/10.17909/T96888
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information). The details of image processing are provided by Blair et al.
(2014).

The mosaics cover the whole extent of the galaxy, from the dense center
to its sparse outskirts where stellar background contamination is low. For the
analysis we selected wide passband images that cover the whole galaxy with-
out gaps: F336W, F438W, and F814W. All three mosaics are of the same size
and in a tangential projection with a common scale (0.04 arcsec/pixel).

In Chapter 2 the M31 images were masked for saturated stars and extended
objects in order to prevent unreliable CNN training. The distance to the M31
galaxy is 785 kpc (McConnachie et al. 2005), however the distance to M83 is
4.5 Mpc (Thim et al. 2003), therefore only a few saturated stars are visible.
Because the area covered by extended objects in comparison to genuine stellar
backgrounds is negligible, we decided to skip the masking step altogether and
use all of the available mosaic area when selecting backgrounds for artificial
clusters.

3.1.2 Mock cluster generation

Mock clusters were generated with different ages, masses, sizes, and af-
fected by various levels of extinction. A fixed metallicity of Z = 0.03 (Her-
nandez et al. 2019) was assumed.

The procedure and the used parameter ranges are largely the same as in
Section 2.3.3. The age of each cluster was sampled from the logarithmic range
of log(z/yr) = [6.6,10.1] (with a step of 0.05 dex); mass was sampled uni-
formly from the logarithmic range of log(M/Mg)) = [3.5,5.5] to cover the ma-
jority of M83 clusters studied by Bastian et al. (2011). Extinction was drawn
from the range of Ay = [0.0,3.0] mag (with a step of 0.1 mag), by obtaining
the extincted isochrones computed for Cardelli et al. (1989) extinction curve,
with Ry = 3.1. We define ry, as the radius of a circle on the sky enclosing half
of the stars of a cluster. The spatial distributions of stars were sampled from
the Elson-Fall-Freeman (EFF) (Elson et al. 1987) profile:

w(r) = po(1+r*/a*) 12, 3.1)

The parameters a and Yy were drawn uniformly from logarithmic ranges of
[0.04,1.2] and [2.05,8.0] respectively, such that r, is within the limits of
[0.04,0.4] arcsec. These values at the assumed distance of M83 (Thim et al.
2003, 4.5 Mpc) roughly correspond to real cluster sizes in M83 (Bastian et al.
2011).
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Figure 3.1. Examples of generated mock clusters placed on a real background
image, which is the same for all panels. The ages of the displayed clusters are
shown on top of each panel. The mass and size, ry,, values are varied as shown
on the axes; extinction Ay = 0 mag. The intensity scale of the images was nor-
malized with the arcsinh function within identical pixel value limits for each
image. The yellow circles represent 7y, obs values (r, convolved with the point
spread function). The visibility (signal-to-noise proxy) value is displayed on
the bottom-left of each image for fainter objects with visibility < 100. Image
sizes are 64 x 64 pixels (2.6 x 2.6 arcsec) or ~60 x 60 pc at the distance of
MS3. In the images the color red corresponds to passband F814W, green to
F438W, and blue to F336W.
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Figure 3.2. Same as Fig. 3.1, but with Ay = 1 mag.
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The stars of the clusters were generated as follows. Given the initial mass,
M, of a cluster, star masses were sampled according to the Kroupa (2001) IMF
from Padova PARSEC isochrones? (Bressan et al. 2012, release 1.2S), obtain-
ing the absolute star magnitudes for passbands F336W, F438W, and F814W.
Then, the absolute magnitudes were transformed to apparent magnitudes at
the distance of M83 (Thim et al. 2003, 4.5 Mpc) and converted to the WFC3
camera counts per second for the three passbands using calibrations provided
by Dressel (2012). Finally, the 2D star spatial positions were generated by
sampling star distances from the cluster’s center according to the EFF profile
(with given a and Y values) and then distributing them symmetrically around
the center.

The GalSim package (Rowe et al. 2015) was used to draw the individual
stars of the clusters using TinyTim-generated® point spread functions (PSFs)
(Krist et al. 2011) for each of the three passbands. Every star in the cluster
was drawn separately for each passband using the appropriate PSF scaled by
the star’s counts per second. For a single cluster this produces three images,
which can then be visualized as either RGB pictures or given to a CNN as 3D
(width x height x passband) arrays. Artificial clusters were then placed on
backgrounds cut from the M83 mosaics. See Figs. 3.1 and 3.2 for examples of
the generated mock clusters.

To explore the photometric properties of the cluster bank, we show inte-
grated color-color and color-magnitude diagrams in Fig. 3.3. The magnitudes
depicted were obtained solely from integrating the total flux of mock clusters
and therefore are an idealized case which does not take into account the vari-
ations of background and spatial star positions. The only source of stochastic
effects in such a case is IMF sampling. Panels are dedicated to illustrate the
influence of age, extinction, and mass present in the bank. The effects of these
parameters are in different directions in the color-color and color-magnitude
space. The oldest clusters are red (panel a) and low-luminosity (panel e) ob-
jects. Clusters with high extinction are reddened (panel b), and the lowest mass
clusters are faintest (panel g).

The last column (Fig. 3.3, panels d and h) shows distributions of star clus-
ters filtered by mass (as specified on the color bar on top) and by extinction
Ay < 0.2 mag. The simple stellar population (SSP) tracks centered on the
specified masses are shown as black curves. In both color-color and color-

Zhttp://stev.oapd.inaf.it/cgi-bin/cmd
3http://tinytim.stsci.edu/cgi-bin/tinytimweb.cgi
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Figure 3.3. Integrated color-color and color-magnitude diagrams of 50,000
generated mock clusters. The color coding represents different ages (a, e),
extinctions (b, f), and masses (c, g). Their values are as noted on the color
bars on top. The last column (d, h) shows distributions of Ay < 0.2 mag star
clusters filtered by three mass ranges as specified on the color bar on top. The
simple stellar population tracks centered on the specified masses are shown as
black curves. The shaded area below the dashed line represents the F§14W

magnitude limit used to filter out faint clusters.
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magnitude space, it can be seen that lower mass clusters are more widely dis-
tributed due to the stochastic IMF sampling. The effects of mass on cluster
magnitude can be seen again in Fig. 3.3h as vertical shifts of the SSP tracks.

This means that a point in color-color and color-magnitude space can’t
uniquely map to a point in cluster parameter space. This is worsened by
stochastic IMF sampling effects and results in degeneracies with which any
parameter inference method has to deal with. In cases like this any additional
sources of information, such as individual image pixel values, are welcome.

Faint objects with mg336w > 24 mag, mpazgw > 23.5 mag, and mgg1aw > 23
mag were excluded from the cluster bank due to their low signal, to mimic
age/mass/extinction selection effects existing in magnitude-limited real cluster
samples. For the F814W band this is illustrated by the shaded gray area in Fig.
3.3. See the lower-left corner of panel d in Figs. 3.1 and 3.2 for examples of
such barely visible clusters.

3.1.3 Mock cluster properties

Samples of artificial clusters were generated with the described parame-
ters and placed on real backgrounds of M83. In order to realistically model
photon noise the following steps were applied. A cutout image of an M83
background from a random position in the mosaics is selected and its median
value is determined. This median is then added to the image of an artificial
cluster, multiplied by the exposure time to get photon counts, and then each
pixel is sampled from a Poisson distribution, with its mean set to the value of
the pixel. The median is then subtracted back from this image, the real back-
ground image is added and photon counts are transformed back to counts per
second.

We also define a cluster visibility parameter, constructing it to approximate
signal-to-noise in such a way that higher values would be assigned to clusters
that stand out relative to their stochastic stellar backgrounds. It is defined as
follows:

Je

visibility = ol (3.2)
n-oOp

where f. is the integral flux of the cluster within its 7y, _obs, While 0 is the stan-
dard deviation of the background’s pixel values in a 25 pix (1 arcsec) radius
aperture, and n is the number of pixels within r;, gbs. Here ry, b is the clus-
ter’s r;, value increased to account for PSF size, which has the largest effect
on the most compact clusters. A mock cluster with visibility = 1 has mean
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Figure 3.4. Examples of generated mock clusters with varying ages and
extinctions on real background images. The masses of the clusters are
log,o(M/Mg) = 4.5, their sizes are log,,(r;/arcsec) = —0.7. The images are
normalized as in Fig. 3.1. Top panel shows clusters superimposed on a sparse
background, while the bottom panel shows the same clusters superimposed on
a denser background. The visibility value is displayed on the bottom-left of
each image. The sizes of the images are 64 x 64 pix.
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flux per pixel approximately equal to the value of the standard deviation of a
background it is placed on.

See Figs. 3.1 and 3.2 for a variety of visibility values of clusters, displayed
as yellow text in the corner of each image, with Ay up to 1 mag. See Fig. 3.4
for samples of clusters with the full range of extinction (Ay up to 3 mag) used
in this work to illustrate the effect of background crowding on visibility. It can
be seen that the values of visibility correlate well with the ability to resolve
clusters by eye — the best tool for cluster detection up to date.

Note that for real clusters it is not possible to infer properties of back-
ground covered by cluster’s light, however by placing mock objects into back-
grounds, we can compute visibility parameter beforehand and train the net-
work to infer it from the data of real observations.

3.1.4 Training data preparation

To minimize the influence of photometric image calibration accuracy, the
counts per second of each passband of a cluster’s image were individually
normalized to the mean of O and standard deviation of 1. They were then
rescaled with the arcsinh function. The resulting images were 64 x 64 pixels in
size, which correspond to 2.6 x 2.6 arcsec, or 60 x 60 pc at the distance of M83
(Thim et al. 2003, 4.5 Mpc). Examples of the generated clusters with different
ages, masses, and sizes, and without extinction, covering most of the parameter
space, are shown in Fig. 3.1. A series of different examples (star position and
mass sampling), but with extinction Ay = 1 mag, are shown in Fig. 3.2. We
generated 50,000 such images of mock clusters as a training sample for the
CNN. The backgrounds have also been precomputed for efficiency resulting in
80,000 cutouts that were combined with the cluster images.

3.2 Convolutional Neural Network

3.2.1 Architecture

Following the work in Chapter 2, the ResNet-50 (He et al. 2016) architec-
ture was used as a basis for our CNN. In addition, a series of modifications
were made to it in order to accommodate the different survey images, the
higher number of predicted parameters, as well as the degeneracies between
them. See Figs. 3.5 and 3.6 for details on the structure of the modified CNN.
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Figure 3.5. A block diagram of the CNN. The three-channel input image of
a cluster passes through the network top to bottom, with the output result
being age, extinction, mass, size, the cluster/background class classc/b, and
visibility. All blocks with sharp corners depict single layers, while blocks with
rounded corners are groupings of layers, with the number on the left indicating
how many times the group is repeated sequentially and the name on the right
corresponding to the layer names in Fig. 3.6. The blocks with non-white back-
grounds are parts of the network with optimizable parameters. The last number
in each row is the number of output channels from that layer. “ReLLU” indi-
cates the locations in the network where rectified linear activations are applied
between blocks.
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Output .
Layer Size | Channels Operation
input | 64x64 3
convl | 64x64 64 X7
max_pool | 32x32 64 3%3 max pool /2
[ 1x1,64 ]
conv2_x |32x32 128 3x3,64 ([x3
| 1x1, 128 |
[ 1x1,64 ]
conv3d_x | 16x16 256 3%x3,64 |x4
| 1x1,256 |
[ 1x1, 128 |
convd_x | 8x8 512 3x3, 128 |x6
| 1x1,512 |
1x1, 256
convS_x | 4x4 1024 3%3,256 [x3
1x1, 1024
avg_pool | 1x1 1024 global average pool
fc1024 1x1 1024 fully connected
t,Ay, M 20-10- 14
" 1x1 14 softmax
classcp 2
visibility 20

Figure 3.6. The designed 50-layer CNN, based on the ResNet architecture.
The layers of the network are listed top to bottom, starting from the images of
clusters and with the final layer producing cluster’s parameters. The convolu-
tional layers are actually groups of blocks, with the “_x" in the name acting
as a placeholder for the block number. The size of the outputs of each layer,
both in spatial dimensions and in channel count, are listed on the second and
third columns. The last column lists the operations that each layer performs.
The layers or blocks with a stride of 2 are: max_pool, conv3_1, conv4_1, and
conv5_1; as can be seen when input and output sizes differ 2 times. The last
layer has 4 groups of softmax layers branching out in parallel, with the first
predicting age, extinction, and mass, the second — cluster size, the third — the

cluster/background class, and the fourth — visibility.
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Figure 3.7. An illustration of the activations in the output layers of the CNN.
While training the CNN, target activation values are provided as a 3D Gaussian
distribution for age, extinction, and mass (centered on true values as denoted
by the red dot) and as 1D Gaussian distributions for r;, (the blue line) and
visibility (the red line). The cluster/background class is represented as a value

of 0 or 1. During inference the network produces similar outputs, examples of
which are depicted in Figs. 3.9 and 3.21.
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In Chapter 2 we used a method by Dieleman et al. (2015) to rotate the input
image multiple times and pass it through the same convolutional layers; to
simplify the network we omitted this step. The input image size was decreased
to 64x64 pixels to account for the smaller angular size of the clusters due to
the more distant galaxy. Three input channels were used corresponding to the
F336W, F438W, and F814W passbands.

In Chapter 2, the cluster’s parameters were predicted via linear output lay-
ers by treating it as a regression problem. This meant that each parameter
was predicted independently. However, due to age/extinction degeneracies and
age/extinction/mass selection effects (shown in Fig. 3.3) this approach is no
longer viable.

Therefore, we predict all of the parameters on a grid, with the positions
on it corresponding to the parameter values. This essentially transforms the
regression problem into classification, allowing the network to predict each
parameter in multiple locations of the parameter space, properly representing
some degenerate cases such as low-extinction and old-age being just as likely
as high-extinction and young-age.

The network’s output are 4 groups of layers branching out in parallel. The
first group predicts age, extinction, and mass, the second — cluster size, the
third — cluster/background class (class,;), and the fourth — cluster visibiliry
(see bottom of Fig. 3.5).

Fig. 3.7 depicts the four output layer activations. We grouped age, extinc-
tion, and mass into a single output layer to allow the degeneracies between
these parameters to be expressed in the network architecture itself. This was
done by predicting them as activations on a 3D grid, with 20 bins for age, 10
for extinction, and 14 for mass. When flattened, this results in a softmax layer
with K = 2800 neurons. For class.;, K =2 neurons were used to encode the
likelihood of a cluster’s presence in the image. For the remaining parameters
single-dimensional grids were used, resulting in K = 14 neurons for size and
K =20 for visibility.

Each of the four groups of output parameters were represented as softmax

activations:
@) G
O Z i = I -
)y j= | €%

where 7 is the activations of a whole layer, and i specifies the index of a neuron

(3.3)

(position on the parameter grid). The network was implemented with Keras*

“https://keras.io/
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and TensorFlow> packages.

3.2.2 Training and inference

When training the network, we wish to infer both class. s, which indicates
the presence of a cluster, and the cluster’s astrophysical parameters at the same
time. To that end learning the class, /, parameter was modeled as a simple bi-
nary classification task. The network is trained on batches of 512 images, half
of which are images of backgrounds, and the other half are images of back-
grounds combined with clusters as described in Section 3.1.2. For the images
with only background in them we set class./, = 0, while for the samples with
clusters we set class.;, = 1.

In addition, for background images we zero out the training loss gradients
for all cluster parameters. In effect this causes gradient updates to only be de-
rived from the class.;, and visibiliry parameters, both of which are set to 0,
indicating that the background contains no cluster. Training proceeds by sam-
pling from M83 backgrounds (~25,000 images) and the cluster bank (50,000
mock clusters) separately, combining the cluster and background images on
the fly, effectively giving us over 10° unique training samples.

The usual way to encode real-valued parameters as bins is called one-hot
encoding. The parameter space is divided into bins and the bin at the position
of the parameter’s value is set to 1. This array is then passed as a target vector,
¥, for the network. One-hot encoding is ideal for categorical classification,
where only one of the target bins is true at a time. However, for binned real-
valued parameters this has the unfortunate side-effect of penalizing bins far
away from the target just as much as bins nearby to it. The way we solve
this is by inserting a Gaussian distribution centered on the true value of the
parameter (see Fig. 3.7). For the case of r;, and visibility this is a simple 1D
Gaussian, with a standard deviation equal to 0.5 the width of a bin. For age,
mass, and Ay a 3D Gaussian was used, with a standard deviation equal to 0.25
the width of a bin.

To obtain parameter estimates from this network we need a way to trans-
form the network’s output activations back into single-point estimates that can
then be analyzed. The 1D and 3D histograms, depicted in Fig. 3.7, need to
be “unfolded”. This was done by finding the bin with the highest value in
the histogram, which represents the most likely set of parameters inferred by

Shitps://www.tensorflow.org/
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Figure 3.8. Binary classification accuracy metric for class., on the training
(orange) and validation (blue) sets during the course of CNN training.

the network, and calculating a weighted average within a 3 bin radius. In ef-
fect this gives us an interpolated value in-between the bins making the output
real-valued instead of discrete. Examples of inference results on mock and
real clusters with both the raw activation outputs and the derived single-point
estimates are shown in Figs. 3.9 and 3.21.

For computing the training gradients for the network the categorical cross-
entropy loss function was used:

K
Z ==Y yilog(c(3)), (3.4)
i=1

where o (Z); is the neuron’s activation as described in Eq. 3.3, and y; is the
target output for the given training cluster image.

The Adam optimizer (Kingma & Ba 2014) was used to calculate the gra-
dients at each step of training. We experimented with various learning rates,
starting from 0.1 down to 0.0001, with the learning rate decaying down to
0.0001 at the final iteration of training for all experiments. The learning rate
of 0.01 gave the best performance on the mock validation set, so this was the
value used for the final training of the network. The best CNN model was se-
lected by picking the training iteration during which the CNN’s loss was the
lowest on the validation set. The training accuracy track of the class, param-
eter for the resulting model is shown in Fig. 3.8. This is the only parameter for
which accuracy can be meaningfully calculated, because the other parameters
are encoded as Gaussian distributions.
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3.2.3 Output activations and stochastic effects

Three types of stochastic effects play a major role in the variation of CNN-
inferred cluster parameters: 1) stellar mass sampling, 2) star spatial position
randomization, and 3) background field.

We combine stellar mass and position sampling into one stochastic fac-
tor as a property of the cluster itself, while leaving the background choice as
a property of its environment. We study both effects separately by a) gener-
ating different clusters with fixed parameters and placing them on the same
background, and b) placing the same cluster on different backgrounds.

Fig. 3.9 displays the influence of stochastic effects on the inference results
of mock cluster. Left column shows clusters with log;,(M/My) = 5.0, ex-
tinctions Ay = 0.5, 1.5, 2.5 mag, and log(z/yr) = 7.5, 8.5, 9.5. Right column
shows clusters with Ay = 0.5 mag, log;,(M /M) =4.0, 4.5, 5.0, and the same
ages. Cluster sizes are fixed at log;,(r/arcsec) = —0.6 for all cases. The top
row shows the results of inference when stellar IMF sampling and spatial po-
sitions are varied while holding the cluster parameters constant. The middle
row shows the results of inference when background images are varied while
using the same cluster image. The bottom row shows visualizations of the an-
alyzed clusters in the same format as Fig. 3.4. The visibility parameter value
is displayed on the bottom-left of each image. Note that the CNN predicts
ages, masses, and extinctions as one 3D cube, while the outputs shown here
are marginalized either over mass (left column) or extinction (right column).

In Fig. 3.9 it can be seen that the inference results for clusters with high
visibility are all tightly packed for both types of stochastic effects (top and
middle rows). This applies for both the spread of the CNN activation maps
(grayscale) as well as the single-point estimates on different cluster images
(magenta dots).

However, as clusters get fainter, and especially when they disappear into
the background, the spread of activation maps (grayscale) as well as single-
point estimates (magenta dots) gets wider. Background variability has a signif-
icantly larger influence on the parameter spread than stellar sampling effects.

It is worth noting that for old clusters CNN output activations are elon-
gated, attempting to represent age/extinction degeneracies. For a small number
of cases bimodal solutions are obtained. However, for cases where clusters are
completely invisible both activations and single-point estimates end up tightly
packed. This highlights the importance of the visibility parameter.

We note that less than 1% of the clusters show the bimodal distribution
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Figure 3.9. Influence of stochastic effects on mock cluster inference results.
Left column shows clusters with log,,(M/Mg) = 5.0 and varied extinction
and age. Right column shows clusters with Ay = 0.5 mag and varied mass
and age. Cluster sizes are fixed at log,,(r;/arcsec) = —0.6 for all cases. The
top row shows the results of inference when stellar IMF sampling and spatial
positions are varied while holding the cluster parameters constant. The middle
row shows the results of inference when background images are varied while
using the same cluster image. The cyan circles correspond to the true values of
parameters. The grayscale colormaps are raw CNN outputs (activations over
the parameter space) for one specific case, while magenta circles show 100
single-point estimates obtained for different random cases. The bottom row
shows visualizations of the analyzed clusters in the same format as Fig. 3.4.
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of activations. About 20% of the samples show an extended unimodal distri-
bution, while the rest of the results are symmetric and unimodal. Therefore,
selecting the highest activation and obtaining single-point estimates from it is
a viable approach, as that captures most of the information present in the CNN
outputs.

Fig. 3.9 also illustrates the possibility to quantify the uncertainties of single
inference results either from the extent of activation maps or by sampling ran-
dom backgrounds, adding them to a cluster’s image, and re-running inference.
However, the former produces tightly packed activation maps for some high-
uncertainty samples, making them unreliable for low-visibility scenarios. The
latter can also introduce additional effects depending on the used background
sampling method, as well as the tendency to overestimate the uncertainties on
real clusters, where the background effects would get doubled.

In subsequent sections the single-point estimates will be analyzed with
respect to inferred parameter accuracy and the age/extinction degeneracy.

3.3 Results

3.3.1 Tests on mock clusters

To test the performance of the CNN, we built a separate bank of 5,000
artificial clusters. Their parameters were drawn from the same distributions
as described in Section 3.1.2. The backgrounds for these mock clusters were
also sampled from the used M83 mosaic, making sure that they are not the
same as the backgrounds used for training. The inferred parameter values were
obtained as described in Section 3.2.2.

Differences between CNN-derived single-point estimates of age, mass, ex-
tinction, and size vs. true parameters are shown in Fig. 3.10. The spread of
errors is visualized as a hexagonal density map with the count bins scaled log-
arithmically in order to highlight the spread of outliers. Dashed lines represent
the error bounds containing 95% of the inference results for each parameter.
Note that because of magnitude cuts introduced in the mock cluster bank, dis-
cussed in Section 3.1.2, the parameter distributions aren’t uniform. For exam-
ple, there are relatively fewer low-mass old-age clusters. In all of the panels,
the clusters that are classified as much younger than the true given values are
shown as red points, while the clusters classified as much older are highlighted
as blue.
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Figure 3.10. The true and derived parameter values of test mock clusters visu-
alized as a hexagonal density map. The bins are scaled logarithmically. Panels
show comparisons for a) age, b) mass, c) Ay, and d) r,. Dashed lines high-
light the area containing 95% of the clusters. Red dots represent the clusters
that were misclassified as younger than the real age values, while blue dots

represent clusters misclassified as older.
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Fig. 3.10a shows no significant difference between the true and derived
age values for log,,(¢/yr) < 8 and the distribution for all ages is symmetrical
along the diagonal. The 95% of all inference results deviate <0.9 mag from
the true values, as shown by the dashed lines. Starting at log,,(¢/yr) = 8 and
above a large scatter in both directions — towards older and younger ages can
be seen.

Fig. 3.10c shows the true and derived Ay values. The 95% of all infer-
ence results deviate <1.4 mag from the true values, as shown by the dashed
lines. The highlighted blue and red clusters are classified as having signifi-
cantly higher and lower extinction respectively. This can be explained by the
age-extinction degeneracy, as older clusters with low extinction are hard to
distinguish from younger clusters with high extinction, and vice-versa, when
using only three photometric passbands.

In Fig. 3.3a-b the age-extinction degeneracy can be seen in the lower S-
shaped part (mg336w — mraszgw > 0) of the color-color distribution of clusters.
Clusters older than log;,(¢/yr) = 8 with high extinction can be located in the
same color-color area as clusters with low extinction. These effects have also
been observed when using analytically integrated stellar luminosities (BridZius
et al. 2008) and remain when stochastic effects of IMF sampling are included
(de Meulenaer et al. 2014).

Fig. 3.10b shows the true and derived mass values. The 95% of all infer-
ence results deviate <0.4 dex from the true values, as shown by the dashed
lines. Overall no systematic effects can be seen, however the clusters high-
lighted in red have slightly underestimated masses and vice-versa for the clus-
ters highlighted in blue.

Fig. 3.10d shows the true and derived rj, values. No systematic effects
can be seen. The 95% of all inference results deviate <0.2 dex from the true
values, as shown by the dashed lines. However, for the smallest clusters the
error spread is as low as ~0.1 dex, while for the largest clusters the error
spread goes up to ~0.2 dex. This can be explained by the clusters with higher
rj, having lower signal-to-noise, as their stars are spread out over a larger area
in space.

Although in Fig. 3.10b due to the age-extinction degeneracy we observe
underestimated and overestimated cluster masses, size errors shown in panel
d show no such bias. This can be explained by mass being a function of a
cluster’s magnitude as can be seen in Fig. 3.3g, which makes the network
mispredict its value if age and extinction are also mispredicted. However, size
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Figure 3.11. Same as Fig. 3.10, but using a CNN which was trained on mock
clusters with simulated uncertainty of photometric calibrations.

has no impact on cluster magnitude or color.

As we use images normalized in a passband-independent manner, the in-
fluence of calibration accuracy to our method was also explored. Fig. 3.11
shows results obtained on the same dataset as Fig. 3.10, only with the CNN
trained on images with background fluxes that were varied from image to im-
age. The flux scaling factor was sampled independently for each passband as
a Gaussian with a mean of 1 and a standard deviation of 0.2. After multiplying
the background image flux by this factor the cluster images were added and the
final images normalized as usual. This encourages the network to learn param-
eter inference regardless of whether the calibrations for backgrounds match
mock clusters well. As can be seen when comparing Figs. 3.10 and 3.11,
the inference results are very similar, only with the error spread increasing for
each parameter by about 10%. This implies that accurate calibrations, while
still associated with slightly more precise results, are not essential for a CNN
to derive cluster parameters.

Fig. 3.12 shows the derived class,;, and visibility values for the 5,000 test
mock clusters, as well as a random sample of 5,000 M83 background images.
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Figure 3.12. Visibility parameter values vs. class.;, for mock (red) and random
M33 field (gray) samples. The histograms are marginalized logarithmic counts
of samples for visibility (right) and class, , (top). Top-right panel shows true
vs. derived visibility parameters of mock clusters as a logarithmic density map;
dashed lines outline the area containing 95% of the clusters.
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Figure 3.13. Inferred parameter distributions for the test cluster sample. The
panels show the following parameter combinations: a) mass vs. age, b) ex-
tinction vs. age, ¢) size vs. age, d) extinction vs. mass, €) size vs mass, and
f) size vs. extinction. Diagonal cutoffs in panels a) and b) are related to the
cluster detection limit, applied as magnitude cuts, shown in Fig. 3.3. The color
map represents the visibility parameter, which acts as a proxy for the selection
effects in a magnitude-limited sample, while also taking into account variable

cluster sizes and extinctions.
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As can be seen in the histogram on top, the class,/, parameter is predicted as >
0.5 for the vast majority of mock cluster images, and as < 0.5 for the majority
of background images. This suggests that the fraction of background images
that are classified as class.;, > 0.5 are likely to correspond to real clusters.
The visibility parameter is highly correlated with class, /,, again showing high
values for the majority of mock clusters and low values for the majority of
backgrounds. The few remaining mock clusters with class,/, < 0.5 have very
low visibility values, which indicates faint, nearly invisible objects seen in Fig.
3.4.

Fig. 3.13 illustrates selection effects by showing the derived age, extinc-
tion, mass, and size parameters of the test mock clusters, with the color bar
representing the derived visibility parameter value for each cluster. In Fig.
3.13a it can be seen that mass and age are correlated as expected when deriv-
ing the visibility parameter: clusters with lower mass and older ages tend to
be less visible (this can also be seen in Figs. 3.1 and 3.2). The same is true
for extinction (panels b and d), as higher extinctions tend to make cluster less
visible, and size (panels c, d, and f), as more concentrated clusters stand out
relative to their backgrounds.

Even though the cluster-related parameter inference results for background
images have no inherit meaning, the CNN produces values for all of its out-
put neurons regardless. Looking at these values can provide us with additional
insights. For example, we would expect backgrounds to be classified as low-
mass extended objects. Fig. 3.14 shows the derived parameters for the back-
ground images from Fig. 3.12, with dot size and color indicating class. .
Black dots are images with class,, close to 0, while red circles are images
with class.;, close to 1. As can be seen in Fig. 3.14e, the vast majority of
the backgrounds are classified as low-mass extended objects as expected, with
some probable cluster images being spread out more evenly through the param-
eter space. The derived age values of these images are spread out through the
whole age range (panels a, b, and c), however extinctions are heavily correlated
with ages as seen in panel b. As the network is trained to predict extinction and
age values regardless of what the cluster’s background looks like, there is no
intuitive value that should be predicted for background images in this case.
In effect the CNN avoids areas of age-extinction parameter space where the
appearance of an observed object is either extremely blue (low-extinction low-
age) or extremely red (high-extinction high-age), which can only be associated
with genuine clusters, resulting in this diagonal effect.
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Figure 3.14. Same as in Fig. 3.13, but for 5,000 randomly spatially sam-
pled M83 background images. For reference, derived mock cluster parameters

are shown as faint gray dots. Real background samples are shown as black

dots, that transition to blue and then to red. The dot size and color represents

class.p. The blue dots are objects with class.;, > 0.5 and the red dots are

objects with class.;, > 0.99.
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The class.;, parameter was shown to be useful in differentiating between
cluster and background images, while the visibility parameter is correlated
well with those cluster parameter ranges which can show more confidently
identified clusters. We conclude that these parameters can be useful indicators

in star cluster search application.

3.3.2 Validation with cataloged clusters

To validate our method on real clusters we used three previous M83 HST
star cluster studies which had published catalogs. This includes the study cov-
ering the whole galactic disk (7 WFC3 fields) by Ryon et al. (2015, R15), two
WFC3 fields by Bastian et al. (2011, B11) and the galaxies central region by
Harris et al. (2001, HO1).

The study by Bastian et al. (2011) is comprised of 939 objects. We dis-
carded objects with missing parameter values, leaving us with 889 of them
to compare to the CNN inference results. Bastian et al. (2011) estimated the
cluster age, mass, and extinction by comparing the integral photometry of the
observed clusters to SSP models. Meanwhile, the sizes of clusters were esti-
mated by fitting spatial models to F438W, F555W, and F814W band images.
For this comparison we took the median value of these three size estimates. As
the cluster magnitudes used by Bastian et al. (2011) were Galactic extinction
corrected, we shift the Ay values of those objects by 0.3 mag®. This was done
so that we could compare CNN-derived values directly, because we compute
total extinctions for clusters regardless of the dust source.

Figs. 3.15 and 3.16 show a comparison between Bastian et al. (2011) and
CNN-derived values. In Fig. 3.15 the red and blue dots represent clusters
with significantly overestimated and underestimated extinction values respec-
tively. They were defined as clusters that are outside the dashed lines in panel
¢, which represent the area containing 95% of mock cluster parameter deriva-
tions. This mirrors the situation with mock objects in Fig. 3.10, as the majority
of clusters with overestimated extinctions end up with underestimated ages,
and vice-versa for clusters with underestimated extinction values. These ef-
fects can again be attributed to the age-extinction degeneracy. In Fig. 3.16 the
green dots represent images classified by the network as likely to be real clus-
ters (class./, > 0.5), while the magenta dots are objects with class.;, <0.5.
The vast majority of the objects are classified as likely clusters.

Ohttps://irsa.ipac.caltech.edu/applications/DUST/
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Figure 3.15. The comparisons for a) age, b) mass, c) Ay, and d) r;, derived
by Bastian et al. (2011) and by CNN. Red dots represent clusters with over-
estimated, while blue dots represent clusters with underestimated extinction
values with respect to Bastian et al. (2011). The remaining clusters are colored

gray. Dashed lines outline the area containing 95% of the mock clusters.
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Figure 3.17. Same as Fig. 3.16, but with green dots representing objects from
Ryon et al. (2015) and cyan dots representing objects from Harris et al. (2001).
The horizontal bars denote minimum and maximum parameter values for age

and mass, and statistical errors for size, as provided in the catalogs.

Overall the derived ages and masses show a fairly good agreement between
Bastian et al. (2011) and CNN-derived values. Many of the objects have cata-
loged Ay = 0 mag values (shown as Ay = 0.3 mag in the figures, accounting
for Galactic extinction). The CNN derives higher extinctions for some of these
clusters, however, visual inspection has revealed that Galactic dust is unlikely
to be the only source of extinction for the majority of them. The sizes show a
good agreement for most of the objects, however, there is a subset of objects
with somewhat overestimated values.

For the comparison with Ryon et al. (2015) we used 478 objects which had
sizes obtained by 2D spatial model fitting as well as age and mass estimates
derived using spectral energy distribution fitting. We also took 45 objects from
Harris et al. (2001) with their age, mass, and extinction estimates obtained by
comparing the cluster photometry to theoretical population synthesis models.
Fig. 3.17 shows our results compared against both of these catalogs. Ryon
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et al. (2015) objects are denoted as green dots with the parameter error bounds
marked with black lines. Harris et al. (2001) objects are marked as large cyan
circles. For both of these catalogs a reasonable agreement with the CNN-
derived values can be seen, with only masses being slightly overestimated.
However, there’s some age estimate divergence over log,,(¢/yr) = 8, which is
similar to the situation in Fig. 3.15.

We have shown that the CNN is capable of deriving cluster parameters on
real clusters by comparing our results with those of other authors. The agree-
ments between the values are reasonable and follow the results obtained with
mock clusters. However, due to the age-extinction degeneracy with the used 3
passbands, the results with clusters older than log,,(¢/yr) = 8 are ambiguous
and should be interpreted carefully.

3.4 Discussion

We have shown the applicability of a CNN-based method in deriving a
variety of star cluster parameters from M83 mosaic images in terms of quan-
titative error analysis. However, the final aim for this method is to be of use
in star cluster search and automatic catalog construction. To this end, a better
look into the derived parameters is needed both in terms of each other, and
their context in the galaxy. In this chapter we look at derived values of the
Bastian et al. (2011) sample of objects in more detail.

Fig. 3.18 shows the inferred age, extinction, mass, and size parameters of
the Bastian et al. (2011) object sample. The objects are colored as in Fig. 3.16,
with mock results shown in the background. The clusters cover the whole pa-
rameter range well, with class.;, < 0.5 samples being classified as expected:
as low-mass objects (panel a). The minimal extinction line, with a large num-
ber of clusters around it, seen in panels b, d, and f, coincides with Ay ~ 0.3
mag, expected due to Galactic dust foreground in the direction of M83. Lines
of constant density are shown in panel e. The majority of the objects fall be-
tween 10 and 1000 M, /pc—3, which is consistent with results for clusters of
the M31 galaxy (Vansevicius et al. 2009).

Fig. 3.19 shows Bastian et al. (2011) objects marked on two fields of
the M83 mosaic. Objects of log,(¢/yr) < 7.4 are marked as blue circles in
panel a, log;(¢/yr) < 8.6 objects are marked as orange circles in panel b, and
log,(/yr) > 8.6 objects are marked as red circles in panel c. Panel d shows all
of the objects marked as dots, with Ay < 1 mag colored cyan, and Ay > 1 mag
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Figure 3.18. Same as Fig. 3.13, but for objects from Bastian et al. (2011), with
values derived by CNN. The green circles represent objects classified as likely
clusters, while magenta circles represent likely non-clusters, as in Fig. 3.16.
For reference, the derived parameters of the mock cluster set are shown as faint
gray points. In panel e lines show locations of clusters with the same density,
varying from 10 to 10* M, /pc=3. In panels b, d, and f the solid black lines
represent the amount of Galactic extinction in the direction of M83 (Ay = 0.3
mag).
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Figure 3.19. M83 mozaic of the FA438W passband observations, overplotted
with young — log;(z/yr) < 7.4 (blue), intermediate — 7.4 > log,,(¢/yr) < 8.6
(yellow), and old — log;(¢/yr) > 8.6 (red) objects from Bastian et al. (2011).
The last panel depicts objects with low — Ay < 1 mag (cyan) and high—-Ay > 1
mag (magenta) extinctions.

colored magenta. The spatial distribution of objects is sensible, with young
star clusters grouping around the galaxy’s spiral arms, near the dust clouds
where they were formed, and old clusters spread out more evenly throughout
the galaxy, as they had more time to drift away. The extinction distributions
are less clear-cut, however some crowding of high-extinction objects around
dust-heavy regions can be seen, as is expected. The spatial distributions of
age-selected clusters in Fig. 3.19 correspond well to the results obtained by
Fouesneau et al. (2012) using UBVIH«a fluxes to measure ages, masses, and
extinctions in the central region of M83. Sanchez-Gil et al. (2019) has derived
age maps for the M83 galaxy for stellar populations younger than 20 Myr,
which corresponds to the lower age range of clusters in this work.

We studied clusters with masses log(M/Mg) = [3.5,5.5]. This does not
imply that only such clusters are detectable with the HST/WFC3 observations
of M83. In fact, clusters of masses as low as log(M /Mg ) ~ 3 have been studied
by Whitmore et al. (2011) and Andrews et al. (2014). However, such clusters
are dominated by stochastic effects of IMF sampling making the analysis of
the effects of extinction problematic. The lower-limit of masses was selected
to focus on the effects of extinction as well as to align with the range of clus-
ters used by Bastian et al. (2011). The presented CNN classifies lower mass
clusters as being on the lower-limit of this range.

Fig. 3.20 shows the binned mass distributions obtained with the CNN. The
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Figure 3.20. Cluster mass distributions for samples with ages log;(¢/yr) <
7.7 (a) and 7.7 < log,,(t/yr) < 8.7 (b). Lines represent the power law mass
distribution function of the form dN/dM = A-M~2 -exp(—M/M.): M, = oo
(solid line, with the shaded area encompassing its Poisson standard deviation),
10° M, (dashed line), and 2.5 - 10° M, (dotted line).

gray outline shows all of the cluster distributions, with blue dots representing
clusters of log;(¢/yr) < 7.7 (panel a), and 7.7 < log,,(t/yr) < 8.7 (panel b).
The red lines represent Schechter type mass functions (Portegies Zwart et al.
2010b) with various amounts of truncation. The solid red line follows the non-
truncated power law dN/dM = A - M~2, the dashed red line follows A-M~2-
exp(Ta¢ ), and the dotted red line follows A - M2 - exp(551cs
distributions fit the data well for both of the age cuts, however, there is a lack

). The power law

of low-mass clusters (log,o(M /M) < 4) for the mid-age data sample. This is
due to selection effects, with fewer star clusters being detectable at those ages
(see Fig. 3.18a). Similar cluster mass distributions and selection effects have
been found in M31 (Vansevicius et al. 2009) and M33 (de Meulenaer et al.
2015b) star cluster samples.

Fig. 3.21 show examples of inference results on 3 distinct Bastian et al.
(2011) clusters chosen to illustrate the variety of CNN outputs (previously
sketched in Fig. 3.7). The top figure shows a young, low-mass cluster. The in-
ferred age and mass matches Bastian et al. (2011) parameters well. Extinction
is derived to be slightly higher, however the value is very close when Galac-
tic extinction is accounted for. The visibility parameter is derived to be ~15,
which corresponds well to similarly looking clusters in Fig. 3.2b.

In the middle, a cluster of log,(z/yr) ~ 8.3, medium extinction and high
mass is shown. The age, mass, and size correspond well to the values derived
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Figure 3.21. Examples of real clusters and their parameter distributions in-
ferred by the CNN. The left panels show the color image of each cluster in a
field of 7" x 7", with a 2.6” x 2.6” field used for inference highlighted with
a dashed square. The remaining panels depict inference results, with the his-
tograms showing the neural network’s neuron activations for the given param-
eter. Age and extinction is depicted as a 2D activation map marginalized over
mass to highlight the effects of age-extinction degeneracies, with the color bar
on the top indicating CNN output neuron activation strength. Parameter val-
ues derived by Bastian et al. (2011) are marked in cyan, and the CNN-inferred
values in magenta. Light-red shaded areas show parameter ranges where the
CNN produces activations, but which were not covered by the clusters used in
this work to deal with parameter boundary effects. The empty cyan circle in
the age-extinction map represents the values obtained after Galactic extinction

correction.
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by Bastian et al. (2011). Extinction is derived as slightly higher, however it’s
still within the range of CNN’s activations. The cluster is classified as brighter
by the CNN, with visibility ~ 25.

On the bottom an older cluster is depicted. Its mass and size estimates
correspond well, however extinction is overestimated in comparison to Bastian
et al. (2011). Furthermore, the neuron activations show a diagonal pattern
highlighting the age-extinction degeneracy which is hard to resolve with the
used 3 passbands. However, the higher-extinction results are more likely as
a significant amount of the field seen in the leftmost panel appears reddened,
which suggest the presence of dust obscuring the cluster.

As detailed in Section 3.2.3, there exists some correlation between the
spread of CNN output activations and the difficulty of inferring cluster pa-
rameters.

These results further validate the applicability of the CNN in deriving the
parameters of star clusters in realistic scenarios. In addition, the class,/, and
visibility parameters act as accurate proxies for cluster presence in images.

3.5 Conclusions

We have extended the method introduced in Chapter 2 to infer cluster
ages, masses, sizes, extinctions, as well as to account for the degeneracies
between them. Additional parameters were added for identifying the presence
of clusters on background images of M83, and judging their visibility (signal-
to-noise).

To train this network a bank of mock clusters was generated utilizing three
photometric passbands in the context of the M83 galaxy. The CNN was veri-
fied on mock images of artificial clusters with ages, log;,(¢/yr), between 6.6
and 10.1, masses, log,,(M /M), between 3.5 and 5.5, sizes between 0.04 and
0.4 arcsec, and extinctions Ay < 3 mag. Parameters derived by CNN have
shown a good agreement with the true parameters for log,(z/yr) < 8, with
higher age estimates being unreliable due to the age-extinction degeneracy.

Real cluster parameter inference tests were performed with three different
MS83 cluster catalogs from Bastian et al. (2011), Ryon et al. (2015), and Harris
et al. (2001) and have shown consistent results.

We have demonstrated that a CNN can perform evolutionary (age, mass),
structural (size), and environmental (extinction) star cluster parameter infer-
ence. In addition, the network is capable of giving an indication of cluster
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presence in images. Therefore, the created CNN is a useful tool for further
research in constructing a full pipeline of star cluster detection and parameter
inference.
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Chapter 4

M83 cluster population
inference

This chapter focuses on the application of a CNN to star cluster candidate
detection and parameter inference on the M83 galaxy HST data. A full pipeline
was constructed that performs star cluster analysis starting from multi-band
images and resulting in evolutionary, structural, and environmental parameter
estimates for 3,380 cluster candidates. This sample was used to analyse the
dependence of cluster parameters on their galactocentric distance and positions
relative to the spiral arms.

The chapter is structured as follows. In Section 4.1 we present the HST
image data and the mock clusters used in the training and testing of the CNN.
In Section 4.2 we present how the CNN is applied to cluster search, as well as
the artificial cluster tests used to measure its performance. Finally, in Section
4.3 we explore the results on the detected sample of cluster candidates through
various astrophysical aspects, and in Section 4.4 we discuss the limitations of
the method and some of the caveats of our results.

4.1 Data

We used M83 images described in Chapter 3, again only selecting F336W,
F438W, and F814W mosaics, which cover the whole galaxy without gaps
and allow homogeneous cluster search and parameter inference throughout the
galaxy.

Fig. 4.1 shows the M83 mosaic comprised of three passbands used in this
work, with superimposed mock clusters. For the training of a CNN a large
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Figure 4.1. Panel a shows the mosaic of seven HST WFC3 fields of the M83
galaxy in three photometric passbands: F336W (blue), F438W (green), and
F814W (red). Mock clusters used for artificial cluster tests (~26,000 in total)
are superimposed on the image in a dense grid, placing a cluster every 64 x 64
pixels. Panels b and ¢ show zoomed-in areas of the galaxy’s outskirts and
central region respectively. The superimposed mock clusters are of various lu-
minosities and appearances due to the random sampling of their ages, masses,
extinctions, and sizes.
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Table 4.1. Star cluster parameters

Parameter Notation Value Comment

Sampled and inferred

Age log(t/yr) [6.6, 10.1] discrete, step of 0.05 dex®
Mass log(M/Mg) [3.5,5.5] continuous
Extinction Ay [mag] [0, 3] discrete, step of 0.1 mag?
Size log(ry, /arcsec) [—1.4,-0.4] continuous EFF parameter sampling
Fixed
Metallicity VA 0.03 constant (Hernandez et al. 2019)
Distance d [Mpc] 4.5 constant (Thim et al. 2003)
Inferred
Visibility visibility ~ (~0.1, ~1,000)  continuous, a proxy for signal-to-noise
Cluster or background class., [0, 1] continuous, detection certainty
Computed
Density  log(p,/ (M -pc3)) [~0, ~5] continuous, computed within r;,

2From Padova isochrone bank with standard extinction law (Ry = 3.1).

number of mock cluster images with corresponding cluster parameters are re-
quired. Mock clusters are also needed to perform artificial cluster tests, which
allow us to estimate the network’s performance in an object search scenario.
The procedure used for generating the mock clusters is the same as in Chapter
3, with four main randomly sampled parameters: age, mass, extinction, and
size (see Table 4.1).

Only clusters of mp33ew < 24 mag, mpazgw < 23.5 mag, and mpgaw < 23
mag were selected for further use. See Figs. 3.1-3.4 for visualizations of mock
clusters, as well as their parameter values.

4.2 Method

4.2.1 Convolutional neural network

We used a CNN based on the ResNet50 architecture (He et al. 2016), de-
tailed in Chapter 3, capable of simultaneously inferring age, mass, extinction,
size, class,p,, and visibility parameters (see Table 4.1). The CNN takes 64 x 64
pix images of three passbands as inputs and produces the aforementioned pa-
rameters as outputs. We simulated mock clusters as described in Chapter 3,
placed them in randomly selected background fields of M83 and trained the
network to distinguish between random stellar backgrounds and clusters, as
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well as to simultaneously infer cluster parameters. The pixel values of each
passband image were individually normalized to the mean of zero and standard
deviation of one to minimize the influence of photometric image calibrations.

The continuous class.;, parameter gives us an indication of a cluster’s
presence in an image. Unlike the other parameters, it does not have a strict
physical interpretation, and it’s meant as a way for the CNN to express its cer-
tainty on whether the processed image contains a cluster. In contrast, visibility
was developed as a proxy for signal-to-noise, and is defined as the ratio of a
cluster’s flux divided by the standard deviation of its background. This pa-
rameter lets us control the faintness of cluster candidates that we detect. Since
class.s, works in the same way on all clusters regardless of their background
or parameters, and the masses of our training clusters can go quite low, it be-
comes an unreliable measure when the clusters are very dim or drowned out by
a dense background. Deciding whether objects like these should be included in
a sample needs a separate source of information. For this purpose the visibility
parameter is used. Lowering the values at which we cut off both of these pa-
rameters allows us to detect more of genuine clusters at the cost of more false
positives.

4.2.2 Cluster search procedure

For cluster search (regardless of whether they’re artificial or real) the net-
work was applied on input images of fixed size, which were obtained by slid-
ing a 64 x 64 pix window through the whole mosaic with a step of 1 pixel.
In every such window the CNN inferred the parameters that indicate a clus-
ter’s presence (namely class, /b and visibility), as well as age, mass, extinction,
and size. In effect, value-maps are obtained for the whole galaxy, where each
pixel has an associated set of inferred parameters. Of particular note is the
class.;, value-map, which can be interpreted as each pixel having an associ-
ated likelihood of there being a cluster centered on it. This approach is similar
to Hausen & Robertson (2020), who perform source detection, segmentation
and morphological pixel-by-pixel classification.

Star clusters of a wide variety of sizes exist and localizing their centers
precisely can be difficult. For sparser clusters, two nearby pixels can easily
be of nearly the same class.;, value and both of these pixels can be valid
interpretations of where the center is located. In such scenarios, while trying to
localize a cluster, simply taking pixels with high class,/, values is not enough.
Instead, we first smoothed the class./, map with a Gaussian kernel (¢ =3
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pixels) and then searched for local peaks. This produces a large number of
object candidates to work with.

Similarly, for each such object candidate, values of visibility, age, mass,
extinction, and size parameters are obtained by taking several pixels around the
peak of class, ;, into account. This was done by computing a weighted average
of the inferred parameters around a peak, using each pixel’s class,, value, as
well as its distance from said peak in a 5 x 5 window, as the weight. This
results in each object candidate having an associated set of inferred parameter
values.

4.2.3 Artificial cluster tests

Artificial cluster tests were used to evaluate the CNN’s detection perfor-
mance. For that we generated ~26,000 mock clusters and placed them on the
mosaic in a regular grid. The result of this can be seen in Fig. 4.1. The mock
clusters are spaced 64 pix apart from each other, covering the whole extent
of the mosaic. Fig. 4.1b shows a sparser outskirt of the galaxy with an OB
association. Most of the mock clusters can be easily seen in the sparser areas
of this image, however, even bright clusters can be out-shined by the dense
background of the OB association. Fig. 4.1c shows a central spiral-arm re-
gion of the galaxy, where fainter clusters are harder to see in the dense stellar
background. The variety of mock cluster appearances are obtained due to the
random sampling of cluster ages, masses, sizes, extinctions, as well the clus-
ter’s star masses and positions.

We performed the search for artificial clusters on the mock-cluster-filled
mosaic and cross-matched the potential objects with the inserted mock cluster
catalog, using a maximum distance of 3 pixels, in order to capture the mocks
with a high confidence. This resulted in ~23,000 objects displayed as blue
points in Fig. 4.2. For reference, another sample of objects are displayed
as black points and histograms, using a maximum distance of 6 pixels when
crossmatching, which results in ~24,600 objects. We repeated the same search
procedure on the original M83 mosaic and found ~200,000 object candidates
with various class,, and visibility values visualized as gray points in Fig. 4.2,
which contain real cluster candidates we aim to select later.

In Fig. 4.2 it can be seen that the majority of recovered mock clusters have
high class.;, and visibility values, but that is also true for a number of the
original-mosaic detections. This is expected, as the gray points include real
clusters of the M83 galaxy. We vary the thresholds for class,, and visibiliry
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Figure 4.2. Detection results of star clusters with a CNN: 1) on the mosaic of
MS83 (gray, ~200,000 object candidates) and 2) on the artificial cluster test mo-
saic seen in Fig. 4.1a (blue, ~23,000 total recovered objects, which matched
with the input list with a maximum distance of 3 pixels). Recovered ~24,600
mock clusters with a less strict maximum cross-matching distance of 6 pixels
are displayed as black histograms and dots. The histograms are logarithmic
counts of objects marginalized over visibility (top) and class,, (right). The
dashed red line shows the chosen visibility = 2.5 and class.;, = 0.95 thresh-
olds, while the dotted red lines show visibility = 2 and 3.
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Figure 4.3. Recall (completeness) maps of artificial cluster tests. Each bin
represents the number of objects that were recovered divided by the number of
objects that were placed. Panel a shows recall of log,,(M /M) < 4.5 mock
clusters as a function of their spatial position in the galaxy (as in Fig. 4.1),
with the spiral arm regions outlined in white. Panels on the right show recall
as a function of age and mass (b and c), age and extinction (d and e), as well
as mass and extinction (f and g). The top row of panels (b, d, and f) show
the recall within the spiral arms (inside the white outline in panel a), while the
bottom row of panels (c, e, and g) show recall outside of the spiral arms. Note
that the black bins signify areas where no artificial clusters were inserted.

to analyse recall (fraction of clusters that were found out of those that were
inserted) as a function of spatial position in the galaxy and the mock cluster
parameters in Fig. 4.3.

Fig. 4.3 shows recall maps of artificial clusters after applying the class.
threshold of 0.95 and the visibility threshold of 2.5. In Fig. 4.3a the recall is
shown spatially, for clusters with log;,(M/Mg) < 4.5. The spiral arm areas
used for recall analysis are outlined in white. This divides the galaxy into two
regions: inner (i.e. the area on the arms) and outer. For the inner regions the
recall of the CNN is lower than for the outer regions, which is expected due
to the relatively higher stellar background in and around the arms. A more
detailed breakdown of recall is given in panels Fig. 4.3b-g.

In Fig. 4.3b and c the recall of clusters as functions of age and mass is
shown. For both the inner and outer regions of the spiral arms recall decreases
with older ages and lower masses. The effect is more pronounced for the inner
region, because in a dense background faint clusters become much harder to
find. Fig. 4.3d and e show recall as a function of age and extinction. The recall
is broadly uniform, however, for the inner region lower values of recall can be
observed for old and high extinction clusters. Fig. 4.3f and g show recall as a
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Figure 4.4. Detected cluster candidates on the M83 mosaic. The top row of
panels depict different visibility thresholds used to filter out candidates: a) 2,
b) 2.5, and ¢) 3, with blue indicating young clusters log;,(¢/yr) = 6.6 and red
— old clusters log,,(¢/yr) > 9. The bottom row of panels depict clusters from
panel b, split into ages of: d) log,,(¢/yr) <7.5,¢) 7.5 <log,,(t/yr) < 8.5, and
f) 8.5 <log,,(¢/yr) < 10.1. The number of cluster candidates is displayed on
the lower left of each panel.

function of mass and extinction. The decrease of recall occurs for low lumi-
nosity clusters of low masses and high extinctions. This is more pronounced
on the spiral arms.

4.3 Results

4.3.1 Cluster selection

The ~200,000 object candidates detected on the original M83 mosaic, de-
picted as gray dots in Fig. 4.2, were filtered using a visibility threshold of 2
and class.;, of 0.95. This resulted in 5,460 object candidates, which were in-
spected visually and obvious false positives were removed. This process left
4,680 cluster candidates with visibility > 2 and 3,380 cluster candidates with
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our baseline threshold of visibility > 2.5. The visual inspection of possibly
missed cluster candidates with visibility > 2.5 was estimated to be in line with
artificial cluster tests seen in Fig. 4.3, however we did not include any human-
detected clusters and analyse only CNN-detected candidates for consistency.

Fig. 4.4 shows these candidates on the M83 mosaic using several visibility
thresholds, as well as highlighting the spatial distributions of cluster ages. The
top row of panels in Fig. 4.4 depict different visibility thresholds, with panel
b representing our baseline threshold, denoted as a red dashed line in Fig. 4.2.
Increasing or decreasing the threshold by 0.5 produces a difference of ~30%
in the number of candidate counts.

The bottom row of panels in Fig. 4.4 depict clusters from panel b, grouped
by age. Young cluster candidates seen in panel d are concentrated around the
spiral arms and other star forming regions, while intermediate and older clus-
ters in panels e and f are spread around relatively uniformly, with a somewhat
higher concentration around spiral arms for the intermediate age clusters.

4.3.2 Inferred parameters

Fig. 4.5 shows the inferred age, extinction, mass, and size distributions of
the cluster candidates. Diagonal cutoffs due to the visibility-limited detection
can be seen in Fig. 4.5a for old low-mass clusters and in Fig. 4.5b for old
high-extinction clusters. This was also seen for artificial clusters in Fig. 4.3.
In addition, because of age-extinction degeneracies, noted in Chapter 3, arising
due to the passbands that were used, parameter inference for old clusters can
be unreliable.

In Chapter 3 we have compared the CNN inference results to catalogs of
Bastian et al. (2011), Ryon et al. (2015), and Harris et al. (2001) showing a
reasonably good agreement between the catalogs and the CNN results. The
parameter distributions of cluster candidates seen in Fig. 4.5 also corresponds
well to the Bastian et al. (2011) sample, inferred with the CNN and displayed
in Fig. 3.18 of Chapter 3.

However, a numerous population of young-age low-mass extended cluster
candidates (which by visual inspection could be classified as small associations
of stars), is clearly visible in the bottom-left of Fig. 4.5a and the top-left of
Fig. 4.5c. These are low density objects (Fig. 4.5¢), with many of them having
density values of p, < 100M, -pc3. Mass and size relations of clusters in
various galaxies are summarized in Fig. 9 of Krumholz et al. (2019), indicating
that the majority of objects follow a p, ~ 100M,, - pc > line and that the ranges
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Figure 4.5. Parameter distributions of 3,380 cluster candidates detected by
CNN on the M83 mosaic. Panels show combinations of: a) mass vs. age,
b) extinction vs. age, ¢) size vs. age, d) extinction vs. mass, €) size vs. mass,
and f) size vs. extinction. The colors in panels d, e, and f represent cluster
ages, with blue indicating young clusters with log,,(¢/yr) = 6.6 and red — old
clusters with log;(¢/yr) > 9. The diagonal lines in panel e represent various

cluster density p,/ (Mg, -pc—3) levels.
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Figure 4.6. Mass (a), size (b), and density (c) histograms of the 3,380 cluster
candidates. In panel a circles represent the distribution for clusters with ages
log,(/yr) < 8.5, while the shaded gray histogram represents the whole clus-
ter sample. Lines represent the Schechter mass distribution functions of the
form dN/dM = A-M~? -exp(—M/M,), where M, is: 1) 103 (dotted line), 2)
1.6-10° M, (solid line, with the shaded area encompassing its Poisson stan-
dard deviation), and 3) 2.5-10° M, (dashed line). In panels b and c the gray
shaded histograms show the whole cluster sample, the blue outlines — young
log;(t/yr) <7 and red — older log,,(¢/yr) > 7.7 clusters.

of density are consistent with CNN results.

Although the definition of what observationally should be considered a
cluster vs. an unbound association is not clear at such young ages (Bastian
etal. 2012), these objects are detected by our CNN as cluster candidates. Com-
paring the cluster appearance of different catalogs one can see a variety of in-
clusion criteria and in our case this is decided by the CNN and the parameter
ranges of mock clusters on which it was trained.

In addition, in both Bastian et al. (2012) Fig. 14 and Ryon et al. (2015)
Fig. 3 a trend can be seen connecting cluster age and size. We can also see a
similar effect in Chapter 3 Fig. 3.18, where parameters of the same catalog are
derived via CNN. However, this is not present in our cluster candidate sample,
as seen in Fig. 4.5 panel ¢, where a large number of young low-mass extended
objects are observed.

Portegies Zwart et al. (2010b) discussed the importance of detection lim-
its and their influence on the lack of low mass clusters in catalog construc-
tion. This is explored in Fig. 4.6a, where circles represent the mass dis-
tributions of clusters with ages log,(¢/yr) < 8.5. The superimposed lines
are Schechter type mass functions (Portegies Zwart et al. 2010b), of the form
dN/dM = A-M~?%-exp(—M /M.), with different amounts of truncation, which
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were previously derived by Bastian et al. (2012) on their sample of M83 clus-
ters. The Schechter type function matches the data, explaining the numerous
low-mass clusters seen in Fig. 4.5 and is consistent with Mok et al. (2020).

In Fig. 4.6b we show the distributions of sizes of young and older cluster
candidates. The sizes are somewhat evenly distributed, with a drop for smaller
and larger clusters. This distribution is similar to the one found for Galactic
clusters based on Gaia observations by Sdnchez et al. (2020) and consistent
with previous results for M83 clusters (Ryon et al. 2015). In our sample, older
clusters are smaller than younger clusters, which is as expected due to the fact
that extended clusters are disrupted more easily due to various factors such as
galactic tidal forces and passing through molecular clouds in the spiral arms.
These effects can also be seen in Fig. 4.6c, with older clusters being more
dense than younger clusters.

4.3.3 Distance from spiral arms

According to the density wave theory (Shu 2016), the spiral arms of galax-
ies are structures made up of objects and gas which move into them, slow
down, and then move out again. In this model the spiral pattern itself rotates
at a fixed angular velocity, while objects, such as star clusters, move at differ-
ing angular velocities, which depend on their distance to the galactic center.
In this scenario one would expect star clusters inside the corotation radius to
outpace the spiral arms, creating an age gradient with older clusters being ob-
served further away from the arms than younger clusters. This is supported
by observations, such as Miller et al. (2019), who measured the pitch angle
of spiral arms for a sample of galaxies at several wavelengths, finding that it
is systematically larger in blue and smaller in red passbands, claiming the re-
sults to be consistent with enhanced stellar light located downstream of a star
forming region for a galactocentric radius smaller than the corotation radius.
Sofue (2018) identified bow shock structures as wavy arrays of star forming
regions distributed along the spiral arms of M83 and used the shape and ori-
entation of HII region shock cones to estimate the position of the corotation
radius coinciding to the one estimated by Hirota et al. (2014).

To analyze the distribution of parameters as a function of the distance from
the spiral arms, we traced out dust lanes along the inner part of the arms as a
reference. This follows the approach of Shabani et al. (2018), where cluster
distances from dust lanes were used to analyze age gradients in three spiral
galaxies. However, we used linear instead of azimuthal distances due to pro-
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jection effects and the possibly warped disk of M83 (see Section 4.4 for more
details).

Fig. 4.7 shows the counts of cluster candidates as a function of their
shortest-line distances from the dust lanes of the spiral arms of the galaxy
(see Fig. 4.9a). Note that for trailing (negative distance) cluster candidates
we only collect objects up to about ~1 kpc, before running into the leading
(positive distance) cluster candidates of a different spiral arm (see Fig. 4.4a)
and vice versa. This has to be kept in mind as any trends beyond those points
will exhibit boundary effects, limiting the interpretation of this data within 31
kpc.

Fig. 4.7a shows 3 different cuts of ages, with blue indicating log,,(¢/yr) <
7, orange — 7 < log,,(¢/yr) < 7.7, and red — log;(¢/yr) > 7.7. The blue and
orange lines represent recently formed clusters, associated with the spiral arm,
while the red line shows the field population. The peak for young clusters ap-
pears closer to the spiral arms, at ~0.4 kpc in the leading direction, while for
the oldest field population of clusters it stays approximately flat. This corre-
sponds well to the result obtained for other spiral galaxies in Shabani et al.
(2018).

Assuming the rotation curve speed of ~160 km/s (Heald et al. 2016) and
the spiral pattern speed of ~110 km/s at the distance of ~2.5 kpc (Zimmer et al.
2004), where the majority of our cluster candidates (that are in the vicinity of
the spiral arms) are located, we expect objects to overtake and lead the arms
at the rate of ~50 pc per one million years. This is in good agreement with
the peak we find of 6.6 <log,,(¢/yr) < 7 cluster candidates at ~0.4 kpc and
7 <log,o(t/yr) < 7.7 cluster candidates at ~0.7 kpc. Note also that cluster
candidates of log,,(¢/yr) ~ 8 have already completed a full orbit around the
galaxy, which supports our lower age cut of log,,(7/yr) > 7.7 as representing
the field population of clusters.

Fig. 4.7b shows the extinctions of older clusters, with ages of log,,(¢/yr) >
8. This age cut was chosen to select a sample of clusters that are already
independent of the regions where they were formed, giving us an insight into
the extinctions of the field population. The blue line indicates low extinction
objects with Ay < 1 mag, while the red line indicates high extinction objects
with Ay > 1 mag. The peak of the number of objects with high extinction
occurs right on top of the spiral arm dust lanes. On the other hand, the number
of low extinction objects gradually increases leading the arms, reaching the
highest counts at the distance of 21 kpc in front of the arms. This corresponds
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Figure 4.7. Counts of the detected cluster candidates as a function of their
distance from the spiral arms of the galaxy with: a) 3 different cuts for age,
b) 2 cuts for extinction for clusters with log,,(z/yr) > 8, and c¢) 3 cuts for
density for clusters with log,,(¢/yr) < 7. The binning window line on the
bottom of panel b represents the bin width used to calculate the cluster count
at each distance point. Negative distances indicate clusters trailing the spiral
arms, while positive distances indicate clusters leaving and outpacing the arms.
Poisson error bars are visualized as shaded areas around each curve.
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to objects which are located in sparse areas of the arms and are, therefore, less
obscured by dust.

Fig. 4.7c shows the densities of the population of younger clusters, with
ages of log,(¢/yr) < 7 (corresponding to the blue line of panel a). This
younger age cut was chosen to get the densities of clusters that were formed
within the nearby spiral arm instead of being in the field population. The
blue line indicates densities of log,(pn/ (Mg -pc—3)) < 1, the orange line —
1 <log,o(pn/ (Mg -pc3)) < 2, and the red line — logo(pn/ (M - pc~3)) > 2.
There is a vague trend of higher density cluster counts peaking further away
from the spiral arms than the lower density objects.

To verify that these trends did not arise due to selection effects, we took the
mock clusters that were inserted in a uniform grid on the whole galaxy image,
recovered them with the CNN and sliced their inferred parameter ranges in the
same way as was done for Fig. 4.7. This way both the counts and the relevant
parameters of the clusters are distributed uniformly over the galaxy and should
result in curves without the peaks seen for real clusters. For these recovered
mock clusters the ends of the distributions (for low negative and high positive
distances) do tend to have a lower number of clusters, due to boundary effects
of the maximum possible distance from the spiral arms. For the area in which
we draw our results (approximately between —0.2 and 1.4 kpc) the recovered
mock cluster distributions are flat. For age in particular, the recovered mock
young cluster distributions are very similar to the real old cluster distributions,
which is exactly what we would expect due to the old real cluster population
being relatively uniformly distributed in the galaxy. Selection effects should
not have a measurable impact on the trends found for cluster candidates.

4.3.4 Distance from galaxy center

Fig. 4.8 shows cluster distances from the galactic center against their den-
sity, mass, and size. In Fig. 4.8a it can be seen that older clusters are more
dense closer to the galactic center, while for young clusters this effect is less
pronounced. As density is a function of mass and size, we show their distri-
butions in Fig. 4.8b and c. Both young and old clusters are more massive
near the galactic center, possibly due to the fact that lower mass clusters break
apart more easily in a denser environment. However, the average mass dif-
ferences between these two populations get smaller the further away they are
from the center. It can also be seen in Fig. 4.8c, as there are fewer diffuse
clusters near the center of the galaxy, with the effect being more pronounced
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Figure 4.8. Densities (a), masses (b), and sizes (c) of the selected cluster can-
didates vs. their distance from the galactic center. Colors of the circles in-
dicate ages, starting with log,;,(#/yr) < 7 (blue) and up to log;,(¢/yr) > 9
(red). The two dashed lines represent the mean parameter values for young
(log;o(z/yr) < 7.5) and old (log,,(t/yr) > 8.5) cluster candidates, with the
shaded area around the dashed lines representing the standard deviation of
each parameter. The binning window line in the top right of panel a represents
the width of the window used to calculate the means at each distance point.
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for the older population. This is in agreement with Freeman et al. (2017), who
have found that the surface density of molecular clouds varies with distance
from the galactic center and shown that the mass of the most massive cluster
decreases with distance.

We have also repeated the mock cluster test described in Section 4.3.3 to
check whether selection effects have an impact on the results presented in this
section as well and found no systematic biases.

4.3.5 Spatial distribution

Fig. 4.9 shows the spatial distribution of selected cluster candidates. The
dust-band-traced spiral arms used for the analysis in Fig. 4.7 are displayed
as black curves. In Fig. 4.9a a fraction of the selected cluster candidates are
displayed with colors corresponding to their distance from the spiral arms, up
to £1.5 kpc. The color blue indicates clusters trailing the arm, seen as negative
distances in Fig. 4.7, and the color red indicates clusters leading the arm.

Fig. 4.9b shows the ages of the cluster candidates. A higher concentration
of young clusters on the spiral arms and other star forming regions is observed,
while older clusters are more evenly spread out in-between the arms and in the
outer regions of the galaxy. Kim et al. (2012) analyzed the distributions of ages
of resolved stars and found groupings of young stars along a spiral arm and
more evenly distributed old stars. This closely corresponds to the distributions
of our cluster candidate sample in the same region.

Fig. 4.9c shows the extinction of clusters more massive than
log;o(M/Mg) > 4. There are more clusters with high extinction located on
the spiral arms and other dust-rich areas of the galaxy. This can also be seen
as a function of distance to the arm in Fig. 4.7b.

Fig. 4.9d shows the densities of the same higher-mass cluster sample as
in Fig. 4.9c. Higher density clusters concentrate around the spiral arms of the
galaxy and closer to its central region in general, as is shown in Figs. 4.7¢ and
Fig. 4.8a and could be due to less dense clusters being broken up more easily
in these crowded environments.

CNN results allowed us to identify populations of clusters with different
properties on and within the spiral arms, as well as get consistent results of
the age gradient of clusters within the corotation radius of M83. Such data
could be used to test and constrain various hypotheses of cluster formation and
disruption by comparing it to models of galaxy evolution.
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Figure 4.9. Spatial distribution of selected cluster candidates displayed on the
F438W band. Panel a) shows the distance of cluster candidates from their
nearest spiral arm as an increasing intensity of red for the leading arm ar-
eas, and blue for the trailing arm areas. Clusters are drawn up to the distance
of 1.5 kpc. Panel b) shows the ages of clusters starting with log;(¢/yr) =
6.6 (blue) and up to logo(¢/yr) > 9 (red). Panel c) shows extinctions of
log;o(M/Mg) > 4 cluster candidates, with the color map showing clusters
starting at Ay = 0 mag (blue) up to Ay = 3 mag (red). Panel d) shows the
same sample of clusters as panel c), only with the color coding correspond-
ing to density values starting with log,(pn/ (Mg -pc—2)) < 1 (blue) and going
up to log;o(pn/ (Mg -pc=3)) > 3 (red). The faint concentric circles indicate
distances from the galactic center, starting with 1 kpc and up to 6 kpc, with a
step of 1 kpc. The arrow in the bottom left of panel a indicates the direction of
rotation; the galactic disc is inclined with the NW part being closer to observer.

104



4.4 Discussion

Here we discuss the limitations of the method, as well as some of the
caveats of our results and other relevant observations. The items are presented
in no particular order.

* Detection threshold. The class./, and visibility parameter thresholds
can be varied freely to select a different number of cluster candidates,
as can be seen in Fig. 4.2. We repeated our experiments using cluster
candidate samples obtained with different thresholds and observed no
notable differences in the results. The distributions seen in Figs. 4.6-4.9
remain consistent with the presented analysis.

* Parameter ranges. They set the limits within which the CNN can pro-
duce predictions. Of particular note is cluster mass, which was con-
strained to 3.5 < log(M/Mg) < 5.5, to cover the majority of M83 disc
cluster population and is consistent with the mass ranges used by Sha-
bani et al. (2018).

* Mosaic area. Our sample is effectively limited to the area within ap-
proximately 6 kpc from the center of the galaxy by the 7 WFC3 fields.
However, this spatial extent is sufficient for our analysis and is consis-
tent with the three galaxy coverage used by Shabani et al. (2018) for a
similar study.

* Possible interaction. A deep photographic image of M83 has revealed
“an enormous loop around NW quadrant of the galaxy” (Malin & Hadley
1997). Also, radio observations of its outskirts show a significant extent
of a disturbed nature, suggesting a possible retrograde interaction (Heald
et al. 2016). This is possibly due to a closest approach 1-2 Gyr ago of
a neighbouring galaxy (Finlay 2014). In addition, by tracing the dust
lanes as displayed in Fig. 4.9 we observed that the north-western spiral
arm is slightly closer to the center than the south-eastern arm. This, in
addition to the galaxy’s large estimated inclination angle of ~40 deg
and its uncertainty (Heald et al. 2016), compelled us to measure cluster
distances perpendicularly to the dust lanes of the arms and not along the
direction of rotation as was done in Shabani et al. (2018).

* Detection reliability. Wright et al. (2017) have demonstrated that in
combination human and CNN-based machine classification of transient
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objects outperforms either one individually; humans tend to have lower
false positive rates, but higher missed detection rates, while machine
classification has the opposite trend. Therefore, we visually inspected
the CNN-detected object candidates, removed possible false positives
from the sample and counted objects potentially missed by the CNN.
We estimated the false negative rate to be consistent with our artificial
cluster tests and those of previous studies of limited samples by Bastian
etal. (2011) and Ryon et al. (2015). Visual inspection also revealed that
likely background galaxies (red extended objects) are not detected by
the CNN as clusters. Note, Silva-Villa et al. (2014) compiled ~1,800
clusters and associations of log;,(z/yr) < 8.5 and log(M/Mg) 2 3.7.
We find ~1,600 cluster candidates within these age and mass ranges.

Sample selection. From the experience in doing visual selection of star
clusters in the Andromeda galaxy (Narbutis et al. 2008), based on Sub-
aru telescope observations, which effectively give a similar resolution
as HST does in M83, it was noted, that higher selection thresholds are
applied by humans to avoid including too many faint clusters. This re-
sults in a limited sample of low-mass clusters deviating from Schechter
mass functions as shown in Vansevicius et al. (2009). A similar effect
is seen in the catalog of Bastian et al. (2011) as shown in of Chapter 3.
Examples of mock clusters reveal that such low visibility objects might
be easily rejected from a visually compiled sample, but could be genuine
star clusters.

Young low-mass candidates. Comparing Fig. 4.5a with Fig. 3.14a, the
high number of young low-mass cluster candidates of this work does not
significantly overlap with random background inference results, which
are concentrated at log;(¢/yr) > 7.5 and log(M /M) < 3.75. Even
though in Fig. 3.14e a high number of backgrounds are identified as
low-mass extended objects, they are not concentrated around young ages
log;(¢/yr) < 7, while our cluster sample exhibiting the same properties
in Fig. 4.5e are younger objects. In addition, in Fig. 3.14b the back-
grounds are spread out diagonally in an area where one would expect the
age-extinction degeneracy to take place, while in Fig. 4.5b the overlap
with this area is minor. Krumholz et al. (2019) caution that all observa-
tions are prone to selection biases in favor of more compact clusters, as
well as a survival bias. Clusters of age ~10 Myr might be only weakly
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bound, but these would be under-represented in cluster catalogs, because
almost none would survive to reach ages more than a few tens of mil-
lions of years. Our CNN, however, detects numerous young extended
objects.

4.5 Conclusions

We have presented a full pipeline of cluster search using a CNN, which is
able to infer cluster parameters (age, mass, extinctions, and size), as well as
provide inference reliability estimates. The CNN is trained on mock star clus-
ters superimposed on images of real backgrounds and is applied to multi-band
images as a sliding window, without using precise photometric flux calibra-
tions. This produces object candidate detection certainty maps, which are then
filtered to obtain any number of cluster candidates, depending on recall (com-
pleteness) tolerance, estimated by artificial cluster tests.

We applied the star cluster detection pipeline to collect 3,380 cluster can-
didates in HST WFC3 observations of M83 in F336W, F438W, and F814W
passbands, and used this data to analyze the spatial distributions of cluster pa-
rameters (age, mass, extinction, size) w.r.t. the galaxy’s spiral arms and its
center.

We have shown that an age gradient w.r.t. the spiral arms can be observed
inside the corotation radius of the galaxy. The younger population of cluster
candidates peaks at ~0.4 kpc leading the spiral arms, while the older popula-
tion is shifted towards >0.7 kpc, this finding being consistent with the density
wave theory of spiral arms. We also find a greater proportion of high extinc-
tion clusters on the dust lanes of the spiral arms, as well as more dense older
clusters towards the galactic center.
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Conclusions of thesis

In Chapter 2 we have proposed a CNN based on the ResNet architecture
for simultaneous derivation of evolutionary and structural parameters of star
clusters from imaging data.

The proposed CNN was verified on mock images of artificial clusters in
the context of HST observations of the M31 galaxy. It has demonstrated a high
accuracy and no significant bias for semi-resolved clusters with ages between
log;o(t/yr) = 7.0 and 9.0, masses between log,,(M /Mg ) = 2.4 and 3.6, and
sizes between log;((r,/arcsec) = —0.8 and 0.0.

We have shown with artificial tests that CNNs can perform both structural
and evolutionary star cluster parameter derivation directly from raw imaging
data. This allows dealing with both unresolved and semi-resolved cases homo-
geneously, as well as utilizing multiple photometric passbands in an integrated
manner.

In Chapter 3 we have extended the method introduced in Chapter 2 to infer
cluster ages, masses, sizes, and extinctions in tandem, as well as to account
for the degeneracies between them. Additional parameters were added for
identifying the presence of clusters on background images of M83 and judging
their visibility (signal-to-noise ratio).

To train this network a bank of mock clusters was generated utilizing
three photometric passbands in the context of HST observations of the M83
galaxy. The CNN was verified on mock images of artificial clusters with ages,
log;o(2/yr), between 6.6 and 10.1, masses, log;(M/Mg), between 3.5 and
5.5, sizes between 0.04 and 0.4 arcsec, and extinctions Ay < 3 mag. Param-
eters derived by the CNN have shown a good agreement with the true param-
eters for clusters with ages log,,(f/yr) < 8, with higher age estimates being
unreliable due to the age-extinction degeneracy.

Real cluster parameter inference tests were performed with three different
MS3 cluster catalogs from Bastian et al. (2011), Ryon et al. (2015), and Harris
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et al. (2001) and have shown consistent results.

We have demonstrated that a CNN can perform evolutionary (age, mass),
structural (size), and environmental (extinction) star cluster parameter infer-
ence. In addition, the network is capable of giving an indication of cluster
presence in images.

In Chapter 4 we have presented the full pipeline for performing star cluster
candidate detection and their parameter inference.

We applied the star cluster candidate detection pipeline to collect 3,380
cluster candidates in HST WFC3 observations of M83 in F336W, F438W, and
F814W passbands, and used this data to analyze the spatial distributions of
cluster parameters (age, mass, extinction, size) with respect to the galaxy’s
spiral arms and its center. It was found that an age gradient with respect to the
spiral arms can be observed inside the corotation radius of the galaxy. More
dense cluster candidates were also found towards the galactic center.

The CNN-based approach naturally joins various techniques used in the
study of star clusters — detection, inference of evolutionary parameters, and
size estimation — into a single pipeline, which gives a coherent view of cluster
populations.
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Appendix A

Mock cluster samples

This section contains examples of mock clusters generated in F275W,
F336W, F475W, F814W, F110W, and F160W passbands of the HST/WFC3
instrument, which match the filters available in the PHAT data. The mock
clusters are displayed as false color images, with Fig. A.1 covering pass-
bands F275W, F336W, and F475W, Fig. A.2 — passbands F336W, F475W,
and F814W, Fig. A.3 — passbands F475W, F814W, and F110W, finally Fig.
A.4 — passbands F814W, F110W, and F160W.
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Figure A.1. Examples of generated clusters, without extinction, on a real back-
ground image, shown in passbands F275W, F336W, and F475W. The ages of
all of the displayed clusters are: a) log(¢/yr) = 7.0, b) 8.0, ¢) 8.5, d) 9.0. The
masses and ry, values are varied as shown on the axes. The intensity scale of
the images was normalized with the arcsinh function. The background is the
same for all of the displayed clusters for clarity.
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Figure A.2. Same as Fig. A.l, but shown in passbands F336W, F475W, and
F814W.
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Figure A.3. Same as Fig. A.l, but shown in passbands F475W, F814W, and
F110W.
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Figure A.4. Same as Fig. A.l, but shown in passbands F814W, F110W, and
F160W.
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