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Acronyms 

 

OPO – Optical parametric oscillator 

OPA – Optical parametric amplifier 

SPM – Self-phase modulation 

BBO – β-Barium Borate (BaB2O4) 

LBO - Lithium triborate (LiB3O5) 

XPM – Cross-phase modulation 

SHG – Second harmonic generation 

DFG – Difference frequency generation 

CQN - Cascaded quadratic nonlinearity 

GVD – Group velocity dispersion (fs2/ mm) 

GDD – Group delay dispersion (fs2) 

NIR -  Near infrared region (0.75  - 1.4 μm) 

CW – Continuous wave 

Yb: KGW – Ytterbium doped Potassium Gadolinium Tungstate 

Ti: Sa – Titanium sapphire (Ti3+ :Al2O3)



1 Introduction 

The first experimental demonstration of optical parametric oscillator was 

demonstrated in 1965 by Giordmaine and R. C. Miller [1]. As 55 years have passed, 

many flavours of the device and the physical effects governing its behavior were 

investigated. The OPOs were shown to be capable of tuning from near-ultraviolet [2, 

3] to mid-infrared [4, 5] emitting from continuous wave [6, 7] to few-cycle 

femtosecond pulse durations [8, 9], with average powers reaching up to 30 W [10]. 

The commercial systems are also widely available being a competitive alternative to 

conventional lasers when wavelength tuning is required. Naturally, a question arises 

- how can another dissertation contribute to the field so well explored? Intuitively, 

as nonlinearity is very low in free-space laser resonators, the power scaling of 

femtosecond pulse duration OPO output should be relatively easy to achieve. But the 

Ytterbium based femtosecond laser oscillators used as pump sources for OPOs have 

reached the peak power levels which lead to observable nonlinear effects in 

femtosecond optical parametric oscillators [11 - 14]. The intrinsic optical 

nonlinearity of the crystals used in OPOs leads to well-known time and spatial 

domain phenomena like self-phase modulation and spatial defocusing.  Inside the 

resonator, multiple passes of the pulse and beam lead to convergence to steady-state 

time and spatial domain solutions which are influenced by minute changes of the 

nonlinearity. In time domain these steady state solutions lead to pulses which may 

exhibit soliton-like behaviour if compensated by the linear dispersion. In spatial 

domain, these solutions lead to beams which has resonator mode‘s parameters, 

influenced by the resonator stability.  

 The mentioned effects are well investigated in solid state laser femtosecond 

oscillators [15 - 17], and the knowledge can be transferred to explain the optical 

parametric oscillators. However, the things start being scientifically challenging if 

one considers the optical parametric amplification under a phase mismatch k . 

Small phase mismatch value induces cascaded quadratic nonlinearity (CQN). The 

CQN is a nonlinear process, whereby a wave experiences a nonlinear conversion to 

a different frequency and a subsequent back-conversion to the original frequency. 

These processes arise from quadratic nonlinearity, like second harmonic generation 

or parametric amplification, occurring twice. While the frequency of the light 

remains unchanged after this process is over, it does differ during the intermediate 

state. The intermediate frequency wave travels at different velocity until it is back-

converted to the original frequency. As a net result, the wave experiences an effective 

phase shift (delay), compared to purely linear propagation. This process is equivalent 
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to the propagation in the medium with nonlinear refractive index proportional to 
2 /effd k   (where deff is an effective crystal nonlinear coefficient, originating from 

( )2
  nonlinearity), hence allowing to control the sign of the nonlinearity by changing 

the detuning [18]. This cascaded nonlinearity is superimposed on the intrinsic 

electronic material nonlinearity, thereby influencing all the aforementioned time and 

spatial domain effects. The magnitude of the cascaded nonlinearity can be ten times 

larger than intrinsic electronic nonlinearity [19]. 

Previous work in the field include pioneering work by DeSalvo et al. 

showing that cascaded   nonlinearities induce effective   nonlinearity which is 

proportional to the 
2 /effd k  [18]. Gale et al. have shown that this effective 

nonlinearity can be measured using Z-scan setup and expressed as crystal angle 

dependent n2 [19]. Šuminas et al. demonstrated approaches exploiting cascaded 

nonlinearities without a resonator: spatiotemporal light bullet generation and 

supercontinuum generation [21, 22]. Gale et al. and Laenen et al. have shown 

experimental observation and analysis of soliton formation of resonating signal or 

idler pulse in OPO under influence of cascaded nonlinearity [19, 23]. Negative and 

positive CQN was exploited in a comb generation [24- 26], CW pumped optical 

parametric oscillators [28] and ultrafast laser oscillators with varying levels of pulse 

energies [29 - 33]. Nevertheless, a more detailed understanding of CQN impact to 

femtosecond optical parametric oscillators is still lacking and this was one of the 

major motivations to perform this dissertation‘s study. 

The cascaded nonlinear effects can be ignored if phase mismatch is zero. 

But operating the device under vanishing phase mismatch is not a trivial task, as a 

number of effects contribute to it – the pulse spectral components have varying phase 

mismatch because of finite acceptance bandwidth of the crystal; large beam 

divergences are limited by  crystal acceptance angle; crystal temperature changes are 

limited by crystal acceptance temperature, all defined in [20]. So, ideally, the 

cascaded nonlinear effects could be ignored if all three – acceptance bandwidth, 

acceptance angle and acceptance temperature - are larger than the experimental 

variations. Unfortunately, no practical devices are feasible that operate under such 

ideal conditions, and the effects of cascaded nonlinearity are always evident to a 

smaller or larger extent. Furthermore, if gain bandwidth allows, the preferred method 

of wavelength tuning is the variation of synchronous pumping condition by 

simultaneous resonator length and wavelength change, while keeping the crystal 

angle fixed. This leads to operation at a small phase mismatch, which increases at 

the edges of the tuning curve [34] and the impact of the CQN effects grows near the 
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limits of the tuning curve. Other effects limiting the peak power scaling are damage 

of the optical components [35] and thermal effects if the absorption is high enough 

[36]. In our investigated wavelength ranges and peak power levels, the nonlinear 

effects are dominating the thermal ones as the LBO and BBO bandgap is respectively 

~3.2 and ~2.7 larger  [37] than the 515 nm pump photon energy and no nonlinear 

components damage was observed through the experiments. Therefore, the cascaded 

nonlinearity is one of the main effects hindering the further peak power scaling of 

the optical parametric oscillators. The peak power limiting effects of the cascaded 

nonlinearity under phase mismatched operation are demonstrated in the chapters 3 

and 4 of this dissertation. The influence of the spatial domain focusing / defocusing 

caused by cascaded nonlinearity are discussed in the chapter 7 of this dissertation. 

Cascaded quadratic nonlinearities are not always bad news, though. They 

can be considered not only as a hindrance, but also as an invaluable tool. The CQN 

can be tuned by changing the phase mismatch and its sign can be varied from positive 

to negative. Negative nonlinearity is an unusual phenomenon as naturally this can 

only be accessed in electron plasma and materials with incident wavelengths below 

single-photon absorption and above two-photon absorption resonances, which would 

lead to large absorption losses by free carriers [38]. Thermal defocusing is also 

observed in liquids and gasses [39]. The negative cascaded nonlinearity can be 

exploited for the compensation of a positive linear dispersion of the resonator that 

tends to broaden the light pulse being amplified. With the two effects cancelling each 

other out, a unique wavelength-tunable device can be constructed, generating 

soliton-like pulses in a resonator with positive group delay dispersion, as 

demonstrated in chapter 5 and chapter 6 of this dissertation. What is more, complex 

interplay between different nonlinearities and the feedback inherent in OPO 

resonator produces interesting nonlinear dynamics, leading to complex 

spatiotemporal light structures, solitons, oscillations and chaos. This leads to a very 

interesting field of research. 

 Another point to consider is the power scaling motivation from the 

application‘s point of view. Femtosecond optical parametric oscillators are devices 

with a unique combination of characteristics: short pulse durations, broad 

wavelength tunability and high pulse repetition rate [27]. These parameters lead to 

applications where fast, wavelength selective and nonlinearly excitable physical 

processes are observed. The main applications favoring such set of parameters are 

two photon microscopy and two photon polymerization. In both of these 

applications, the beam is usually coupled to high numerical aperture objective, which 

inevitably has losses, especially when broader wavelength tuning range is 
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considered. What is more, faster scanning speeds require larger pulse energies to 

decrease the pixel dwell times [40]. Both these requirements lead to the need of an 

increased peak power of the optical parametric oscillator output. The practical 

application requires device with small footprint, which for a wavelength tunable 

device is usually limited by an intracavity prism pair. In order to operate without a 

prism pair, a positive resonator group delay dispersion can be compensated with 

negative cascaded nonlinearity, which was experimentally demonstrated in this 

dissertation. The experimental applications of the assembled and transportable 

optical parametric oscillator are discussed in chapter 8 of this dissertation. 
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1.1 Motivation 

The current state-of-the-art in the field of science and technology concerning 

ultrafast OPOs, and the challenges of power scaling arising with the development of 

novel high-power pump sources dictate the following main goal of this dissertation: 

Explore the effects of cascaded quadratic nonlinearities in OPOs pumped by 

high power near-infrared lasers; devise new methods of controlling and exploiting 

these nonlinearities to enable the scaling the power of OPOs and open new areas of 

their applications.  

To achieve this goal, the research effort was sub-divided in the following tasks: 

• Understanding of the cascaded nonlinear processes hindering the peak 

power scaling of the OPO. 

• Exploitation of the negative cascaded nonlinear processes for generation of 

unique soliton-like pulses from positive GDD resonator. 

• Assembly of a transportable femtosecond optical parametric oscillator 

prototype to test it in the field at leading laboratories in applications of 

nonlinear microscopy, 2-photon polymerization and 2-photon optogenetics. 
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1.2 Novelty and relevance 

The main novel scientific contribution of this dissertation is a number of 

effects and applications that, to our knowledge, were demonstrated here for the first 

time.  

• The influence of the SHG- and DFG-induced cascaded nonlinearity on the 

operation of femtosecond optical parametric oscillator was investigated. 

• Soliton-like pulses were demonstrated and higher order soliton formation 

effects were investigated in femtosecond optical parametric oscillator with 

positive cavity group delay dispersion and negative cascaded nonlinearity.  

• Spatial defocusing caused by cascaded nonlinearity caused influence to the 

femtosecond optical parametric oscillator mode formation was investigated. 

• First demonstration of optogenetic application of the developed double-

wavelength OPO prototype was performed, where all-optical simultaneous 

imaging of neural activity using calcium indicator GCaMP was combined 

with the excitation of opsin C1V1 was performed in mice in-vivo. 
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1.3 Practical gain 

A number of scientific contributions led to further understanding of the 

effects observable in high power femtosecond oscillators. These findings help to 

understand the spatial and time domain nonlinearity induced peculiarities when 

output power is scaled to higher values with higher power pump oscillators. Based 

on these results, a working prototype of a femtosecond optical parametric oscillator 

was assembled and transported to several application labs (in Lithuania, United 

Kingdom, Germany) for validation purposes.  
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1.4 Thesis statements 

• Cascaded nonlinearity induced effective cubic nonlinearity can be used to 

compensate (resonating pulse quality of ΔνΔτ~ 0.44) or amplify (resonating 

pulse quality of ΔνΔτ~ 3) the self-phase modulation effects inherent in high 

power femtosecond optical parametric oscillators with both signs of 

intracavity dispersion. 

• The quadratic nonlinearity of a second SHG signal crystal inserted into an 

OPO cavity can be employed to induce tunable negative nonlinearity (for 

BBO up to n2~ -15 x 10-20 m2/W) for positive group delay dispersion 

compensation (up to GDD~ 5000 fs2) and allow soliton formation (with 

pulse quality of ΔνΔτ~ 0.44). Using this approach, the conversion efficiency 

(OPO crystal angle) and nonlinearity tuning (SHG crystal angle) can be 

independently adjusted.  

• Large cascaded-nonlinearity-induced phase shifts lead to the generation of 

higher order solitons (up to the 3rd order), exhibiting oscillatory behaviour 

(periods vary from 11 to 18 resonator roundtrips) unless perturbed by the 3rd 

order of the nonlinear dispersion. 

• Cascaded nonlinearity with up to 20 GW/cm2 intensity in the 2.5 mm length 

LBO crystal induces nonlinear spatial focusing (dioptric power up to D ~ 33 

m-1) or defocusing (dioptric power up to D ~ -9 m-1) which is strong enough 

to drive the resonator out of the stability if it is set to operate close (within 

less than 5 % of the whole stability range) to the linear stability limits. 

• Femtosecond optical parametric oscillator wavelength tunable in the ranges 

of 700 – 950 nm or 950 - 1300 nm is a practical and versatile laser source 

suitable for applications in nonlinear microscopy, optogenetics and 3D 

direct laser writing.  
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The author has designed and implemented all the experimental setups and 
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experiments presented in CO1. The author prepared manuscripts of P4 - P7 and took 

part in the preparation of manuscripts of P1 - P3. 
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2 Introduction to femtosecond OPOs 

Femtosecond optical parametric oscillator is an optical parametric amplifier 

consisting of a nonlinear crystal placed inside a resonator, usually pumped with 

oscillators having low pulse energy (~50 nJ) and high repetition rate (~100 MHz). 

Low pump pulse energies lead to small single pass gain for even weaker signal wave. 

The use of the resonator recirculating signal wave enables efficient signal power 

build up and pump energy extraction. Amplified signal beam is resonated while 

undepleted pump is provided for every cavity roundtrip. The amplification is 

efficient if the repetition rates of the pump and resonating signal pulse are the same, 

hence satisfying the synchronous pumping condition.  

Locking the pulse inside the resonator leads to time and spatial domain effects 

not observed in a single pass OPA – in time domain the interplay between dispersion 

and cavity nonlinearity leads to a stable soliton-like pulse.  In spatial domain, the 

interplay between cavity nonlinearity and linear cavity stability leads to stable (or 

not) cavity spatial mode. The cavity nonlinearity consists of intrinsic material 

nonlinearity and an additional OPA induced cascaded nonlinearity part. In order to 

understand these effects, numerical simulation stands out as invaluable tool. 

As such, following chapter introduces to the five main concepts critical to the 

understanding of optical parametric oscillators:  

• Introduction to nonlinear optics and third order nonlinear susceptibility. 

• Coupled wave equations for the ultrashort pulses. 

• Cascaded nonlinearity. 

• Soliton pulses. 

• Resonator modes and stability. 
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2.1 Nonlinear optics and third order nonlinear susceptibility 

2.1.1 Introduction to nonlinear optics 

The effects of the nonlinear optics are pronounced when material‘s response 

to an incident electric field has a nonlinear dependence on the electric field strength. 

In order to understand the origin of the nonlinearity, a closer look into microscopic 

material nonlinear polarization ( )P t   is needed. At low intensity limit, the 

material‘s response is linear: 

( ) ( )(1)

0P t E t = .   (2.1) 

The quantities ( )P t  and ( )E t  are the vectors of nonlinear polarization and electric 

field strength respectively, 
(1) is the linear susceptibility, 

0  is vacuum 

permittivity. The nonlinear response of a material to a strong incident optical electric 

field can be described similarly: the polarization vector is expanded in power series 

in the field strength ( )E t  with coefficients describing the order of nonlinear 

polarization effect: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

(1) (2) 2 (3) 3

0 0 0

1 2 3

...

... .

P t E t E t E t

P t P t P t

     = + + +

= + + +
  (2.2) 

The quantities 
(2) and 

(3) are the second and third order nonlinear optical 

susceptibilities. The assumption is made that the material response is instantaneous, 

there is no absorption and dispersion. The quantities ( )
(2)

P t and ( )
(3)

P t are called 

second and third order nonlinear polarization terms respectively. Due to symmetry 

reasons, 
(2) processes can only occur in non-centrosymmetric media, such as 

crystals or interfaces between different materials. In the meantime, 
(3) processes 

can occur both for centrosymmetric and non-centrosymmetric materials 

(centrosymmetric solid state materials, liquids, gases and plasma). The comparison 
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of the expansion series terms allows evaluating the approximate order of 

susceptibilities. The second term of the power series expansion, the polarization 

vector ( )
(2)

P t  should be comparable to the first order polarization vector ( )
(1)

P t

when incident electric field strength is close to the atomic electric field between 

valence electrons and nuclei. For hydrogen atom, this electric field can be evaluated 

as  

2

04
at

e
E

a
= ,    (2.3) 

where e – electron‘s charge, 2 24 oa me = is Bohr‘s radius. Inserting the 

constants, the electric field strength which acts on electron in orbital is 
115.1 10 V/matE =  . Thus, it could be expected that the second-order susceptibility 

(2) should be of an order of (1) / atE : 

(2) (1) 12~ / ~ 2 10 m/VatE  − . 

In the same way 
(3)  should be of a similar order as (1) 2/ atE : 

( )3 (1) 2 24 2 2~ / ~ 4 10 m /VatE  − . 

These values are close the ones experimentally observed in the most common optical 

materials [41, 42]. 

When strong electric field is incident in the material, nonlinear polarization 

acts as a source of newly generated electromagnetic field that can have new 

frequencies. This result stems from Maxwell’s equations, where incident and emitted 

fields are coupled through the nonlinear term: 

2 2 2
2

2 2 2 2

0

1
,NLn E P

E
c t c t

 
 − =

 
   (2.4) 

where NLP is nonlinear polarization, n – refractive index and c is light velocity in 

vacuum. When the second derivative of nonlinear polarization 

2

2

NLP

t




 is non-zero, 

the charge carriers inside the medium are subjected to the electric force. They get 
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accelerated and according to Larmor theorem, the transverse electric field 

component is emitted as an electromagnetic wave [43]. 

In order to find the solutions to this equation, several approximations can be 

made. First of all, the waves are assumed to be plane and monochromatic. The spatial 

effects such as the walk-off of extraordinary beam are ignored. Let us investigate the 

case of sum frequency generation, when two fields with frequencies 
1  and 

2  

arrive at the nonlinear medium. By plugging two plane waves with such frequencies 

into the expression for quadratic polarization, it follows obvious, that the source term 

in Eq. 2.4 will contain zero frequency, as well as 
12 , 

22 , 
1 2 +  and 

1 2 − . 

Let us look further at the sum frequency  += . An electric field of sum 

frequency wave can be defined as: 

( ) ( )3 3
3 3, . .

i k z t
E z t E e c c


→

−
= + ,   (2.5) 

where 3E  is electric field amplitude and 3 3 3 /k n c=  is a wave vector. If a 

nonlinear driving term of equation (2.4) is small, a solution of wave equation will be 

similar to the one defined in (2.5). Similarly, the driving nonlinear polarization term 

can be defined as: 

( ) 3
3 3, . . .

i t
P z t P e c c


→

−
= +    (2.6) 

The sum frequency nonlinear polarization component can be expressed as:  

3 0 1 24 ,effP d E E=     (2.7) 

where 
effd is an effective nonlinearity, which depends on the interaction geometry 

and the properties of the nonlinear crystal. In anisotropic medium, the nonlinear 

susceptibility 
( ) is a tensor with components defined as 

( )2

2

ijk

ijkd


= , an effective 

nonlinearity 
effd can be calculated if interacting polarizations and geometry are 

known. The fields of the incident beams can be defined as: 

( ) ( )
, . .i ii k z t

i iE z t E e c c
−

= + ,   (2.8) 
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where i = 1,2 for both incident fields. The nonlinear polarization amplitude can be 

defined as: 

( )1 2

3 0 1 24 .
i k k z

effP d E E e
+

=    (2.9) 

Both of these expressions can be inserted into the nonlinear wave equation (2.4). 

Calculating the derivatives and using the slowly varying amplitude approach, we 

arrive at the equation for the amplitude of sum frequency wave: 

( )3 1 2

2

33
1 22

3

2 i k k k zeffi dd E
E E e

d z k c

 − −
= .  (2.10) 

This equation allows the following conclusions: a) the sum frequency amplitude 

depends on the amplitudes of the incident fields 
1E  and 2 ,E  effective nonlinearity 

and a harmonic term 
( )3 1 2i k k k z

e
− −

. The difference of the wavevectors is defined as Δk

=
3 2 1k k k− − . The equation also shows that after some propagation distance with 

non-zero Δk , the nonlinear polarization created wave will have a phase opposite to 

the phase of the nonlinear polarization. This nonlinear polarization would then create 

a wave out of phase with the initially propagating wave, and their destructive 

interference would decrease the amplitude of the total propagating wave. In order to 

prevent this effect, the nonlinear polarization should propagate with a same phase 

velocity as a newly created electric field. According to the energy conservation law, 

the frequency of the created wave is a sum of interacting frequencies. So matching 

of the phase velocities requires matching of the wave vectors, leading to these phase 

matching conditions [44]: 

   
3 1 2  = +  ,    (2.11) 

   3 1 2k k k
→ → →

= +  .    (2.12) 

Continuing the analysis of (2.10) equation, we define a nonlinear coefficient 

indicating the strength of the nonlinear coupling: 

2

2

2 eff j

j

j

d

k c


 =  .   (2.13) 

The three wave coupled nonlinear equations can then be defined as: 
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zieEEi
zd

Ed Δk*

231
1 −−=  ,   (2.14)

zieEEi
zd

Ed Δk*

132
2 −−=  ,   (2.15)  

zieEEi
zd

Ed Δk

213
3 −= .    (2.16) 

The equations (2.15) and (2.16) are derived in the same way with a difference 

frequency generation component of the nonlinear polarization leading to new 

frequencies  −=  and  −=  and corresponding nonlinear 

coefficients   [41, 42]. 

The equations (2.14) to (2.16) form a backbone of nonlinear optics, being of 

extreme importance to explanation of OPA process, which is inherent in OPO as 

well. 

 

2.1.2 Third order nonlinear susceptibility 

Third order nonlinear susceptibility is of a paramount importance to the 

understanding of the operation of the OPO and to the applications of the assembled 

device. Operation of the OPO is influenced by the real part of the third order 

nonlinear susceptibility - nonlinear refractive index. It can arise from purely third 

order effects, or be a combination of third order susceptibility and the cascaded 

quadratic nonlinearity. The applications of the assembled OPO also rely on the 

imaginary part of the third order susceptibility, which describes two-photon 

absorption in a sample under intense electric field illumination. Understanding the 

origin of this effect leads to more effective nonlinear microscopy and nonlinear 

photopolymerization techniques. Similarly to the real part, the imaginary part of the 

third order susceptibility is an analogous to the imaginary part of the effective 

cascaded nonlinearity which is  responsible for the generation of the second 

harmonic (which acts as the intensity dependent losses of the fundamental light, in 

the same way as in two photon absorption case) [45]. 
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 To simplify the derivation of real and imaginary parts of third order 

susceptibility, the centrosymmetric medium is investigated with 
(2) 0 = . The 

polarization in such medium can be expressed as: 

 

( )(1) (3) (1) (3) 2

0( ( )) 3 | ( ) | ( ),P E w P P E E    = + = +    (2.17) 

 

where 𝑃(1) and 𝑃(3) are linear and third order polarizations, respectively. The linear 

and third order susceptibilities are 𝜒(1) and 𝜒(3). They can be separated to real and 

imaginary parts as follows: 

 
(1) (1) (1) ,R Ii  = +    (2.18) 

(3) (3) (3) ,R Ii  = +    (2.19) 

 

where 
(1)

R and 
(3)

R  are real part and directly related to the refraction.
(1)

I and (3)

I  

are imaginary parts and related to absorption. 

 Nonlinear refraction is induced by the real part of polarization vector, the 

total polarization of the material system is according to (2.17) equation: 

 

( )(1) (3) (1) (3) 2

0( ( )) 3 | ( ) | ( ).R R R R RP E w P P E E    = + = +    (2.20) 

 

The electric displacement vector: 

 

( )(1) (3) 2

0 0 1 3 | ( ) | ( ).R RD E P E E     = + = + +   (2.21) 

 

According to D E= , the total permittivity is: 

 

( )(1) (3) 2

0 1 3 | ( | .)R R E    = + +   (2.22) 

 

The refractive index is defined as: 

 

,r rn  =     (2.23) 
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where 𝜇𝑟 is relative permeability and generally equals to 1 for non-magnetic 

materials. Inserting formula (2.22) into (2.23) yields: 

 

( )
2(1) (3)1 3 .R Rn E  = + +    (2.24) 

 

The linear refractive index is given by: 

 
2 (1)

0 1 .Rn = +     (2.25) 

 

Using equation (2.25) formula (2.24) can be rewritten as: 

( )
1

2 2(3)

0 2

0

3
1 .

R E
n n

n

  
 = +
 
 

   (2.26) 

 

Using Taylor series expansion, the refractive index formula can be expressed as: 

( )
2(3)

0

0

3
~

2

R E
n n

n

 
+  .   (2.27) 

 

Intensity-dependent refractive index can then be defined as: 

 

0 0 2 ,n n n n n I= + = +   (2.28) 

 

where 𝑛2 is nonlinear refraction index and light intensity 𝐼 is defined as follows:  

 

    
2

0 0

1
.

2
I cn E=    (2.29) 

 

Substituting formula (2.29) to (2.27) one obtains: 

 
(3)

0 2

0 0

3
~ .R I

n n
cn




+       (2.30) 

 

According to formula (2.28), the nonlinear refraction index 𝑛2  is written as: 
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(3)

2 2

0 0

3
.Rn

cn




=           (2.31) 

 

Different physical mechanisms can cause different 𝑛2 values, with values ranging 

from ~10−20  
𝑚2

𝑊
  (electronic polarization) to ~10−10  

𝑚2

𝑊
  (thermal effects). The 

nonlinear refractive index is a source of self-phase modulation which distorts the 

spectrum and temporal / spectral phase in femtosecond optical parametric oscillators. 

The equation (2.31) shows that the origin of the nonlinear refractive index is the real 

part of the third order susceptibility. 

 

 Following the same procedure as carried out with a real part of polarization, 

an imaginary part of polarization is given by: 

 

( )(1) (3) (1) (3) 2

0( ( )) 3 | ( ) | ( ).I I I I IP E P P E E     = + = +      (2.32) 

 

Applying the slowly varying-envelope approximation to an isotropic medium, one 

has: 

 

    
0 0

.
2

I

dE i
P

dz n




= −      (2.33) 

 

Substituting formulas (2.29) and (2.32) into formula (2.33), one has: 

 

(1) (3)

2 2

0 0 0

3
.

2
I I

dE
I E

dz cn c n

 
 



 
= − + 

 
    (2.34) 

 

Linear absorption coefficient can be defined as: 

 

(1) (3)0

2 2

0 0 0

3
.

2 2 2 2
I I I

cn c n

    
 




= + = +     (2.35) 

 

Formula (2.34) can be rewritten as: 
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.
2

dE
E

dz


= −     (2.36) 

 

And the solution to the equation (2.36) is given by: 

 

( )
2

0 .
L

E E e


−

=     (2.37) 

 

Thus, 𝛼0 is defined as a linear absorption coefficient and Δ𝛼 is nonlinearity-induced 

intensity dependent absorption coefficient change and is given by: 

 

,I  =     (2.38) 

 

where 𝛽 is nonlinear absorption coefficient and is defined as: 

 

(3)

2 2

0 0

.I
c n


 


=    (2.39) 

 

 The light goes through the nonlinear material and the intensity decreases 

with the traveling distance 𝑧 inside the material. This intensity decay can be rewritten 

as: 

 

2

0 .
dI

I I
dz

 = − −    (2.40) 

 

This is the master equation which governs the intensity change when nonlinear 

absorption takes place. Femtosecond pulses have intensities large enough to make 

the 𝛽𝐼2 factor non-negligible. This leads to the plethora of applications based on 

multiphoton absorption such as two photon microscopy or two photon 

polymerization [41, 46].  

 To investigate frequency response of the second and third order nonlinear 

susceptibilities, let us use the Lorentz model of the atom, where the atom is treated 

as a harmonic oscillator. This model is known to provide a very good description of 

the linear optical properties of nonmetallic solids. Lorentz model is easily extended 

to describe wavelength-dependent first, second or third order nonlinear susceptibility 

of the material. For that, we add the nonlinearity in the restoring force exerted on the 
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electron. For the case of non-centrosymmetric media ( 0a  ), the equation of motion 

of the electron coordinate 𝑥 is written as: 

 

( )2
2 2 3

02
2 .

eE td x dx
x ax bx

dt dt m
 + + + + = −   (2.41) 

 

The applied electric field is given by ( )E t , the charge of electron is 𝑒, the damping 

force is of the form 2𝑚𝛾
𝑑𝑥

𝑑𝑡
. Terms 𝑎𝑥2 + 𝑏𝑥3 are responsible for second and third 

order nonlinearity of the system, where a and b are constants of nonlinearity. The 

resonant frequency of the bound electron is denoted 𝜔0.  The applied electric field 

is of the form: 

 

0( ) . . .i tE t E e c c−= +    (2.42) 

 

The nonlinear differential equation is called Duffing oscillator and is used to model 

damped and driven oscillators. Direct solving of differential equation (2.41) gives 

the amplitude response to the applied electric field with the frequency 𝜔. Setting the 

terms a and b to zero yields the response curve of classical harmonic oscillator, 

whereas non-zero a and b yield the response curve of anaharmonic oscillator. Both 

are shown in Fig. 2.1. 
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Fig. 2.1. Bound electron amplitude x dependence on frequency of the applied electric field 

(divided by bound electron resonance frequency 𝜔0 ) of classical harmonic oscillator (black 

curve) and anharmonic oscillator (red curve). 

 

 As can be seen in Fig. 2.1, anharmonic oscillator shows material response 

at harmonic and subharmonic frequencies 0.5 𝜔0, 0.33 𝜔0 and 2 𝜔0, 3 𝜔0, indicative 

of two / three photon absorption and second / third harmonic generation. 

 Approximate solution to equation (2.41) can be obtained by means of 

perturbation expansion. Using definition of polarization (𝑁 is the number of 

dipoles): 

 

P N xe=  ,    (2.43) 

 

 Linear, the second and the third order nonlinear susceptibilities can then be derived: 

 

(1)

0 0

1
,i

ij

j E

dP

dE



=

 
=   

 

    (2.44) 

 

2
(2)

0 0

1
,

2

i
ijk

j k E

d P

dE dE



=

 
=   

 

   (2.45) 
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3
(3)

0 0

1
.

6

i
ijkl

j k l E

d P

dE dE dE



=

 
=   

 

   (2.46) 

 

Using these derivations, nonlinear susceptibility frequency response can be defined 

as: 

 

( )
( )

2
(1)

1

1

/
,

Ne m

D
 


=    (2.47) 

( )
( )

( ) ( )

3 2

(2)

1 1 1 2

1 1

/
2 , , ,

2

N e m a

D D
   

 
=   (2.48) 

( )
( )
( ) ( )

4 3

(3)

1 1 1 1 3

1 1

/ 3
3 , , , ,

3

N e m b

D D
    

 
=   (2.49) 

 

where complex denominator function is: 

 

( ) 2 2

0 2 .j j jD i    = − −    (2.50) 

 

Frequency-dependent susceptibility functions (2.47) - (2.49) are plotted in Fig. 2.2: 

 

 

Fig. 2.2. First, second and third order susceptibility real, imaginary part and absolute value 

dependence on frequency. 
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From Fig. 2.2, one can see that the nonlinear susceptibility is greatly 

enhanced at resonance frequencies 𝜔0, 2𝜔0, 3𝜔0, which are related to linear 

absorption, two photon absorption and three photon absorption respectively. This is 

the main reason why wavelength tunable laser sources are required in multiphoton 

absorption applications: they allow tuning the wavelength close to resonance and 

resonantly enhancing the nonlinear susceptibility which greatly increases the 

absorption coefficient [41, 46]. 
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2.2 Coupled wave equations for ultrashort pulses 

If the interacting pulses are ultrashort in time domain, the coupled nonlinear 

equations should have additional dispersion terms, which would account for 

dispersive broadening and time domain pulse walk-off. The propagating wave vector 

can be defined as [41, 42]: 

( ) ( )ck k k  = + ,    (2.51) 

where   is a frequency of the spectrum, 
c  is the pulse carrier frequency and k  

is the Taylor expansion of the wave vector up to the second order: 

( ) ( )
2

2

2

1

2
c c

c c

dk d k
k

d d   

  
= =

= − + −
 

,   (2.52) 

The electric field can then be defined as: 

( ) ( ), ,0 cik z i k zE z E e e − − =  .   (2.53) 

The electric field definition can be inserted into the coupled wave equation derived 

from Maxwell’s equation (2.4), the approximation of a slowly varying amplitude is 

made in spatial domain, but not in the time domain. The wave equation for ultrashort 

pulses reads: 

2 2

2 2 2

1 1

2
NL

i k
E i P

z u t t c k t

    
+ − = 

    
 .   (2.54) 

Here, u  is a group velocity, k  is the second derivative of wave vector with respect 

to frequency. Analogously to the equations (2.14) - ( 2.16), inserting the nonlinear 

polarization term leads to the coupled equations for all three interacting waves. The 

equations could be written in pump pulse frame of reference with 
gu

z
tt −= : 

2
* Δkz1 1 1

13 1 1 2 322

iE E Ei
v k i E E e

z t t
 −  

+ − = −
  

 ,     (2.55) 
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2
* Δkz2 2 2

23 2 2 1 322

iE E Ei
v k i E E e

z t t
 −  

+ − = −
  

,     (2.56) 

zΔk

2132

3

2

3
3

2

ieEEi
t

E
k

i

z

E
−=




−




 ,    (2.57) 

where 
1 1

3 3j jv u u− −= − is the group velocity mismatch parameter. In a limiting case 

of the monochromatic waves when dispersive terms can be ignored, the equations 

(2.14) - (2.16) are recovered. In the case of parametric amplification, a strong pump 

pulse 
3E  is incident into the material, and a weak signal 

1E  and idler 
2E electric 

fields are amplified simultaneously. The equations are solved with boundary 

conditions [6]: 

( ) ( )0, 0 , 1,2,3j jA t z A t j= = = .        (2.58) 

In the case of strong pump depletion and strong interacting pulse intensities as in 

optical parametric oscillators, self- and cross-phase modulation terms should be 

accounted for. The origin of these effects stems from intensity-dependent refractive 

index introduced in section 2.1.2. Propagating pulse changes the refractive index of 

the medium, which can modulate its own phase and that of other simultaneously 

propagating pulses. These effects can be accounted for by inserting the self- and 

cross- phase modulation terms into the ultrashort pulse equations (2.55) – (2.57) [42, 

47]: 

( )

2
* Δk z1 1 1

13 1 1 2 32

2 2 2

1 1 1 12 2 13 3

2

iE E Ei
v k i E E e

z t t

i E E E E



  

−  
+ − = −

  

− + +
 ,    (2.59) 

( )

2
* Δk z2 2 2

23 2 2 1 32

2 2 2

2 2 2 21 1 23 3

2

iE E Ei
v k i E E e

z t t

i E E E E



  

−  
+ − = −

  

− + +
,     (2.60) 
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( )

2
Δk z3 3

3 3 1 22

2 2 2

3 3 3 31 1 32 2

2

iE Ei
k i E E e

z t

i E E E E



  

 
− = −

 

− + +
 ,     (2.61) 

 

where 
2

02 i
i

kcn 
 =  is the coefficient of nonlinearity, 

ij  is a cross-phase 

modulation coefficient, which depends on the polarizations of the interacting fields 

indexed i and j. If polarizations are parallel 2=ij , whereas in the case of 

perpendicular polarizations 3/2=ij . The expressions indicate that the cross-

phase modulation term is two times stronger than self-phase modulation term [47]. 

In order to account for the spatial distribution of the interacting beams, the diffraction 

term has to be included into the equations (2.59) – (2.61): 

( )

2
* Δk z1 1 1

13 1 1 1 2 32

01

2 2 2

1 1 1 12 2 13 3

2 2

iE E Ei i
v k E i E E e

z t t k

i E E E E



  

−  
+ − +  = −

  

− + +

,   (2.62) 

( )

2
* Δk z2 2 2

23 2 2 2 1 32

02

2 2 2

2 2 2 21 1 23 3

2 2

iE E Ei i
v k E i E E e

z t t k

i E E E E



  

−  
+ − +  = −

  

− + +

,   (2.63) 

( )

2
Δk z3 3

3 3 3 1 22

03

2 2 2

3 3 3 31 1 32 2

2 2

iE Ei i
k E i E E e

z t k

i E E E E



  

 
− +  = −

 

− + +

 ,   (2.64) 

where 
jk0
 is a wave vector of each interacting wave,  is the Laplace operator. The 

equations (2.62) – (2.64) describe the propagating electric fields simultaneously as 

beams and as pulses, and their nonlinear terms allow describing their interaction in 

spatial and time domain. 

If the spectra of interacting pulses are broad, the equations should also 

include higher orders of dispersion. This can be done while recalling the equations 
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(2.51) and (2.52) and including the first member of (2.52) in the wave vector term 

k : 

( ) ( ) ( ) k
d

dk
kk cc

c




+−


+=
=

 ,     (2.65) 

 where   includes higher terms of the expansion: 
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 .     (2.66) 

 The (2.66) equation is used as a wave’s k vector and propagation is analyzed in the 

reference frame of the carrier frequency.  

It is clear that the nonlinear optics phenomena described by the equations 

are highly complex, and can be solved analytically only in the simplest cases. In 

order to understand and explain the measured optical parametric oscillator 

characteristics in the real world, the tools of numerical simulation should be used. 

Such multipass time- and space-domain systems are never accurately described by 

purely analytic methods. Nonlinear crystal is the location of a large number of 

simultaneous physical effects: parametric amplification, pulse dispersive 

propagation, beam diffraction, extraordinary beam walk-off, linear and nonlinear 

absorption, pulse and beam self- and cross- phase modulation, cascaded phase 

matching effects, parasitic non-phase matched nonlinear conversion effects. In 

addition to the crystal, the resonator contains a plethora of other physical effects that 

have to be accounted for: diffraction, losses in optical elements, dispersive 

broadening, pulse delay by cavity mirror translation. If all these effects are included, 

the simulation model becomes numerically costly, hard to implement and even 

harder to interpret. Therefore, analyzing the OPO operation should be done with the 

most important effects which can be prioritized by comparing the distances under 

which the effects are pronounced. 

OPO can be analyzed by 4 different approaches each including different 

experimentally observable effects: 1) plane wave and monochromatic wave 

approach (2.14) - (2.16) system of linear equations; 2) plane wave and pulse 

approach, described by the equations (2.55) - (2.57); 3) Beam and monochromatic 

wave approach, described by the equations (2.62) - (2.64) with time domain 

derivatives set to 0. Beam and pulse, described by the system of equations (2.62) - 

(2.64). We will further discuss the validity and applicability domains for each of 

these simplified models, their advantages and shortcomings. 
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2.2.1 Plane and monochromatic wave model 

Numerical solution of the equations (2.14) – (2.16) is a task of finding the 

complex electric field amplitude and phase change while light propagates through 

the nonlinear crystal. In this model, the spectrum of the propagating field is 

composed of one component (monochromatic wave), the spatial mode also has only 

one frequency component (plane wave), and the dispersive and diffractive light 

nature is ignored. This model is suitable for narrow bandwidth pulses when 

dispersive broadening is only weakly pronounced, for instance, in the case of 

nanosecond pulses and picosecond pulses with short interaction lengths. An 

approximation in spatial domain leads to the requirement that interacting beams 

should be large and have narrow spatial frequency content, so that diffraction could 

be ignored. A single beam resonator is simulated by providing feedback to only one 

of the interacting beams. After each single pass, the signal field is multiplied by the 

loss coefficient and is returned back to the crystal. The calculation is repeated again 

with new pump field and new idler field starting from noise. The system of equations 

(2.14) - (2.16) is solved using a finite difference method with appropriate step size 

z  and initial conditions at the start of the crystal 0=z . The calculation step size 

should be small enough so that the electric field phase change after a step is not larger 

than ~ 10/ , which leads to a very gradual increase of the phase while fields 

propagate. If interaction is strong with strongly pronounced pump depletion and 

abruptly changing phase, the step size z  is decreased until the calculation results 

no longer depend on the step size z . A standard technique for solving such a system 

of linear differential equations is 4th order Runge-Kutta method [48]. The examples 

of the OPO simulated using this approach are given in [49]. 
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2.2.2 Plane wave and pulse model 

In order to account for the dispersive broadening, a system of equations 

(2.55) - (2.57) should be solved. In this case, the spatial mode is described as an 

infinite plane wave, while in time domain it is a packet of monochromatic waves, a 

pulse. This model is well suited for large beam diameters when beam diffraction can 

be ignored (or short interaction lengths). In the field of short pulse OPO numerical 

modelling, this is the most popular model because it is the fastest approach. 

Nevertheless, it has its shortcomings: it fails, if the spatial spectrum is broad (high 

convergence or divergence angles) or there is a significant walk-off of extraordinary 

beam. 

 The system of linear equations (2.55) - (2.57) is solved with „split-step“ 

method based on separation of the equation into linear and nonlinear parts [50]. We 

will focus on the method for one of the equations of the system: 

1
1

ˆ ˆ( )
E

D N E
z


= +


,    (2.67) 

where the linear term: 

2

12 1 2
ˆ

2

i
D v k

t t

 
= − +

 
,    (2.68) 

and the nonlinear term: 

( )2
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ˆ EEEie
E

EE
iN i  ++−−= −

.   (2.69) 

The solution to the equation (2.69) could be written as: 

)))(ˆˆ((exp),( 0101 zzNDEztE −+= ,   (2.70) 

where ( )0110 , ztEE = . A notation is used 0zzh −= and an exponent of the 

equation (2.70) is expanded with a Taylor series: 

2
2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp(( ) ) 1 ( ) ( ) ...

2

h
D N h D N h D DN ND N+ = + + + + + + +   (2.71) 
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On the other hand, the product of both exponents leads to: 

2
2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp( )exp( ) 1 ( ) ( 2 ) ...

2

h
Dh N h D N h D DN N= + + + + + +  .  (2.72) 

If operators D̂  and N̂ commute, the expressions (2.71) and (2.72) are equal to each 

other within ( )2o h . If h is small, an approximate relationship holds: 

)ˆ(exp)ˆ(exp))ˆˆ((exp hNhDhND =+ .   (2.73) 

A solution (2.70) could be rewritten as: 

( ) )ˆ(exp)ˆ(exp,),( 0101 hNhDztEhztE =+ .   (2.74) 

A part of the solution with the nonlinear operator could be rewritten as: 

( ) )ˆ(exp,),(' 0101 hNztEhztE =+ .   (2.75) 

An expression (2.75) is a solution to such an equation: 

'ˆ'
1

1 EN
z

E
=




.    (2.76) 

Similarly, an expression ( ) )ˆ(exp,'),( 0101 hDztEhztE =+  is a solution to a linear 

operator equation: 

1
1 ˆ ED

z

E
=




.    (2.77) 

Linear operator consists of time-domain derivatives so it could be written more 

conveniently in frequency domain: 

2

121
2

ˆ  k
i

ivD −−=  .   (2.78) 

And the solution to (2.77) equation could be written as: 
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exp,,  .    (2.79) 

Using an inverse Fourier transform an electric field can be calculated ( )01 , ztE  and 

it is used as an initial value while solving the nonlinear equation (2.76). The same 

algorithm could be used for all three equations (2.55) - (2.57) to obtain the initial 

conditions for the signal, idler and pump waves. Afterwards, the system of 

differential equations based on (2.69) and (2.76) is solved and the values of electric 

field are found at each time instance [51]. A solution could be implemented by the 

4th order Runge-Kutta finite difference method [48]. The examples where OPO 

simulation is carried out with plane waves and pulses are presented in [50 - 53]. 

 

2.2.3 Beam and monochromatic wave model 

If the diameters of interacting beams are small and the spatial domain 

frequency spectrum is broad, the spatial distribution has to be taken into account. In 

this case, the pulses are considered long in the time domain and their spectrum is 

nearly monochromatic. Solving in Cartesian coordinate system allows accounting 

for such effects as extraordinary beam walk-off and resonator astigmatism. Working 

in XY plane requires using two dimensional Fourier transform, which is more 

computationally expensive compared to the standard one dimensional one [54, 55].  

The system of equations (2.62) - (2.64) is solved without the time derivatives 

because pulses are long and time-domain amplitude changes are small (in other 

words, time derivatives are set to zero). Self- and cross- phase modulation terms 

describe beams self- and cross- induced focusing. The system of equations in the 

spatial domain [42] reads: 
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where the third beam is assumed to be extraordinarily polarized with the spatial 

walk-off accounted for by the angle ρ3. Numerical calculation should be performed 

with the “split-step” method, where the linear operator in spatial frequency domain 

is: 

,     (2.83) 

and the nonlinear operator is written as: 

.   (2.84) 

Discretizing crystal axial Z coordinate to N points with a step size of , the 

following procedure is performed N times: a linear part is solved, (2.79) equation’s 

result in the spatial domain is used and inverse 2D Fourier transform is calculated, a 

field which has propagated a distance is recovered. Afterwards, this field is used 

as an initial value to solve the nonlinear part of the equation with propagation 

distance , Runge-Kutta method is used to solve it. 2D Fourier transform is carried 

out to return to the spatial domain spectrum representation. The same operation is 

done for all three interacting beams. 

After a computation in crystal is performed, propagation in resonator is 

simulated. The simplest approach is solving the diffraction equation in spatial 

frequency domain. Resonator’s spherical mirrors are simulated using thin lens 

transfer function in real domain. After a complete resonator round trip, the fields are 

returned back to the crystal and the same system of differential equations is solved 
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again [54, 55]. As an example, OPO simulation with beam and monochromatic wave 

method is presented in [52]. 

If extraordinary beam walk-off and resonator astigmatism are small, spatial 

domain calculation can be carried out conveniently in the polar coordinate system. 

Splitting a space to points with steps r  and  , spatial grid is not uniform, 

increasing r leads to widening of the step size. Such a grid is a web like. If it is 

transformed to Cartesian coordinate system, the distances between points are not 

constant and the Fast Fourier Transform algorithm cannot be used (as it requires an 

uniform grid). Therefore, the diffraction part in a polar coordinate system should be 

solved with a finite difference method. A system of equations (2.62) - (2.64) is solved 

without time domain terms and using Laplacian operator in polar coordinate system. 

One of the equations could be written as: 

( )

* Δk z1
1 1 2 3

01

2 2 2

1 1 1 12 2 13 3
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iE i
r E i E E e
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− + +

.    (2.85) 

The algorithm is solved with the “split-step” method but in this case the linear 

equation is solved with a finite difference method using non-implicit Crank-

Nicholson scheme [48]. Linear part and its approximation: 
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where index l designates transversal r coordinate and index j designates axial z 

coordinate. At the boundaries of the transverse range r = 0 and  r = R, two separate 

equations are solved to account for 1 / r  uncertainty and to account for absence of

rR + point. In order to solve this equation numerically, terms 11

0 ,..., ++ j

R

j EE  
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need to be found. This can be done with gathering the coefficients near the 

corresponding j+1 members and using Thomas algorithm [48]. 

 After solving the linear part, a nonlinear part is solved. Iterations are 

repeated till the beam diffracts through the entire crystal. After the crystal is passed, 

diffractive propagation in the resonator is solved further. Two different approaches 

could be used: spatial domain frequency can be calculated while using Hankel 

transform (expanding the field with Bessel functions) and using a propagator defined 

in equation (2.83). Another approach is using a Fresnel diffraction formula in the 

polar coordinate system. During the numerical simulations performed in this 

dissertation, it was noted that the second method is much more computationally 

efficient when wide angular spectrum has to be calculated after focusing elements of 

the resonator [56]. 

 

2.2.4 Beam and pulse model 

In order to account for the spatial effects as well as the pulse intensity in the 

time domain, solutions of the equations (2.62) - (2.64) have to be calculated. A 

calculation in Cartesian coordinate system is based on the synthesis of the 

approaches described in the previous chapters (2.2.2 - 2.2.3). The same “split-step” 

method is used, but in this case the 3D Fourier transformation is performed in 

temporal and spatial domains simultaneously. The linear operator is described in a 

such way: 
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The remaining analysis is carried out according to the procedures described in the 

sections (2.2.2 - 2.2.3)  

Calculation in the polar coordinate system is based on the synthesis of the approaches 

described in the previous chapters (2.2.2 - 2.2.3). A linear part of the equation is 

Fourier transformed with E now denoting spectral electric field amplitude: 

,    (2.89) 
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Calculations in polar coordinate system use only one transversal coordinate, so the 

computational resources are saved and the solution is faster than the solution in 

Cartesian coordinate system. An example of full OPO field solution with a method 

of beam in Cartesian coordinate system and pulse is presented in [57]. 

In this dissertation, pulse model simulation in the time domain was carried out 

supporting soliton generation experiments described in chapters 4 to 6. The spatial 

domain was included phenomenologically, by reducing the calculation crystal length 

to the one limited by the spatial walk-off. In the spatial domain investigation 

described in chapter 7, the spatial domain numerical simulation was carried out in 

Cartesian coordinates without the reduction of the crystal length as it was not limited 

by the group velocity walk-off. The full spatial and time model described in this 

chapter was not used because of its computational inefficiency. The polar coordinate 

spatial domain model with a time domain could not be used as it excluded the 

resonator’s astigmatism.  
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2.3 Cascaded Nonlinearity 

The cascaded nonlinearity can be described as a two-step cascading 

interaction which includes the generation of the second harmonic wave 

2  + = , followed by the reconstruction of the fundamental wave through the 

down-conversion frequency mixing process 2  − = . Respectively, the first 

sub-process is responsible for the generation of the second harmonic field, with the 

most efficient conversion observed at 0k = , while the second sub-process, also 

called cascading, can be associated with an effective intensity-dependent change of 

the phase of the fundamental harmonic, which is similar to that of the cubic 

nonlinearity [58]. This process is called quadratic cascaded nonlinearity and is 

observed in crystals which have a non-vanishing quadratic nonlinear susceptibility 

( )2
.ijk  Cascaded SHG / DFG occurs when the nonlinear conversion process is 

strongly phase mismatched. In the case of SHG, due to the 0k   up-conversion 

after one coherence length k   to the second harmonic is followed by the reverse 

process of down-conversion to the fundamental wave after the coherence length. On 

continued propagation, the macroscopic picture shows that second harmonic is 

cyclically generated and back-converted, hence producing a cascade of nonlinear 

effects. During this process, the fundamental wave essentially experiences a 

nonlinear phase shift due to the difference in phase velocities (this is a consequence 

of 0k  ), and the magnitude and sign of the phase shift depends on the phase 

mismatch k : the sign of the nonlinear phase shift can be controlled by the sign of 

k . In the meantime, the magnitude of such phase shift is inversely  proportional to 

the phase mismatch. If the phase mismatch is large enough, this nonlinear phase shift 

behaves as a Kerr effect with controllable nonlinearity [45, 59]. 

 The nonlinear phase NL  can be extracted from the coupled nonlinear 

equations (2.14) to (2.16), as the solutions of the electric field 

( ) ( )0
NLi

N N N NE E e
 = . Only under very restrictive conditions is there a linear 

dependence of NL on either the distance traversed in the sample or on the incident 

irradiance (and hence the equivalance to the electronic Kerr ( )3
 ). An example of 

the variation of NL with distance is shown in Fig. 2.3A, whereas Fig. 2.3B shows 
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corresponding fundamental transmission. Fig. 2.3A shows linear variation of phase 

with distance only for large phase mismatch and / or small phase shifts. The 

increment of the nonlinear phase occurs primarily during the cycle in which power 

flows back from the harmonic into the fundamental so the phase changes stepwise 

[45]. 

 

Fig. 2.3. A) Nonlinear phase dependence on the traversed distance in the crystal. B) 

Fundamental transmission dependence on the propagated crystal length. In both panels, phase 

mismatch parameter is varied. The simulated pulse duration is 120 fs in BBO with 

λfundamental=860 nm. 

 

The dependence of the nonlinear phase NL versus increasing input intensity 

is shown in Fig. 2.4. Note that there is an intensity range in which the nonlinear phase 

shift is linear in intensity. Therefore, it is sensible to discuss cascading as leading to 

an effective third order nonlinearity and effective nonlinear refractive index 

coefficient 
2

effn . It is clear that the maximum phase shift, where this approximation 

is valid depends on the detuning: the larger the k L , the larger the range of 

intensities where this concept is valid.  
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Fig. 2.4. Nonlinear phase as a function of the input intensity at varying levels of phase 

mismatch. The simulated pulse duration is 120 fs in BBO with λfundamental=860 nm, an 

intensity is increased with varying pulse energy. 

 

As indicated in the Fig. 2.5A, the net phase shift depends on the phase 

mismatch, commonly called the SHG detuning. Just by adjusting the phase 

matching, the magnitude and the sign of the effective nonlinearity can be varied. 

 

Fig. 2.5. A) Nonlinear phase dependence as a function of phase mismatch. B) Fundamental 

transmission as a function of the phase mismatch. In both panels, incident intensity is varied. 

The simulated pulse duration is 120 fs in BBO with λfundamental=860 nm. 
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There is an intensity dependence to the detuning needed for maximum phase 

shift: in the small depletion limit, this maximum occurs at ~kL   . The 

dispersion in the low depletion limit is an indicator of refractive index dispersion and 

is linked to the coherence length. As shown in Fig. 2.5B, the „price“ for obtaining 

large phase shifts is effectively the „loss“ of the fundamental throughput to second 

harmonic. In fact, the connection between the phase shift and the loss to SHG has 

been shown to satisfy the Kramers-Kronig relations in the limit of weak depletion 

[45, 60]. 

The effect of pulse duration of the nonlinear phase dependence on the phase 

mismatch is shown in Fig. 2.6A. The corresponding fundamental transmission is 

shown in Fig. 2.6B. It can be seen that the oscillations of the nonlinear phase become 

more pronounced with an increase of pulse duration. This is a consequence of the 

smoothing of the phase shift oscillations over the broad spectrum of the short pulse. 

 

 

Fig. 2.6. A) Nonlinear phase dependence on the phase mismatch. B) Fundamental 

transmission dependence on the phase mismatch. In both panels incident pulse duration is 

varied with constant intensity I=20 GW/cm2 in BBO with λfundamental=860 nm. 

 

In the limit of negligible depletion of the fundamental wave, it is possible to 

deduce a simple expression for the effective nonlinearity 
2

effn  in the case of SHG 

[59]: 
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2
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2 2 2

0 1 2

2 effeff
d

n
c n n k




= −


.    (2.91) 

As is evident from the expression, the resulting nonlinear refractive index is 

proportional to the square of the quadratic nonlinearity deff and is inversely 

proportional to the SHG phase mismatch. Its sign can be controlled by the sign of 

the phase mismatch: for 0k  it results in self-defocusing, while for 0k  it 

causes self-focusing.  

 

Interestingly enough, in the case of difference frequency generation (DFG) 

the cascaded nonlinearity induced nonlinear phase shifts are opposite to the SHG 

case. The ideas for the explanation of this difference in behavior can be gleaned from 

the earlier work of Conti, di Trapani and Valiulis [61, 62].  

Conti et al have shown that in a non-phase matched case, the system of nonlinear 

coupled equations can be simplified using perturbation methods and solved 

exploiting a method of multiple scales [63, 64]. If the phase mismatch k  is much 

larger than zero, a small parameter    can be introduced, given by 1k −=  . The 

electric fields are expanded in power series of this small parameter   : 

    2

1 2 ...sE A A A = + + + ,   (2.92) 

    
2

1 2 ...pE B B B = + + + .   (2.93). 

Inserting these expansions into coupled nonlinear equations (2.14) – (2.16)  (in the 

degenerate second harmonic generation case, with scaled variables), yields the 

following equations for the leading order envelopes A and B which correspond to the 

fundamental (signal / idler) and the second harmonic (pump) electric fields 

respectively: 

 
2 21 1

0
2

A
i A A i B A

z k k


− + =
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,  (2.94) 

    
21

0
B

i A B
z k


+ =

 
.    (2.95) 

The term 2
A A  is a self-induced phase modulation term originating from the 

cascaded phase matching. It describes the nonlinear phase shift acquired during steps 
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of cascaded photon processes, involving up-conversion to 2  followed by back-

conversion to   . Conti et al. have shown that there is an additional term to the 

signal/idler equation (2.94) if the pump electric field is sufficiently intense, as 

evident from expression 2
B A . The physical process consists of two successive 

difference frequency generation processes 2  = − , which are responsible for the 

cross-induced phase shift at signal/idler. The sign of the produced phase shift is 

different as evident from equation (2.94). The relative intensities of interacting 

beams determine which process is dominating – either self-induced phase 

modulation term during sum frequency generation A  >> B  , or cross-induced 

phase modulation term during difference frequency generation B  >> A  . These 

effects help to explain the sign differences of phase modulation observed in DFG 

and SHG experimental cases. 

 



 Introduction to femtosecond OPOs 

  

53 

 

2.4 Time domain solitons in OPO 

Positive / negative nonlinearity and the corresponding negative / positive 

resonator group delay dispersion leads to the soliton formation. For a Gaussian-

shaped pulse propagating inside the dispersive nonlinear material, the positive 

material’s dispersion leads to a pulse broadening and a “chirp” of the pulse. The 

negative dispersion induced by a prism or grating pair could be used to compensate 

the positive material’s dispersion or the self-phase modulation induced “chirp”. The 

“chirp” by negative dispersion means time delay of the spectral components so that 

the blue spectral components are at the leading edge and the red spectral components 

are at the trailing edge of the pulse. The change of the pulse “chirp” in time or, in 

other words, dispersion-induced frequency modulation, can be calculated by the time 

derivative of the “chirp” parameter, which itself is a time derivative of pulse phase 

[42]: 
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where L is the propagation length, 
0 is the duration of unchirped pulse and ''k  is the 

group velocity dispersion of the medium, expressed as the second derivative of the 

wave vector. 

The self-phase modulation-induced frequency modulation can be calculated 

in a similar manner: 

 

( )
2

2 2

2
.SPM

SPM

I
n L

t t t

 
 



  
= = − 
   

        (2.97) 

 

Summing both relations for the zero net modulation in the Gaussian-shaped pulse 

center 0D SPM + = , we find a condition for a chirp-free propagating pulse: 
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= ,       (2.98) 

where 
pI is  the peak intensity. This is the formula for the first order soliton (Nsoliton 

= 1) which shows that both the material and nonlinearity frequency modulations can 
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approximately compensate each other if the material and pulse properties satisfy the 

underlying soliton equation. 

 An integer number of the soliton order parameter Nsoliton is given by square 

root of ratio of dispersive length LD to nonlinear length LNL. Dispersive length is 

defined as a distance, after which the pulse duration increases by a factor of 2 . 

Nonlinear length is defined as a distance, after which the accumulated nonlinear 

phase reaches 1 radian.  If the Nsoliton < 1, the pulse evolution is dominated by 

dispersion, if the Nsoliton> 1, the pulse evolution is dominated by the self-phase 

modulation. The exact balance with Nsoliton= 1 leads to the fundamental soliton which 

has a stable pulse and spectrum shape when propagating. Higher integer order Nsoliton 

> 1 solitons show periodic time and frequency domain oscillations with a soliton 

period. The pattern of the oscillations becomes more complicated and dominated by 

the SPM with increasing soliton order Nsoliton. The soliton order equation is given by 

[47]: 
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where τ0 is pulse duration, P0 is the intracavity peak power, Aeff is the effective beam 

area, c – the speed of light in vacuum, ω0 is angular frequency, and 
''

effk is the group 

velocity dispersion of the resonator, normalized to crystal length. In the case of two 

crystals, the crystal lengths are averaged using their effective nonlinearities as 

weighing coefficients. From the equation (2.99), the N-th order soliton FWHM 

duration and the average power in the cavity with the propagating soliton can be 

calculated [19, 65]: 
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where, 𝜆 is the signal wavelength and f – pulse repetition rate. Experimentally 

measured values of the output average power, pulse duration and numerically 

calculated effective nonlinearity are used in the calculation of soliton duration and 
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soliton power given by equations (2.100) and (2.101). Using the numerical 

modelling results, nonlinear phase is extracted and soliton order given by equation 

(2.99) is calculated. When the nonlinearity increases, the nonlinear length decreases 

and an increasing order of soliton can be supported by the cavity as given by the 

soliton order equation.  

In this dissertation, two ways of soliton generation were experimentally 

observed: the state-of-the-art method of soliton generation with positive material 

nonlinearity and negative intracavity dispersion; a novel method of soliton 

generation with negative material cascaded nonlinearity and positive intracavity 

dispersion. The results obtained with these methods are discussed in the chapters 3-

6. 
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2.5 OPO resonator stability 

The ABCD matrix tool is an invaluable tool in analyzing paraxial beam 

propagation and resonator stability. Its complete derivation is given in [66, 67]. If 

resonator‘s round trip matrix is analyzed, a condition of the stable resonator and 

pass-to-pass bound ray position is given by the following inequality:  

1 1
2

A D+
−   .   (2.102) 

 

Here, A is the resonator’s round trip matrix (1, 1) element and D is the resonator’s 

round trip matrix (2, 2) element. Even though there are many ways to design an 

optical resonator, the procedure of finding its stability is always the same - 

multiplying the transfer matrices of resonator’s optical elements and calculating the 

stability as given by equation (2.102). A principal scheme of a resonator used 

throughout the experiments described in this dissertation is shown in Fig. 2.7. The 

nonlinear crystal is represented as an intensity dependent nonlinear lens. The 

dependence of the calculated stability parameter on the distance between the 

spherical mirrors of the resonator is shown in Fig. 2.8.  

 

 

 

Fig. 2.7. Example Z-folded resonator with plane mirrors M1, M2, M5, M6 and curved mirrors 

M3, M4 on linear translation tables. The nonlinear crystal NL is represented as a nonlinear 

lens. 
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The red zone indicates the stability range where the resonator is stable – 

physical mirror separation distances outside these boundaries lead to an unstable 

resonator which does not form pass-to-pass stable resonator’s mode. The stability 

range could be split in two zones with different beam sizes in the crystal and at output 

coupler. The 1st zone is defined as the one having the stability parameter change from 

1 to -1 (the physical mirror separation from 92 mm to 103 mm). The 2nd zone is 

defined as the one having the stability parameter change from -1 to 1 (the physical 

mirror separation from 103 mm to 116 mm). 

  The dotted lines indicate the stability parameter’s dependence when thin-

lens is inserted intracavity with focusing power of D~ 50 m-1. This simulates 

nonlinear focusing effect to resonator’s stability, even though the twice larger value 

of D~ 50 m-1 is used than numerically simulated in the dissertation chapter 7. The 

larger value allows showing the influence of the lens on a larger scale. The inclusion 

of the lens shifts the resonator stability range and separates the two stability zones. 

If continuously varying lens is inserted intracavity with fixed physical mirror 

distances, the stability parameter will change and this will limit the operation of the 

device. This is exactly the case if a nonlinear focusing occurs in an OPO crystal. 

When OPO generation starts and output power saturates - peak power is increased 

from 0 to the 400 kW after a number of round trips, and the first pulses “see” different 

resonator’s stability compared to the steady state ones [70]. 

 

 

Fig. 2.8. The calculated tangential (X) and sagittal (Y) resonator stability parameter (A+D)/2 

dependence on the distance between resonator’s spherical mirrors. The dashed lines indicate 

the stability parameter with thin-lens power D=50 m-1 included in the location of the crystal. 

The red zone indicates the spherical mirror separation distance where resonator is stable. 
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If the resonator’s roundtrip matrix is known, the ABCD parameters can as 

well be used for calculating the Gaussian beam parameters. Round trip matrix 

calculation starting from each element of the resonator allows finding the complex 

beam parameter q at those elements. The stability condition is the requirement that 

the field distribution in the cavity reproduces its relative shape and phase after a 

round trip through the system. It can be written mathematically as follows: 

 

Aq B
q

C q D

+
=

+
,    (2.103) 

 

with complex beam parameter given as: 
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where R and ω are Gaussian beam curvature radius and spot size respectively.  

Both these approaches allow calculating the spot sizes in the OPO cavity and the 

stability ranges where a cavity is stable and generation could be observed. 

Calculation gets a bit more challenging if the parameters of optical components 

depend on the strength of the propagating electric field. A useful comparison with 

thermal lensing can be made: in laser resonators, the thermal lens depends on the 

mode size in the active element, and the mode size, in turn, depends on the thermal 

lens. The first approximation is calculating “cold” laser resonator mode size at active 

element and using the calculated mode size to derive element’s thermal focal length. 

A parabolic refractive index approximation can be used to derive the thermal focal 

length, as given by [68]: 

 

(2.105) 

 

where κ is material’s heat conductivity, dn/dT is material’s refractive index 

dependence on temperature coefficient, 
0 is a mode waist size at the active element 

and Pheat is absorbed thermal power/ Inserting the “cold” resonator’s mode size into 

the equation (2.105), allows calculating thermal lens value, which in thin lens 

approximation can be used with a lens matrix to calculate “hot” resonator’s mode 

sizes. 
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 Similarly, the resonator mode sizes with Kerr lens-like nonlinear focusing / 

defocusing element can be calculated. A parabolic refractive index approximation 

can be used to derive the nonlinear focal length, as given by [67]: 
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0

2

,
8

NLf
P n L

 
=         (2.106) 

where P is the pulse peak power, 
0 is a mode waist size at the element, n2 is the 

nonlinear refractive index, and L is the thickness of the material. The origin of both 

thermal and nonlinear focusing is a spatial phase gradient throughout the mode. In 

parabolic approximation, the phase gradient depends on the maximum phase shift at 

the center of the mode. It is also proportional to the square of the mode waist size at 

the active element. The maximum phase shift in thermal lens depends on κ, dn/dT 

and Pheat. In the case of Kerr lens, the peak phase shift depends on peak intensity 
2

0P    and material nonlinearity n2. Hence, the nonlinear lens has a fourth power 

dependence on the mode size compared to the square power law of the thermal one. 

Thus, precise mode size calculation is required in order to correctly evaluate the 

nonlinear focal length.  

On the other hand, as shown by Magni et al. [69], the variation range of the 

active element’s focusing power 1 f  which leads to a stable resonator is related 

to the mode size at the active element : 

2

0

1 2 1

f



 
 = .   (2.107) 

The equation shows that smaller resonator waist size at the active element leads to 

the active element focusing / defocusing insensitive resonator. This is the main 

reason why increasing the beam waist in the laser crystal does not prevent the thermal 

lens from shifting the laser resonator out of the stability range. The dependencies of 

thermal lens power and the stable zone width on the mode size cancel each other 

because they have exactly opposite square law relationships shown in equations 

(2.105) and (2.107).  

The OPO case would make the mode size scaling even harder, as the fourth 

power dependence of nonlinear focal length would dominate the second power 

dependence of resonator’s sensitivity to lensing. Luckily, the nonlinear refraction 

index of commonly used OPO crystals is low enough to reach focusing the powers 
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of  D~ 20 m-1 with ~50 µm spot size and ~400 kW of peak output power [70]. The 

thermal lenses of laser resonators with Yb-doped slab type medium reach D ~20 m-

1 with ~150 µm spot size and ~4 W of average output power [71]. Three times smaller 

mode of OPO resonator makes the OPO resonator ~10 times less sensitive to the 

change of the focal length compared to the laser resonator, as indicated by the 

equation (2.107). 

Analogously to the laser resonators, the mode size in optical parametric 

oscillators can also be calculated in two step approach. The “cold” resonator involves 

stability calculation without the additional nonlinear lens. The retrieved mode size is 

inserted into the equation (2.106) and the nonlinear focal length is calculated. The 

“hot” resonator’s stability calculation requires inserting the nonlinear focal length 

into thin lens matrix and the resonator’s stability is calculated. 

In this dissertation, the spatial domain nonlinear focusing effects were 

experimentally observed and are discussed in chapter 7. 
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3 OPO with negative GDD 

The state-of-the-art femtosecond synchronously pumped optical parametric 

oscillators include intracavity group delay dispersion compensation [72 – 74]. The 

third order nonlinearity of nonlinear crystal is positive, therefore requiring negative 

dispersion in order to generate soliton-like pulses. This chapter explores the method 

of dispersion compensation using a prism pair and the manifestation of cascaded 

nonlinearity effects. The results reflect the first attempt to design and characterize an 

operational OPO using the second harmonic pump, while the cascaded nonlinearity 

induced effects were not obvious at the time of the study. 

Parts of the material covered in this chapter have been published in 

publication P2 and presented in conference papers C1 and C2. 
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3.1 Experimental procedures 

The optical setup used in the experiments is shown in Fig. 3.1. The optical 

parametric oscillator was pumped by the second harmonic of 3 W Yb:KGW 

oscillator. The used nonlinear crystal was LBO, crystal length was chosen based on 

a double group velocity mismatch length  ( )1 12 /gv walkoff FM SHL v v − −= −  between the pump 

516nmp = and the signal wavelength of 950nmp = , as for this wavelength the 

mismatch is maximum (
515 /960gv nm nmL = 45 fs/ mm and

515 /730gv nm nmL = 25 fs/mm). 

The parametric interaction is Type 1 e o o→ + carried out in XY plane, the crystal 

length is 5 mm LBO, the cut angles are 090 = and
011.6 = , both surfaces are 

coated with anti-reflection coatings with R < 0.5 % in the range of 750-950 nm and 

R < 1% for a wavelength of 516 nm. The resonator mirrors are highly reflective in 

the range of 780 - 950 nm with R > 99.9% and highly transmissive at 515 nm. The 

group delay dispersion of the mirrors in this range was designed to be negative, in 

order to compensate and surpass the positive dispersion of the crystal. In Fig. 3.2B a 

round trip group delay dispersion of the mirrors is shown measured by white light 

interferometer. As can be seen from the graph, the group delay dispersion is 

oscillating and is gradually decreasing if shifted to lower wavelengths. The pump 

oscillator is 3 W average power, 95 fs pulse duration, 76 MHz pulse repetition rate 

oscillator (Flint, Light Conversion), the used second harmonic crystal is 2.5 mm 

length LBO crystal with AR coatings.  The generated second harmonic power 

reaches 1.7 W with a conversion efficiency of 57 %. The pulse duration calculated 

from the spectrum bandwidth is 80 fs. The fundamental harmonic is focused to the 

second harmonic crystal with 22 µm radius at 1/e2 level resulting in peak intensity 

of 64 GW/cm2. The generated second harmonic is focused to the OPO crystal 

through the spherical mirror, to the focus of 25 µm radius at 1/e2 level to match the 

resonating mode’s radius. Producing a peak intensity of 37 GW/cm2. The resonator 

design is symmetrical Z form confocal resonator with spherical mirrors radius of 

curvature R=-100 mm. The OPO’s resonator’s length is matched to the resonator 

length of the pump oscillator to enable the synchronous pumping condition. The 

resonator end mirror M9 is put on a linear translational stage to allow finding the 

synchronous pumping condition. 

Output coupler is replaced with an uncoated glass plate, this allows varying 

the output coupler reflection coefficient to experimentally probe the most optimal 
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output coupler reflection coefficient which can be calculated with Fresnel reflection 

formula. The optimal reflection coefficient is probed to be with R = 9 %. 

The experiments are done in two parts: in the first part, the resonator is operated 

with a net negative group delay dispersion induced by chirped mirrors and without a 

prism pair. In the second part of the experiments, in order to vary the amount of the 

intracavity negative GDD, a prism pair (P1-P2) is inserted intracavity. The SF10 

prism pair is used at Brewster’s angle with prism apex to apex distance of l=200 mm. 

Therefore, the net negative resonator group delay dispersion is induced by the 

chirped mirrors and an additional variable negative term is induced by a prism pair. 

Average power of output radiation was measured using a power meter (Nova-2, 

Ophir) equipped with a thermopile detector (30(150)A-BB-18, Ophir). Radiation 

spectra were recorded using a spectrometer (STS-NIR, Ocean Optics), pulse 

durations were measured using a scanning autocorrelator (Geco, Light Conversion). 
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Fig. 3.1. Experimental setup. L1, L2, L3 – lenses for second harmonic generation, collimation 

and pump light focusing respectively. M1, M2, M3, M4 mirrors for pump light delivery with 

high transmission at fundamental wavelength. M5, M6 – curved resonator mirrors. M7, M8, 

M9, M10, M11, M12, M13 – plane resonator mirrors. M12 is used when resonator is operated 

without intracavity dispersion compensation by a prism pair. M13 is used when intracavity 

prism pair P1 / P2 is used for dispersion compensation. GP – uncoated glass plate used as an 

output coupler, NL – nonlinear crystal, BD1, BD2- beam dump, FM – flip mirror, PM – 

power meter, AC – autocorrelator, SM – spectrometer. 
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3.2 Results and discussion 

Whenever nonlinear crystal is rotated to change the phase matching angle, 

the resonator is misaligned because of the refraction in the crystal. Therefore, every 

step of the wavelength change should be followed by alignment of the resonator 

which leads to a very cumbersome procedure. In order to prevent this, the central 

wavelength is changed by changing only the resonator length while keeping the 

nonlinear crystal angle fixed. This leads to parametric gain optimized at the center 

of the tuning curve with decreasing conversion efficiency if a wavelength is changed. 

The experiment was conducted in two steps: in the first part, wavelength was tuned 

without dispersive prisms. In the second part of the experiments, wavelength was 

tuned and the intracavity prism pair was adjusted to achieve the minimum pulse 

duration. In both cases the resonator group delay dispersion was negative. 

 

 

Fig. 3.2. A) Signal output power dependence on wavelength as the crystal angle is fixed at 

12.6o  and the wavelength is tuned by changing the cavity length. B) Crystal, mirrors and 

resonator round trip group delay dispersion dependence on the wavelength when resonator is 

operated without the prism pair. 

 

The crystal angle was fixed at the 12.6o = , the power tuning curve is 

shown in Fig. 3.2A. The power is calculated accounting for all the reflections from 

all four surfaces of the glass plate. A tuning curve is limited by the amplification 
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bandwidth of the crystal and the reflection bandwidth of the used resonator mirrors.  

The measured negative group delay dispersion of the mirrors is negative through the 

wavelength tuning range as shown in Fig. 3.2B. 

 

 

Fig. 3.3. Numerically calculated nonlinear phase and soliton number dependence on the 

signal wavelength with intracavity GDD ~ -1000 fs2 . Negative CQN areas (0, I, II, III) 

colored with different red shades indicate wavelengths with negative CQN high enough to 

support soliton of corresponding order N = 0, 1, 2, 3. OPO crystal angle is fixed at 12.7o for 

optimal conversion efficiency to 860 nm. 

 

The Fig. 3.3 shows numerically calculated nonlinear phase and soliton order 

dependence on the central signal wavelength. The soliton order was calculated from 

the equation (2.99) with a fixed dispersive length (with ~ -1000 fs2 resonator GDD 

and  =  140 fs) and nonlinear length estimated from the nonlinear phase. The 

nonlinear phase was computed using the numerical model equations (2.59) to (2.61) 

by simulating a single pass through the OPO crystal with varying signal wavelengths. 

An input signal pulse is injected with approximate experimentally observed steady 

state OPO signal pulse parameters at the center of the tuning curve: pulse duration 

 =  140 fs and intracavity average power P = 3.5 W. As can be seen from the curve, 

the nonlinear phase is large enough to reach high order soliton threshold and only 

the wavelength range of 800-840 nm supports solitons below order of 2, as negative 

CQN compensates crystal material positive nonlinearity. As the used crystal is 
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relatively long, (5 mm), the positive material nonlinearity overweighs the added 

difference-frequency-induced CQN. This leads to small values of positive 

intracavity nonlinearity at shorter wavelengths and larger values of positive 

intracavity nonlinearity at longer wavelengths. 

 The measured pulse durations are shown in Fig. 3.4A. The pulse duration 

without the prism pair anticorrelates with the group delay dispersion, even though 

similar values of GDD produces strikingly different pulse durations at longer and 

shorter wavelengths of 860 nm. It is interesting to note that inserting the prism pair 

and optimizing the pulse duration does not optimally compress the pulse for the 

wavelengths longer than the phase matched 860 nm. 

 

 

Fig. 3.4. A) Pulse duration with and without the prism pair and resonator group delay 

dispersion dependence on wavelength. B) Autocorrelation traces of various central 

wavelengths when prism pair is inserted intracavity and pulse duration is adjusted to 

minimum value at each wavelength. OPO crystal angle is fixed at 12.7o for optimal 

conversion efficiency to 860 nm. 

The autocorrelation traces of minimal achievable pulse durations at different 

central wavelengths while minimizing the resonator GDD with the prism insertion 

is shown in Fig. 3.4B. The autocorrelation trace is Gaussian-like only at around the 

exact phase matching angle at the wavelength of 860 nm. As the wavelength is 

changed to shorter and longer wavelengths and GDD is decreased, pulse-splitting 

behaviour and deteriorated pulse structure start to appear. This is unsurprising, as the 

cavity nonlinearity is large enough to generate higher order solitons which tend to 
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split to individual pulses when perturbed [75]. The autocorrelation traces are 

measured at low resonator dispersion values, which increases the achievable soliton 

order even further. The higher order solitons split into the larger number of pulses 

[47]. This results in chaotic-like pattern of autocorrelation trace as minute changes 

of the ambient conditions destabilize the internal higher order soliton.  

 

 

Fig. 3.5. A) Spectrum bandwidth with and without prism pair and resonator group delay 

dispersion dependence on wavelength. B) Pulse time-bandwidth product with and without 

prism pair and resonator group delay dispersion dependence on wavelength. OPO crystal 

angle is fixed at 12.7o for optimal conversion efficiency to 860 nm. 

The pulse spectrum bandwidth presented in Fig. 3.5A with and without a 

prism pair shows good correlation with intracavity GDD. The measured spectra of 

Fig. 3.6 show pronounced spectrum distortion at longer wavelengths with varying 

amounts of GDD.  Inspecting the time-bandwidth product results in Fig. 3.5B 

suggests that the pulse formation is influenced by some stronger nonlinear effect. 

The time-bandwidth product is virtually independent on the applied cavity GDD 

when the output wavelength is tuned from 770 nm up to the exact phase matching at 

860 nm. At longer wavelengths, the CQN distorts the spectrum through self-phase 

modulation resulting in an increase of time-bandwidth product. As shown by the 

soliton equation (2.99), further increase of negative GDD would compensate large 

values of intracavity nonlinearity and allow soliton formation. Despite that, the 

amount of negative GDD achievable in a prism pair is limited by the physical 

footprint which is needed to increase the distance between the prisms even further.  
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The variation of output power and pulse duration with intracavity GDD is 

shown in Fig. 3.7A and Fig. 3.7B. The negative GDD and positive intracavity 

nonlinearity allow soliton formation. For a soliton with an order Nsoliton = 1, it should 

lead to a linear pulse duration dependence on intracavity GDD, as given by the 

equation (2.100). The linear fit of pulse duration dependence on GDD correspond 

well to the experimental results at wavelengths shorter than exact phase matching 

wavelength. At longer wavelengths, the dependence deviates from linear. This 

confirms that the pulse formation effect is soliton-like at shorter wavelengths, when 

cavity nonlinearity is small enough to be compensated by linear intracavity GDD. 

The pulses exhibit the signatures of higher order solitons at longer wavelengths, 

where the spectra are deformed and pulse duration dependence on GDD is influenced 

 

Fig. 3.6. Pulse spectra when prism pair is inserted intracavity and dispersion is varied to 

the different values of negative group delay dispersion: A) minimum of absolute GDD (~ 

-500 fs2 at 880 nm); B) average of absolute GDD (~ -1200 fs2 at 880 nm); C) maximum 

of absolute GDD (~ -2000 fs2 at 880 nm). The GDD values correspond to the GDD ranges 

shown at Fig. 3.7. In all panels OPO crystal angle is fixed at 12.7o for optimal conversion 

efficiency to 860 nm. 
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by pulse splitting effects. This is well in line with the time-bandwidth product 

dependence on GDD at different wavelengths shown in Fig. 3.8B. Soliton pulses 

should have pulse quality close to transform limit (~ 0.44 for Gaussian form pulses). 

The durations of at longer wavelengths are short, most likely because short pump 

pulse acts as a temporal filter for slightly chirped signal pulses. This effect allows 

short pulse formation in synchronously pumped femtosecond OPOs without soliton 

formation mechanism [76]. The temporal filtering is as well evident in Fig. 3.8A, 

where increasing amounts of intracavity GDD lead to narrower pulse bandwidths. 

The intracavity GDD stretches the pulse in time domain so that short pump pulse 

overlaps in time only with part of the signal spectrum. Increasing the GDD leads to 

stronger filtering effect as is evident from the experimental results.  

 

 

Fig. 3.7. A) Signal output power dependence on the prism pair induced group delay 

dispersion with varying signal central wavelengths. B) Signal pulse duration dependence on 

the prism pair induced group delay dispersion with varying signal central wavelengths. In all 

panels OPO crystal angle is fixed at 12.7o for optimal conversion efficiency to 860 nm. 
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Fig. 3.8. A) Signal spectrum bandwidth dependence on the prism-pair-induced group delay 

dispersion with varying signal central wavelengths. B) Signal time-bandwidth product 

dependence on the prism pair induced group delay dispersion with varying signal central 

wavelengths. In all panels OPO crystal angle is fixed at 12.7o for optimal conversion 

efficiency to 860 nm. 
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3.3 Summary 

The prism pair induced negative group delay can be used to compensate the 

material nonlinearity and generate soliton-like pulses, but the required physical 

footprint limits an integration of the device.  

The oscillations of chirped mirror induced negative group delay dispersion 

are leading to varying signal output pulse duration and spectrum bandwidth.  

Large cavity nonlinearity leads to higher order solitons which show pulse 

splitting behaviour and SPM deformed spectra. 

An intracavity prism pair allows to control the generated pulse spectrum 

form and bandwidth through the interplay of GDD and SPM. 
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4 OPO with negative GDD and CQN 

High intracavity intensities in femtosecond optical parametric oscillators 

induce nonlinear effects in the crystals used for amplification. Previous chapter 

showed the first observation of the influence of nonlinearity on the spectrum and 

pulse characteristics when OPO is operated with a phase mismatch. Such effects 

need to be accounted for to scale the output power and fully understand the temporal 

and power characteristics of the OPO radiation. Furthermore, other possible 

nonlinear effects include temporal soliton formation [72, 77], temporal simulton 

formation [78], four-wave mixing [79, 80] and other effects. In this chapter, cascaded 

nonlinearities and their effects to soliton formation are focused on. Previous work in 

the field include DeSalvo et al. showing that cascaded   nonlinearities induce 

effective   nonlinearity which is proportional to the ( )
2

/effd k  [18]. Gale et al. have 

shown that this effective nonlinearity can be measured using Z-scan setup and 

expressed as crystal angle dependent n2. Gale et al. and Laenen et al. have shown 

experimental observation and analysis of soliton formation of resonating signal or 

idler pulse in OPO [19, 23]. Works by Gale et al. and Laenen et al. considered signal 

when its wavelength is close to the wavelength for which second harmonic 

generation is phase matched - either close to degeneracy or to phase matched 

parasitic second harmonic generation. In this chapter, we demonstrate that effective 

nonlinearity can be observed for any resonating signal or idler wavelength if its 

wavelength is tuned from the exact phase matching - either by tuning the cavity delay 

or by rotating the intracavity crystal. We also perform Z-scan measurements and 

show that this difference-frequency-induced effective nonlinearity cannot be 

explained the same way as second harmonic induced effective nonlinearity. All these 

findings lead to a better understanding of how to design a high power femtosecond 

optical parametric oscillator with optimal pulse characteristics. 

Parts of the material covered in this chapter have been published in publication 

P4 and presented in conference paper C3. 
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4.1 Experimental procedures 

The optical setup used for the experiments is shown in Fig. 4.1. The optical 

parametric oscillator is pumped by second harmonic of Yb:KGW based femtosecond 

oscillator (Flint, Light Conversion). Pump oscillator emits 8 W of average power 

with 120 fs pulse duration at 1030 nm central wavelength and 76 MHz repetition 

rate. Pump light is frequency doubled in 2.5 mm length LBO crystal with AR 

coatings, where 4 W of average power at 515 nm is generated with 50% conversion 

efficiency. Fundamental light is filtered out and pump light is delivered to pump the 

optical parametric oscillator. Pump light is focused to the spot size of 40 μm, which 

is the size of resonating signal mode’s radius. Cavity mirrors M6, M7, M8, M9 are 

high reflective in the range from 820 to 940 nm and have a mean GDD of -100 fs2 

through the wavelength range. The total resonator round trip group velocity 

dispersion is -550 fs2 for a case of BBO and -600 fs2 for a case of LBO. The used 

concave mirrors (R=-200 mm) focus the resonating beam into the nonlinear crystal. 

One of the curved mirrors, M5, is highly reflective in 820 to 940 nm range and has 

high transmittance at the pump wavelength of 515 nm. The output coupler OC with 

20% of transmission in the wavelength range from 820 to 940 nm was used. Two 

different nonlinear crystals (both type I, both from Eksma Optics) were investigated 

as nonlinear gain materials (NL) for optical parametric oscillator: a) 2 mm long BBO 

crystal (𝜃 = 24°) and b) 2.5 mm long LBO crystal (𝜃 = 14°). Both crystals were 

AR coated at 1030+515 nm. The reflection coefficient at the signal wavelength range 

820-920 nm was experimentally measured to vary from 2% (820 nm) to 1.5% (920 

nm) for BBO and from 5% (820 nm) to 3.5% (920 nm) for LBO. The crystals were 

mounted on precision rotation stage allowing the control of phase matching angle, 

which was later recalculated to internal angle. Beam dump discarded the remaining 

pump and idler beams. OPO cavity length was adjusted by moving the output coupler 

placed on a translation stage, to enable finding synchronous pumping conditions. 
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Fig. 4.1. Experimental setup. L1, L2, L3 – lenses for second harmonic generation, collimation 

and pump light focusing respectively. M1, M2, M3, M4 mirrors for pump light delivery with 

high transmission at fundamental wavelength. M5, M6 – curved resonator mirrors. M7, M8, 

M9 – plane resonator mirrors. OC – output coupler, NL – nonlinear crystal, BD1, BD2- beam 

dump, FM – flip mirror, PM – power meter, AC – autocorrelator, SM – spectrometer. 

 

Average power of output radiation was measured using a power meter 

(Nova-2, Ophir) equipped with a thermopile detector (30(150)A-BB-18, Ophir). 

Radiation spectra were recorded using a spectrometer (STS-NIR, Ocean Optics), 

pulse durations were measured using a scanning autocorrelator (Geco, Light 

Conversion). 

 

 

Fig. 4.2. Z-scan experimental setup. L1, L2 – lenses for second harmonic generation and 

imaging to the camera. CR – nonlinear crystal on a linear translation ΔZ and rotation Δθ 

stages. DM – dichroic mirror. PM – power meter. M1 – highly reflective mirror HR1030+515 

nm acting as a camera filter for fundamental harmonic. BD – beam dump. CM – camera for 

fundamental harmonic beam radius change. 
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Nonlinear refractive indices were measured in a home-built Z-scan setup 

shown in Fig. 4.2. The OPO pump Yb: KGW “Flint” oscillator with 8 W of average 

power and 120 fs pulse duration was used as a light source. The beam was focused 

with f = 200 mm lens to the spot of 75 μm beam radius (1/e2), and the sample was 

translated along the propagation direction. Because of the simplicity of the approach, 

the Z-scan method with direct measurement of beam radius with CCD camera was 

used [81]. The beam profile width of the fundamental radiation was monitored with 

a CCD camera while the second harmonic was filtered out. The conversion 

efficiency was limited to 15 % in order to measure cascaded nonlinear phase at the 

conditions, when parametric conversion is not saturated. Avoiding saturation is 

important because cascaded nonlinear phase (or nonlinear refractive index) can only 

be considered a linear function of intensity in a narrow range of intensities, as shown 

in chapter 2.3 and in [82]. As the beam profile widths were measured, care was taken 

to preserve a high fundamental beam quality during the conversion process. Low 

intensity and large beam size were used to mitigate second harmonic beam walk-off 

effect and to prevent fundamental beam deviation from Gaussian beam under strong 

conversion efficiency. Both of these effects limited the upper bound of the 

conversion efficiency. The lower bound of the conversion efficiency was limited by 

the noise of the CCD camera. The measured Z-scan traces were fitted by a numerical 

propagation model solved in spatial domain with Kerr-like medium as a source of 

nonlinearity. The resultant theoretical nonlinear refractive index was calibrated by 

measuring and fitting Z-scan traces of well-known materials with different n2 values 

(fused quartz, BK7, SF10 glasses). In such a way, the linearity of the measurement 

setup was calibrated, and relative n2 measurements could be employed instead of 

absolute ones. All the subsequent measurements of LBO and BBO were compared 

to the nonlinear phase of fused silica sample. 
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4.2 Results and discussion 

The resonating signal wavelength can be changed in two ways – by rotating 

the nonlinear crystal to match phase matching to particular wavelengths or by tuning 

the resonator length to match the synchronous pumping condition for different 

wavelengths. The focus on this investigation was the changes in pulse formation 

characteristics when these two methods of tuning are applied. 

 In Fig. 4.3A, tuning curves are given of BBO (red) and LBO (black) based 

optical parametric oscillators when central wavelength is changed by tuning the 

resonator length. The crystal angle is fixed to maximize parametric conversion at the 

center of the mirror reflection range. The dashed curves indicate numerical 

simulation results produced by solving coupled wave equations (2.59) to (2.61). The 

difference between maximum output powers of LBO and BBO is mainly determined 

by lower nonlinear coupling coefficient of LBO and higher reflectivity of LBO 

crystal coatings at 820 nm. A similar experiment was performed while the central 

wavelength was held fixed at 850 nm and the cavity length was varied together with 

the crystal angle, thereby compensating the change in phase matching wavelength 

by the offset of synchronous pumping condition. The results are shown in the Fig. 

4.3B with dashed curves indicating simulation results. As can be seen in both cases, 

the curves are asymmetric for both LBO and BBO crystal. This asymmetry can be 

explained by a closer scrutiny of time and spectral domain results. 
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Fig. 4.3. Panel A) - output power dependence on central wavelength when crystal angle is 

fixed at 23.1o for BBO and 12.6o for LBO. Panel B) – output power dependence on crystal 

rotation angle while central wavelength is fixed at 850 nm. Solid curves of BBO (red) and 

LBO (black) indicate the experimental results. Dashed curves depict the results of numeric 

simulations.  
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Fig. 4.4. Measured (gray) and simulated (red line) spectra while resonator length is 

changed with fixed crystal angle with BBO at 23.1o  (panel A)) and LBO at 12.6o  (panel 

B)).  
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The spectra of output signal with intracavity LBO and BBO are presented in 

Fig. 4.4 and Fig. 4.5. In Fig. 4.4, the resonating wavelength was changed by changing 

the cavity length while keeping the crystal angle fixed. In Fig. 4.5, on the contrary, 

the central wavelength was kept fixed while simultaneously rotating the crystal and 

adjusting the resonator length to keep the central wavelength fixed at 850 nm. The 

red curves indicate simulation results which show very good agreement with the 

experimental results when spectra are close to Gaussian and a bit worse one for 

deformed spectra. As can be seen from the spectra, both resonator length tuning and 

crystal rotation produce the same trend – spectra remain close to Gaussian on one 

side of the wavelength / crystal tuning range and become deformed in the other side 

 
 

Fig. 4.5. Measured (gray) and simulated (red line) spectra while rotating crystal angle in 

BBO (panel A)) and LBO (panel B)) with wavelength fixed at 850 nm. 
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of the range. The pulse durations of the measured output signals are given in Fig. 

4.6, where experimental (solid curves) and simulation (dashed curves) are compared. 

It is also evident that the pulses tend to increase / decrease in duration almost linearly 

as the wavelength is tuned or crystal is rotated. To see if this effect is entirely due to 

phase mismatch, the same power tuning and pulse duration curves were plotted as 

functions of phase mismatch Δk=kp-ks-ki calculated from crystal rotation angle and 

from central wavelength of the spectrum. The results are given in Fig. 4.7 for the 

output power and pulse duration dependence on phase mismatch for LBO and BBO. 

As can be seen from the tuning curves, both the output power and the pulse duration 

exhibit the same trend regardless of the phase mismatch tuning method.  

 

 

Fig. 4.6. A): Pulse duration dependence on central wavelength while the crystal angle is fixed 

at 23.1o for BBO and 12.6o for LBO. B): Pulse duration dependence on crystal rotation angle 

while the central wavelength is fixed at 850 nm. Solid curves of BBO (red) and LBO (black) 

indicate experimental results. Dashed curves indicate simulation results.  
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Fig. 4.7. The dependence of output power on the phase mismatch for BBO (red) and LBO 

(black). Solid lines show the dependence while crystal is rotated keeping the central 

wavelength fixed at 850 nm. Dashed lines show the results when central wavelength is 

changed, keeping the crystal angle fixed at 23.1o for BBO and 12.6o for LBO.  

Furthermore, high and low output power regimes were compared. The 

output power (Fig. 4.8A), pulse bandwidth (Fig. 4.8B), pulse duration (Fig. 4.8C), 

time-bandwidth product (TBP) (Fig. 4.8D) are shown for high output power (Ppump= 

4 W) and low output power (Ppump= 2 W) regimes both for BBO and LBO. The 

crystal is rotated to change the phase mismatch, the central wavelength was fixed at 

850 nm.  

The high and low power spectrum bandwidth plots of Fig. 4.8B show strikingly 

different values, especially in negative phase mismatch range. In low power regime, 

spectra remain Gaussian in the entire phase mismatch range. In contrast, at high 

powers spectra become deformed for negative phase mismatch and remain smoothly 

Gaussian when the phase mismatch is positive. This indicates the effect of phase-

mismatch-induced cascaded nonlinearity which under high power and negative 

phase mismatch leads to strong spectrum deforming self-phase modulation. 

Surprisingly, the Fig. 4.8C results do not show difference in pulse duration at high 

and low powers. The Fig. 4.8D TBP results show that for a fixed phase mismatch 

value, increasing the pump power decreases the time-bandwidth product towards the 

bandwidth-limited TBP value, especially in positive phase mismatch range. The 

bandwidth limited TBP value indicates equilibrium of nonlinear phase modulation 

and GDD induced linear phase modulation, producing soliton-like unchirped pulses. 

Furthermore, this power related TBP decrease also confirms the influence of 
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nonlinear phase modulation to pulse characteristics. If soliton-like pulse formation 

is considered, soliton equation (2.100) given by [19, 47] should be valid. The 

equation indicates that increasing power should lead to decrease of pulse duration. 

Surprisingly, this is not the case as given by Fig. 4.8C, the pulse duration is 

influenced by the phase mismatch and not by the power. 

 

 

 

Fig. 4.8. For all panels red curves indicate BBO results, black curves indicate LBO results. 

Solid curves are results with high pump power P pump = 4 W, dashed curves indicate results 

with low pump power P pump = 2 W. Panel: A) Output power dependence on phase mismatch; 

B) pulse bandwidth FWHM dependence on phase mismatch; C) pulse duration dependence 

on phase mismatch; D) time-bandwidth product dependence on phase mismatch. Phase 

mismatch is induced by changing crystal angle at the central wavelength of 850 nm. 
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The numerical modelling was carried out to gain further insight into the 

discrepancy between soliton equation and measured pulse duration dependence. As 

LBO and BBO crystals showed similar results, only BBO crystal was simulated. The 

signal wavelength was 850 nm. Two distinct cases were simulated: varying pump 

power with fixed nonlinear refractive index n2 ~3 ∙10-20 m2/W (the results are given 

in Fig. 4.9A)); varying material nonlinear refractive index with fixed pump power 

~4 W (the results are given in Fig. 4.9B). Red zone of panel a) indicates 

experimentally probed high and low power region. Red zone of panel b) indicates 

experimentally probed effective nonlinear refractive index which was changed by 

varying phase mismatch. Modelling results of Fig. 4.9A confirm experimental 

observation of Fig. 4.8C. Output pulse duration is independent on resonating power 

in our experimental pump power range. On the other hand, varying of nonlinear 

refractive index has an inverse relationship to the pulse duration as shown in Fig. 

4.9B. 

 

 

 

Fig. 4.9. Numerical simulation results of OPO with BBO crystal output pulse duration (solid 

black, left axis), power (solid red, right axis) and soliton duration (dashed black, left axis) in 

two different cases: A) Nonlinear refractive index is fixed at n2 ~3 ∙10-20 m2/W and pump 

power is varied; B) Pump power is fixed at 4 W and nonlinear refractive index is varied. Red 

zones indicate our experimental conditions when pump power or effective nonlinear 

refractive index (with induced phase mismatch) is varied. Simulation wavelength is 850 nm. 

 

 The soliton duration given by equation (2.100) is also plotted in Fig. 4.9A 

and Fig. 4.9B, inserting in the equation the simulated parameters of nonlinear 
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refractive index and intracavity fluence. The resonator group velocity dispersion is 

the same as in our experimental scheme GDD ~ -550 fs2, weighed by crystal length. 

Soliton durations are larger than the simulated OPO output durations (which are 

similar to the experimentally measured ones) in our experimental pump power and 

n2 range. This indicates that the pulses are not classical solitons governed by soliton 

equation, despite the fact that the pulse-bandwidth product is close to transform limit. 

Nevertheless, the pulses are soliton-like because the linear group velocity dispersion 

is partially compensated by nonlinear phase in positive n2 range. Our explanation for 

this observation is that synchronous pumping with short length pulse ~ 120 fs  allows 

ultrashort pulse formation with pulse durations shorter than soliton threshold. 

Increasing the pump power and intracavity power does not change the pulse duration, 

because increased gain acts as a stronger spectral filter for slightly chirped resonating 

signal pulses. This leads to pulse duration increase balancing the pulse duration 

decrease arising from the soliton-like linear and nonlinear phase compensation. 

It is interesting to note, that based on the simulation of Fig. 4.9A, when the soliton 

pulse duration reaches the intracavity pulse duration, abrupt changes in pulse 

duration and output power can be observed. Closer look at the simulated spectrum 

and time domain intensity (Fig. 4.10A and Fig. 4.10B) show that just after reaching 

the soliton threshold, the spectrum gets a tail in the long wavelength side and time 

envelope of the pulse becomes double peaked. Classical soliton theory indicates that 

surplus of energy over the soliton threshold is emitted as dispersive wave. In the case 

of OPO with broad gain bandwidth, this emitted pulse is amplified and is locked to 

the main pulse deteriorating the pulse quality. The closer look at Fig. 4.9B shows no 

abrupt change whenever soliton duration reaches intracavity soliton duration. The 

reason is lower pump power and lower parametric gain which does not amplify the 

dispersive wave strongly enough to have an impact on spectrum and pulse duration. 

This is an interesting observation which should definitely have to be considered in a 

further scaling of the output power of the OPO. 
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 Fig. 4.10. Simulated spectra (panel A)) and time domain intensities (panel B)) when OPO is 

pumped with two slightly different pump powers below (black solid line) and above (red 

solid line) soliton formation threshold.  

 

To further investigate the origin of the phase mismatch impact on pulse 

duration, the method of Gale et al.  [19] was used to probe the nonlinear phase 

dependence on phase mismatch. The same crystals as used for optical parametric 

oscillation were probed in a Z-scan setup. The crystal was rotated around the exact 

phase matching angle in order to get the cascaded nonlinearity dependence on crystal 

rotation angle or in other words phase mismatch. The used wavelength was 1030 

nm, as the power of the OPO output at 850 nm was too low for Z-scan measurement. 

This experimentally dictated choice is justified, because crystal angle tolerances and 

effective nonlinearities deff are similar for both wavelengths and yield similar 

simulated curves of cascaded phase matching dependence on crystal angle. 
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Fig. 4.11. n2 measurement while rotating the internal angle of the BBO crystal (panel A)) and 

the LBO crystal (panel B)). The measurement wavelength was 1030 nm. Black solid and 

symbol curve – experimental n2 measurement; red solid and symbol curve- conversion 

efficiency; red solid curve – SHG simulation; blue solid curve – OPA simulation. 

 

 The experimental results are presented in Fig. 4.11. Black symbols indicate the 

experimental results of nonlinear refractive index measurement. The red symbols 

indicate the conversion efficiency to the second harmonic while nonlinear crystal is 

rotated. Numerical simulation of the similar experiment in time domain was carried 

out by using a system of equations (2.59) to (2.61)  in a single pass in the second 

harmonic generation (SHG) mode (signal and idler wavelength 1030 nm, pump 515 

nm, with amplitude of pump starting from noise). The phase mismatch was varied 

and the nonlinear phase after parametric interaction was extracted from the split-step 

algorithm. The numerical modelling results are depicted by a red smooth line in Fig. 

4.11. The results are consistent with the classic nonlinear cascaded phase matching 

behavior, which can be approximated with formula 2 /effd k−  as shown in reference 

[82]. This formula also explains the difference between the LBO and BBO. Wider 

acceptance angle of LBO results in wider range of crystal rotation angle; in the 

meantime, higher effective nonlinearity deff in BBO produces larger peak to peak 

nonlinear refractive variation. However, the most striking observation is that this 

SHG-induced nonlinear refractive index variation is exactly opposite to the 

numerical modelling results given by Fig. 4.9B. Increasing nonlinear refractive index 

should lead to decrease of pulse duration as given by the soliton duration equation 
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(2.100). However, the comparison of the Fig. 4.6B and the steep central range of Fig. 

4.11 shows exactly the opposite. In order to explain this discrepancy, the system of 

equations (2.59) to (2.61)  was again modelled in single pass in optical parametric 

amplification (OPA) mode (signal and idler wavelength 1030 nm, pump 515 nm, 

with amplitude of idler starting from noise and E0 pump>>E0 signal). Nonlinear phase is 

again extracted after split step algorithm. The resulting nonlinear refractive index is 

plotted in Fig. 4.11 with blue line and is inverted with respect to the SHG induced 

nonlinearity. As can be seen from the graph, the OPA induced nonlinear phase result 

is much better suited for the explanation of solitonic behaviour in optical parametric 

oscillation, especially if parametric amplification is phase mismatched.  

 In the Fig. 4.12 (left axis), the experimentally measured pulse duration is plotted 

as a function of phase mismatch, while crystal is rotated or resonator length is 

changed, both for LBO and BBO. Solid lines (right axis) indicate numerical 

modelling results of total nonlinear refractive index dependence on phase mismatch. 

The results are calculated in single-pass OPA regime, with pump wavelength 515 

nm, signal 850 nm and idler 1300 nm. The total nonlinear refractive index is 

composed of material nonlinear refractive index (its value is given when phase 

mismatch is zero) and a larger part originating from the cascaded nonlinearity. As 

can be seen from the trend of experimental results, if positive/negative phase 

mismatch is induced in the parametric conversion, the pulse experiences nonlinear 

phase that has to be compensated by the linear phase of the resonating signal, 

meaning shorter/longer pulse width and broader/narrower spectrum. This soliton-

like formation occurs regardless of how the phase mismatch changing is varied 

(crystal rotation or central wavelength change). The limit of pulse shortening is 

imposed by parametric amplification bandwidth (calculated from the difference of 

inverse group velocities of signal and idler) which in our experiment is 49 nm for 2 

mm length of BBO and 101 nm for 2.5 mm of LBO at signal wavelength of 850 nm. 

Experimentally, the SPOPO could be tuned over the range of more than 100 nm with 

fixed crystal angle. Negative nonlinear refractive index produces nonlinear phase 

modulation not compensated by negative linear dispersion and produces distorted 

spectra shown in the Fig. 4.4 and Fig. 4.5. The increased pulse duration in the 

conditions corresponding to the negative nonlinear refractive index range also 

decreases the output power of the optical parametric oscillator (Fig. 4.3A), because 

the intensity is decreasing. 
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Fig. 4.12. Left axis shows the dependence of pulse duration on the phase mismatch for BBO 

(red) and LBO (black). Solid lines show the dependence while crystal is rotated keeping the 

central wavelength fixed at 850 nm. Dashed lines show the results when central wavelength 

is changed, keeping the crystal angle fixed at 23.1o for BBO and 12.6o for LBO. Right axis, 

solid lines are the simulation of effective nonlinear refractive index while phase mismatch is 

changed for LBO (black) and BBO (red).  
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4.3 Summary 

High average power femtosecond optical parametric oscillator pumped by 

the second harmonic of Yb: KGW solid state oscillator was investigated. The tuning 

behavior of the OPO turned out to be governed by the phase mismatch. Identical 

tuning behavior was observed, irrespective of whether the phase mismatch to 

resonating signal pulse was induced by rotating the nonlinear crystal or changing 

signal central wavelength with fixed crystal angle. The high and low pump power 

regimes were compared, deviation from soliton equation was observed when 

intracavity power is varied. The measured pulse durations were lower than the 

classical soliton duration, indicating that the pulses are not classical solitons. The 

time bandwidth product was measured to be close to the bandwidth limited value, 

proving that linear round trip phase is partially compensated by nonlinear phase, 

allowing soliton-like pulse formation below the soliton threshold. It was 

demonstrated that in the case of optical parametric amplification, the cascaded 

nonlinear refractive index shows the dependence on the phase mismatch inverted 

compared to the case of second harmonic generation. The observed changes in the 

spectrum, power and pulse duration of the OPO output radiation could be interpreted 

in terms of competing effects of different cascaded nonlinearities. The phase 

mismatch induces nonlinear refractive index change and soliton-like pulse changes 

duration. Using the numerical model including these cascaded nonlinear effects 

allowed us to explain why and how the output power, spectrum and pulse duration 

vary in an OPO operating under soliton-like pulse formation conditions below and 

above soliton threshold.  
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5 OPO with positive GDD and CQN 

In this chapter, a novel approach is investigated of soliton generation in an 

all-positive-dispersion femtosecond OPO pumped by the second harmonic of 

Yb:KGW femtosecond oscillator. As shown in chapters 3 and 4, high intracavity 

intensity of OPOs leads to self-phase modulation induced spectral broadening which 

usually needs to be compensated by negative group delay dispersion created by a 

prism pair [19, 72] or chirped mirrors [80, 83]. Design of broadband chirped mirrors 

is complicated, because increasing the bandwidth leads to lower reflection 

coefficient and larger GDD oscillations across the spectrum. Such GDD 

irregularities have a negative impact on pulse duration, power and spectral 

characteristics of the OPO output [73]. The manifestation of this effect was presented 

in chapter 3.  On the other hand, GDD compensator employing a prism pair requires 

large physical separation between the prisms, resulting in a larger device footprint. 

A novel approach of SPM compensation is to use a negative cascaded quadratic 

nonlinearity (CQN). Negative CQN was exploited in a comb generation [24], 

supercontinuum generation [22, 84], CW pumped optical parametric oscillators [28] 

and ultrafast laser oscillators with varying levels of pulse energies [29 - 33]. The 

evidence of the CQN impact to pulse characteristics was also observed in the 

femtosecond optical parametric oscillators while operating with negative and 

positive group delay dispersion in a soliton regime, but a more detailed investigation 

is still lacking [23, 82]. 

In this chapter, three series of experiments are presented. In the first series A) 

the CQN was induced by changing the phase matching angle of the OPO crystal, i.e. 

running OPO at non-optimal conversion efficiency. In addition to lower efficiency, 

another drawback of this method is the fact that amplification and negative CQN are 

coupled and independent control of both parameters cannot be achieved. We did 

observe soliton-like pulses with low time bandwidth product even below the first 

soliton energy threshold. This effect was ascribed to temporal domain filtering with 

short duration synchronous pump pulses, as shown in [76]. In the second group of 

experiments B), an additional doubling crystal was placed in the second intracavity 

focus. The second nonlinear crystal was cut for frequency doubling the signal wave, 

and the phase matching was detuned to low conversion efficiency. Contrary to the 

first series of experiments, the OPO crystal was now exactly phase matched and the 

OPO was operated at optimal conversion efficiency. This configuration allowed 

independent control of amplification and negative CQN parameters. Finally, in the 
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third series of experiments C), the wavelength tuning characteristics are 

demonstrated of all positive dispersion femtosecond optical parametric oscillator 

with two negative CQN methods – either rotating OPO crystal, or SHG crystal. 

Parts of the material covered in this chapter have been published in publications 

P1 and P5. 
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5.1 Experimental procedures 

The optical setup used in the experiments is shown in Fig. 5.1. The optical 

parametric oscillator is pumped by the second harmonic of Yb: KGW based 

femtosecond oscillator (Flint, Light Conversion). The pump oscillator emits 12 W 

of output power with 140 fs pulse duration at 1030 nm central wavelength and 76 

MHz repetition rate. The pump light is frequency doubled in 2.5 mm length LBO 

crystal with AR coatings (1030+515 nm), where 6 W of output power at 515 nm is 

generated with 50% conversion efficiency. The pulse duration of the 515 nm light is 

135 fs.  The fundamental light is filtered out and the 515 nm beam is delivered to the 

OPO crystal. The pump light is focused to the spot size of 50 μm (radius 1/e2) to 

match the resonating mode’s radius. The cavity design includes the second focus, 

where CQN crystal can be placed. The calculated mode radius in the second focus is 

the same as in the amplifying crystal with the spot size of 50 μm (radius 1/e2). Cavity 

mirrors M7, M8, M9, M10 are high reflective in the range from 770 nm to 970 nm, 

the used mirror design is a simple λ/4 stack with a low group velocity dispersion 

through the wavelength range (decreasing from +20 fs2 at 770 nm to -20 fs2 at 970 

nm). The used concave mirrors (M5, M6, M7, M8 with radius R = -200 mm) focus 

the resonating beam in the nonlinear crystals. Mirrors M5, M6 were highly reflective 

in 770-970 nm range with high transmission at 515 nm and a similar group velocity 

dispersion as the plane mirrors. The output coupler OC has 10 % of transmission in 

the wavelength range of 770-970 nm.  

Multiple fused silica windows (GP1, 14 mm thickness, AR coated for 650-1000 

nm, R<0.5 %) allowed to coarsely vary the positive group velocity dispersion of the 

resonator. In most experiments with fixed resonator GDD, two fused silica glass 

plates were used and the total calculated group delay dispersion of the cavity was 

~1800 fs2 at 860 nm.  In the GDD tuning experiments, up to 7 fused silica plates 

(GP1) were inserted into the cavity to allow the maximum GDD value of 5500 fs2 at 

860 nm. Up to 2 fused silica windows (GP2, 3.5 mm thickness, AR coated for 650-

1000 nm, R<0.5 %) were inserted intracavity to finely vary positive group velocity 

dispersion of the resonator. To keep the resonator losses the same with varying 

number of intracavity glass plates, a 0.5 mm thick uncoated fused silica glass plate 

BP was rotated out of the Brewster’s angle to induce additional reflection losses, 

which were measured by power meter. The OPO crystal was a 2.5 mm thick LBO 

(type I, θ=14°, Eksma Optics). The crystal was AR coated at 1030+515 nm. In the 

second and third part of the experiments, an additional 0.7 mm thick BBO crystal 
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was used in the second focus (type I, θ=24°, Eksma Optics). The crystal was AR 

coated at 1030+515 nm. The reflection coefficient at the signal wavelength range 

770-970 nm was experimentally measured to vary from 2.5 % (770 nm) to 1 % (970 

nm) for BBO and from 5 % (770 nm) to 2 % (970 nm) for LBO. Both crystals were 

mounted on precision rotation stages allowing the control of the phase matching 

angle, which was later recalculated to internal angle.  

In order to minimize the effect of crystal tilt on the cavity alignment, the resonator 

stability was optimized for the lowest misalignment sensitivity, following ABCDEF 

matrix formalism calculations [67],[85]. The misalignment sensitivities for rotation 

of both crystals were calculated to be similar in magnitude, and the crystals were 

rotated in opposite directions to keep the output beam position unchanged during 

tuning. Nevertheless, the pump beam direction had to be slightly adjusted during this 

procedure indicating, that the compensation was not exact. Beam dump discarded 

the remaining pump and idler beams and the second harmonic of the signal beam 

after the second pass through the BBO crystal. The power of the doubled signal beam 

power was measured after the first pass through the BBO crystal. The coatings of 

M8 mirror were not optimized for UV transmission, the transmission was measured 

to be 70 % at 430 nm and the measured power was recalibrated. OPO cavity length 

was adjusted by moving the output coupler placed on a translation stage, to enable 

synchronous pumping conditions. The movement of translation table is also used to 

stabilize the central wavelength of OPO generation. Ambient temperature deviations 

lead to the pump and OPO resonators’ length changes. For OPO to generate, the 

synchronous pumping condition has to be always satisfied. Under small temperature 

changes, the generation shifts to signal wavelengths with larger or smaller group 

velocities, determined by the cavity GDD. Therefore, the central wavelength is used 

as a feedback signal for the movement of the translation stage. 

When phase mismatch is induced either with OPO or SHG crystals, the beam 

quality is not changed if resonator is operated in the center of the (A+D)/2 stability 

parameter range, with a stable zone defined as a –1 <(A+D)/2< 1. When operated 

near the resonator’s stability edge with (A+D)/2~ +-1, the resonator is sensitive to 

the spatial focusing / defocusing induced by the CQN. This leads to the change of 

resonator’s mode size. The detailed analysis of spatial effects are presented in 

chapter 7 of this dissertation. In the remainder of the experiments, we have operated 

the resonator at the center of the (A+D)/2 parameter stability range with (A+D)/20 

for both coordinates, where the spatial distortions of the mode due to CQN are 

minimal. 

Average power of the output radiation was measured using a power meter (Nova-

2, Ophir) with a thermopile detector (30(150)A-BB-18, Ophir). Spectra were 
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recorded using a spectrometer (STS-NIR, Ocean Optics), pulse durations were 

measured using scanning autocorrelator (Geco, Light Conversion), and the pulse 

trains were measured with a photodiode (DET10A2, Thorlabs) connected to an 

oscilloscope (TDS 3054, Tektronix). 

 

 

 

Fig. 5.1. Experimental setup. L1, L2, L3 – lenses for second harmonic generation, collimation 

and pump light focusing respectively. M1, M2, M3, M4 – mirrors for pump light delivery 

with high transmission at fundamental wavelength. M5, M6, M7, M8 – curved resonator 

mirrors. M9, M10 – plane resonator mirrors. OC – output coupler on a translation stage. 

LBO1 – second harmonic crystal. LBO2 – intracavity LBO crystal on a rotation stage. BBO 

– intracavity BBO crystal on a rotation stage used in experiment parts B) and C). GP1, GP2 

intracavity fused silica glass plates.  BP – intracavity fused silica glass plate near to 

Brewster’s angle. BD1, BD2, BD3 – beam dump, FM – flip mirror,  PM – power meter, OSC 

– oscilloscope, AC – autocorrelator, SM – spectrometer. 
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5.2 Results and discussion 

5.2.1 Single nonlinear crystal scheme with DFG CQN 

In the first part of the experiments, the OPO crystal is phase mismatched by 

angle tuning while the central wavelength is fixed at 860 nm. The resonator length 

is changed for precise wavelength control. The induced cascaded quadratic 

nonlinearity originates from phase-mismatched difference frequency generation. 

The mode radius in LBO crystal is ω=50 μm and with zero crystal phase mismatch 

intensity reaches 20 GW/cm2. The second focus is formed in air with the same 

intensity. This intensity is four orders of magnitude below the ionization threshold 

of air. In addition, nonlinear refractive index of air is four orders of magnitude lower 

than that of BBO [86]. It can thus be expected that the self-action of the focused 

beam propagating in air does not significantly affect the output characteristics of the 

OPO.  In order to explain the measured pulse and spectrum characteristics, the 

nonlinear phase was computed using the numerical model (equations ((2.59) to 

(2.61)) by simulating a single pass through the OPO crystal with varying crystal 

angles. An input signal pulse was injected with experimentally observed steady state 

OPO parameters at the center of the tuning curve: pulse duration  = 200 fs and 

intracavity average power P =  8 W. A single-pass optical parametric amplifier 

(OPA) simulation nonlinear phase was used instead of full OPO model, because it 

produced more consistent results of nonlinear phase while phase mismatch was 

changed. In OPO case, the steady state pulse shape changes as phase mismatch is 

induced and this complicates the determination of maximum nonlinear phase in the 

time-domain. In a single-pass OPA, on the contrary, the signal pulse shape is nearly 

constant and this leads to easily extractable maximum of time-domain nonlinear 

phase. As the Kerr-like nonlinearity and OPA are coupled, the crystal rotation 

changes average power and induced nonlinear phase, but we used fixed pulse 

parameters to aid better comparison with double-crystal experiment.  

Two fused silica glass plates (GP1) are inserted into the cavity to ensure positive 

group delay dispersion, the total calculated resonator GDD is ~1800 fs2 at 860 nm. 

The results are shown in Fig. 5.2A. The soliton order is calculated by equation (2.99) 

with fixed dispersive length and nonlinear length calculated from nonlinear phase. 

The angle is rotated around phase matching angle 12.7o

OPO LBO = for wavelength 860 
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nm. The results show that the CQN manifests itself  at positive crystal angles, and 

its magnitude is ~4 times larger than intrinsic third-order nonlinearity of the material. 

Soliton order shows that with a fixed positive group delay dispersion the negative 

nonlinearity supports 1st order soliton (given by red color coding zone I). In contrast, 

the CQN of zone 0 only partially compensates positive GDD. Fig. 5.2B compares 

experimentally measured and numerically simulated output spectra. It is evident that 

lower crystal angles induce positive cascaded nonlinearity which distorts the spectra 

through self-phase modulation. Larger crystal angles induce negative nonlinearity 

which, together with positive GDD, produces Gaussian spectra with transform-

limited time-bandwidth product (Fig. 5.2D). As the spectra are deformed, the 

bandwidths are calculated using standard deviation 2 σ, which for Gaussian spectrum 

relates to FWHM as ~2.35 σ. The discrepancy between the measured and 

numerically simulated spectra could be caused by an overestimated intracavity 

intensity, because as spatial mode distribution is not accounted for. The 

overestimated intracavity intensity leads to more severe spectrum distortion caused 

by the self-phase modulation. The corresponding output power tuning curve and the 

output pulse durations are presented in Fig. 5.2C. The soliton durations and powers, 

calculated by equations (2.100) and (2.101) are plotted as zones in red color coding. 

The output power is too low and pulse duration is too short to support the 1st order 

soliton threshold (zone I) with a fixed resonator GDD. Even though numerical 

simulation reaches the 1st order threshold, it does not show any pronounced 

differences in power and pulse duration. However, another feature of soliton 

behavior – the time-bandwidth product –reaches its minimum value of ~0.44. Using 

this approach, the time-bandwidth product could be reduced to the value of ~0.55 

from ~0.8 with around 0.25o

OPO LBO =  angle detuning (or 0.5OPOk L  = − ) and 

average output power of 720 mW, which is around 20 % lower compared to the exact 

phase matching 0OPOk L = . It must be noted that despite non-optimal operation 

conditions, the pulse durations are decreased from 215 fs to 185 fs and the pulse peak 

power is only 5 % lower compared to the phase-matched case. 
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Fig. 5.2. A) OPO nonlinear phase and soliton number dependence on LBO crystal angle. B) 

Experimental and simulated spectra when OPO LBO crystal angle is detuned from the exact 

phase matching at 860 nm. C) Experimental and simulated signal output power and pulse 

duration dependence on crystal angle.  D) Experimental and simulated signal spectrum 

bandwidth (calculated as 2 σ) and time-bandwidth product dependence on crystal angle, 

dashed line indicates minimum for Gaussian pulses TBP ~ 0.44. In panels A) and C) negative 

CQN areas (0, I, II) with red color tones indicate output powers / pulse durations large enough 

to support soliton of corresponding order N = 0, 1, 2. In all panels signal central wavelength 

is fixed at 860 nm. 

 

5.2.2 Double nonlinear crystal scheme with SHG CQN 

In the second part of the experiments, an additional nonlinear BBO crystal 

is inserted in the second focus, where it is used to frequency-double the signal wave.  
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Crystal angle is varied to control SHG-induced CQN. The calculated signal intensity 

reaches 20 GW/cm2 in both crystals. The BBO crystal is used for the SHG crystal 

because of its higher deff coefficient (~2 pm/V) which induces higher maximum 

negative cascaded nonlinearity than LBO (~0.78 pm/V). In the meantime, LBO is 

used as OPO crystal because of its smaller spatial walk-off value and lower nonlinear 

refractive index ( ( 20

2 ~ 2 10n −  m2/W, twice lower than BBO, where 20

2 ~ 4 10n −  

m2/W [37]). The positive cavity GDD and positive material nonlinearity require that 

CQN induces negative refraction. In order to operate with as low as possible SHG 

conversion efficiency (after all, the generated second harmonic of the signal only 

increases OPO losses), large phase mismatch and short crystal is required as shown 

in [29]. The shortest signal pulse duration obtained from the part A) experimental 

setup was 150 fs. Based on this pulse duration, the SHG crystal length was chosen. 

150 fs OPO signal pulses have broad enough spectrum to make the local conversion 

efficiency minimum vanish as minima and maxima are averaged throughout the 

spectrum amplitudes. This precludes employing the approach of operating the 

nonlinear crystal in a local conversion efficiency minimum by Keller et al. [29]. The 

BBO crystal with the length of 0.7 mm was chosen. This length was not limited by 

spatial walk-off: ~ 1.5 / ~ 1.3 mmsp walkoffL   , where ω is beam radius and ρ is 

extraordinary pump beam walk-off as shown in [76], and group velocity walk-off 

between fundamental and second harmonic length ( )1 12 /gv walkoff FM SHL v v − −= −  ~1.9 mm 

for pulse length of 150 fs. In order to operate at positive resonator GDD, two fused 

silica glass plates (GP1) were inserted intracavity, and the calculated GDD is ~1900 

fs2 at 860 nm.  

The LBO crystal angle was fixed at 12.7o

OPO LBO =  for the optimal 

conversion efficiency and 0OPOk L = for the wavelength of 860 nm. The BBO crystal 

was rotated to change internal angle +/- 4o around optimal SHG angle 27.3o

SHG BBO =   

for 860 nm to 430 nm wavelength generation. The central wavelength was fixed at 

860 nm by adjusting the resonator length to compensate the tilt of SHG BBO crystal. 

The resonator was realigned after each adjustment of the crystal angle for the optimal 

output power. In order to explain the observed characteristics of the pulse, the 

nonlinear phase was computed using the numerical model (equations (2.59) to 

(2.61)) by simulating a single pass through the SHG / OPA crystals with varying 

crystals’ angles. The signal pass through the SHG crystal was solved with the 

equations written for the signal SHG generation, as shown in [87]. An input signal 

pulse was injected with experimentally observed steady state OPO parameters at the 

center of the tuning curve: pulse duration  = 200 fs and intracavity average power 
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P =  8 W. The results are given in Fig. 5.3A. The soliton order is calculated by the 

equation (2.99) with a fixed dispersive length and a nonlinear length calculated from 

the nonlinear phase. The soliton order shows that with a fixed positive group delay 

dispersion the negative nonlinearity supports the formation of solitons up to the 2nd 

order. Higher order soliton threshold was not reached because the increase in SHG 

conversion efficiency decreases the intracavity signal power. The results show that 

the cascaded negative nonlinearity is in the negative crystal angle offset range and 

its single-pass peak magnitude is ~8 times larger than intrinsic (cubic) material 

nonlinearity. Operating the crystal in double-pass increases the induced negative 

nonlinearity two-fold, at a cost of two-fold increased losses. 
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Fig. 5.3. A) OPO LBO and SHG BBO nonlinear phase and soliton number dependence on 

SHG BBO crystal angle. B) Experimental and simulated spectra when SHG BBO crystal 

angle is detuned from the exact second harmonic phase matching at 860 nm. C) Experimental 

and simulated signal output power and pulse duration dependence on SHG BBO crystal 

angle.  D) Experimental and simulated signal spectrum bandwidth and time-bandwidth 

product dependence on SHG BBO crystal angle. Dashed line indicates minimum for 

Gaussian pulses TBP~0.44.  In panels A) and C) negative CQN areas (0, I, II) with red color 

tones indicate crystal angles with negative CQN high enough to support soliton of 

corresponding order N = 0, 1, 2. In all panels signal central wavelength is fixed at 860 nm 

and OPO LBO angle is fixed at 12.7o for optimal conversion efficiency to 860 nm. 

 

 

 

 



 OPO with positive GDD and CQN 

  

102 

 

The measured signal output power and pulse duration are shown in Fig. 

5.3C. The nonlinear phase is used for the N-th order soliton power calculation with 

fixed experimentally measured pulse duration  = 200 fs given by equation (2.101) 

and N-th order soliton duration calculation with fixed experimentally measured 

intracavity average power P =  8 W given by equation (2.100). The main dip at the 

center of power tuning curve is induced by the SHG losses. The increase of the output 

power at the zone II angle 0.3o

SHG BBO = −  ( )4OPOk L  =  could be explained by 

higher pulse energy supported by higher-order soliton as given by equation (2.101). 

Fig. 5.3B compares the experimentally measured and numerically simulated output 

spectra. Contrary to the single crystal detuning case, the lower crystal angles induce 

negative cascaded nonlinearity which balances the cavity group delay dispersion and 

produces the bandwidth-limited pulses. The discrepancy between measured and 

numerically simulated spectra could be attributed to the overestimation of simulated 

intracavity intensity as spatial domain effects are ignored. The curves of spectral 

bandwidth and time-bandwidth product in Fig. 5.3D correlate well with the spectral 

narrowing and the reduction in pulse duration induced by the nonlinear phase. At the 

exact phase matching angle, these parameters suddenly increase again because the 

spectrum of the pulse becomes distorted. Fig. 5.4 shows the single-pass signal second 

harmonic wave power as BBO crystal angle is changed. The SHG power curve shifts 

to the negative crystal angle detuning, because the OPO output power increases at 

negative crystal offsets. The optimal point is attributed to be 0.6o

SHG BBO = −  (

8SHGk L  = ) at the end of zone I (up to the 2nd order soliton formation threshold, 

zone II). The characteristics of this point can be compared to the case when BBO 

induces negative nonlinearity equal to its material nonlinearity 3.8o

SHG BBO = −  (

48SHGk L  = ), so that there is no BBO nonlinear effect. At the optimal point, the 

average output power is ~660 mW, SHG induced power losses are 15 %, pulse 

duration decreases from 210 fs to 180 fs, and the time-bandwidth product decreases 

from ~0.98 to ~0.58. In summary, double crystal approach allows to conserve the 

peak power and the obtained pulses are close to transform-limited. 
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Fig. 5.4. Experimental and simulated single pass signal second harmonic power, dashed line 

indicates optimal operating point. Signal central wavelength is fixed at 860 nm and OPO 

LBO angle is fixed at 12.7o for optimal conversion efficiency to 860 nm. 

 

 

5.2.3 Wavelength tuning with DFG and SHG CQN 

In the last part of the experiments, the wavelength tuning is demonstrated 

with two negative CQN approaches, as shown in parts A) and B).  In the first case, 

single LBO OPO crystal is used both as an amplifying medium and a negative DFG 

CQN source. For the sake of comparison, a 0.5 mm thick fused silica plate is inserted 

intracavity slightly out of Brewster’s angle to induce losses equal to the reflection of 

SHG BBO crystal at each wavelength. Two intracavity fused silica glass plates 

(GP1) are inserted to ensure positive resonator GDD, with a roundtrip value of ~ 

1800 fs2. The wavelength is tuned by rotating intracavity LBO crystal. For each 

wavelength, the LBO crystal angle is offset into negative nonlinearity range for the 

time-bandwidth product <0.6 with as high as possible conversion efficiency. In the 

second case, LBO OPO crystal is used as an amplifying medium and a SHG BBO 

crystal as a negative SHG CQN source. The 0.5 mm thickness glass plate is rotated 

to Brewster’s angle and two intracavity fused silica glass plates (GP1) are inserted 

to ensure positive resonator GDD, with a roundtrip value of ~ 1900 fs2. The 

wavelength is tuned by rotating intracavity LBO crystal to ensure the maximum 
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conversion efficiency and negligible LBO-induced CQN. For each wavelength, the 

SHG BBO crystal angle is optimized for the time-bandwidth product <0.6 with as 

low as possible SHG conversion efficiency. 

Fig. 5.5A shows the BBO SHG and OPO LBO crystal rotation angles in 

three experimental modes: a) minimum time-bandwidth product with OPO LBO; b) 

minimum time-bandwidth product with SHG BBO; c) BBO nonlinear phase equals 

0 and LBO is in optimal conversion efficiency. Additionally, a BBO SHG and OPO 

LBO angles are shown for which the frequency conversion is phase matched. The 

nonlinear phase is extracted from a numerical simulation of a single pass through the 

SHG / OPO crystal with varying crystal angles with fixed pulse duration  = 200 fs 

and fixed intracavity average power P =  6 W. This power value (25% lower than in 

the cases A) and B)) was chosen to account for the fact that the OPO power drops 

when tuning away from the optimum wavelength. The reason for this drop is large 

reflection losses in the mirror and crystal coatings when operating away from the 

central wavelength. The central wavelength is varied and the SHG / OPO crystal 

angles are calculated at which the negative nonlinear phase is high enough to reach 

the N-th order soliton threshold, calculated by equation (2.99). These are named as 

N zones and plotted in different shades of red. As can be seen from the graph, the 

experimental SHG / OPO angles are in zone 0 / I (supporting 1st order soliton) 

throughout the entire tuning range. 

For SHG BBO, increasing the wavelength requires slightly larger crystal 

offsets, which lead to lower values of induced negative CQN to compensate the 

decreasing cavity GDD (~2200 fs2 at 770 nm and ~1500 fs2 at 970 nm, not including 

the resonator cavity mirrors). For the same reason, OPO LBO crystal offsets slightly 

decrease. For a given resonator GDD and intracavity intensity, the optimal 

wavelength average OPO LBO angle crystal offset is attributed to be 0.25o

OPO LBO =  

(or 0.5OPOk L  = −  at 860 nm).  The optimal wavelength average SHG BBO crystal 

angle offset from the exact phase matching is attributed to be 0.6o

SHG BBO = −  (

8SHGk L  = at 860 nm). The OPO LBO and SHG BBO 
SHGk L  sign difference stems 

from the opposite signs of SHG and DFG CQN induced phase shifts as shown in 

[61, 76]. 
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Fig. 5.5. A) Experimental SHG BBO and OPO LBO internal angle dependence on signal 

wavelength while the wavelength is tuned. Negative CQN areas (0, I, II) with red color tones 

indicate SHG BBO and OPO LBO angles with negative CQN high enough to support soliton 

of corresponding order N = 0, 1, 2. B) Output power and pulse duration dependence on signal 

wavelength while SHG BBO and OPO LBO angles are varied. C) Dependence of signal 

bandwidth and time-bandwidth product on the signal wavelength at different SHG BBO and 

OPO LBO crystal angles. Dashed line indicates minimum for Gaussian pulses TBP~0.44. D) 

Signal spectra while SHG BBO and OPO LBO angles are varied compared to the case 

without negative CQN. In all panels crystal angles are tuned in three modes – no negative 

CQN (blue), negative CQN from SHG BBO (red), negative CQN from OPO LBO (black). 

In panel D) spectra of negative CQN from SHG BBO and negative CQN from OPO LBO 

overlap and are shown with red color as one line. 

 

 

Fig. 5.5B shows the output power and pulse duration of three experimental 

modes. Up to 25 % power losses are induced in the OPO LBO and up to 20 % power 
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losses are induced in the SHG BBO cases compared to the power when BBO 

nonlinear phase equals 0 and LBO is at optimal conversion efficiency. If the 

optimized AR coatings were used both for LBO and BBO (R<0.25 %), the additional 

BBO crystal reflection losses would decrease the double-crystal configuration output 

power by 10 %. On the other hand, the optimal compression SHG losses are 5 % 

smaller than the phase-mismatched OPO LBO power losses. Therefore, both set-ups 

would produce similar output powers if optimized AR coatings were used. The 

compressed pulse durations in both cases are ~ 190 fs compared to the ~ 220 fs when 

BBO nonlinear phase equals 0, taking an average over the entire investigated spectral 

range. In other words, the pulses are 15 % shorter with close to transform-limited 

time-bandwidth product; the average peak power is only slightly decreased. The 

spectral bandwidths, TBPs and spectra (which are very similar when compressed 

either with OPO LBO or SHG BBO) of all three experimental modes are shown in 

Fig. 5.5C and Fig. 5.5D. The uncompressed spectra are broadened and slightly 

asymmetric, intensity or nonlinearity increase would lead to even more pronounced 

spectrum deformation induced by SPM as shown in Fig. 5.2B. 

In order to investigate the limits of compression on the resonator GDD, the 

intracavity GDD was varied with multiple numbers of fused silica glass plates (GP1-

GP2) at a fixed wavelength of 860 nm. To keep resonator losses the same with 

decreasing number of glass plates, 0.5 mm thickness glass plate was rotated out of 

Brewster’s angle. In Fig. 5.6A top pane the pulse duration dependence on group 

delay dispersion is shown. As GDD is increased, crystal is detuned to increase the 

negative CQN both in SHG BBO (smaller detuning, closer to the optimum SHG 

conversion efficiency) and in OPO LBO (larger detuning, farther away from the 

optimum OPO conversion efficiency) experimental modes, shown in the bottom 

pane of Fig. 5.6A. In both cases, the compensation of the increasing cavity GDD 

leads to the higher effective resonator losses, in a form of SHG or decreased OPO 

efficiency. With BBO inducing zero nonlinear phase, increasing amounts of GDD 

stretch the signal pulse and short pump pulse acts as a frequency domain filter 

narrowing the pulse duration. Interplay between the uncompensated SPM and GDD 

lead to distorted spectrum and large values of time-bandwidth product. When either 

OPO LBO or SHG BBO crystal is used for negative CQN, the pulse durations 

decrease through all the positive GDD range, but SHG BBO crystal acts as a better 

compressor for positive GDD values >2000 fs2. In order to explain this, the first order 

soliton duration was calculated by eq. (2.100) with a fixed intracavity power of P =  

6 W and fixed pulse duration  = 200 fs. Using experimental crystal offsets, the 

nonlinear phase was calculated from Fig. 5.2A and Fig. 5.3A. The SHG BBO soliton 

pulse duration in Fig. 5.6A shows that the increasing values of the GDD are 
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compensated by negative CQN, which results in a shallower slope of the dependence 

between the pulse duration and GDD. On the other hand, the LBO OPO soliton pulse 

duration in Fig. 5.6A shows that the magnitude of the negative CQN is not sufficient 

to compensate the increasing dispersion. The soliton pulse duration increases linearly 

vs GDD. Moreover, as the OPO LBO conversion efficiency and negative CQN are 

inherently coupled, the increase of the negative CQN inhibits short pulse soliton 

formation because of the decrease of the intracavity power. This explains the pulse 

duration discrepancy observed in Fig. 5.5B – the SHG BBO compresses the pulses 

to slightly smaller values with higher values of intracavity GDD (shorter 

wavelengths), while the OPO LBO compresses the pulses to slightly smaller values 

with smaller values of intracavity GDD (longer wavelengths). 

In a decreasing GDD limit, the shortest pulses we could obtain were around 140 

femtoseconds at 860 nm, even though calculated soliton durations reach around 50 

fs with 300 fs2 resonator GDD. We attribute this limit to the dispersive nature of the 

cascaded nonlinearity. The nonlinear phase oscillation period in a wavelength 

domain is linked to SHG crystal amplification bandwidth, given by

( )
1

/ /crystal SHG SIGL k k 
−

  = − , where SHGk and SHGk  are the first derivatives of a 

wavevector at second harmonic and fundamental wavelength. Calculating in 

wavelength domain at 860 nm the equation results in ~  12 nm SHG crystal 

amplification bandwidth, or 95 fs pulse duration. To further reduce the pulse 

duration, the crystal should be shortened or the group velocity mismatch between 

fundamental and second harmonic decreased. Bache et al. have shown that the limits 

to CQN pulse compression to single-cycle is caused by group velocity mismatch 

between the fundamental wavelength and the second harmonic [88]. Even though 

OPO regime is far from single cycle, the parallels of the compression limits could be 

drawn. The phase mismatch has to be higher than the value of 

( )
2

/ 2sr SHG SIG SHGk k k k   = − to ignore the group velocity mismatch caused oscillatory 

CQN response. In our case for the SHG BBO exactly phase matched to the 

wavelength of 860 nm, the 
srk  phase mismatch would correspond to a SHG crystal 

angle offset of  2.9o

SHG BBO = − . At this non-phase matched crystal angle the 

nonlinear phase oscillations are greatly reduced. On the other hand, at this point with 

a given OPO intensity reaching ~ 20 GW/cm2 the negative nonlinearity is too small 

to compensate the resonator intracavity dispersion and the intrinsic nonlinearity of 

resonator materials. 



 OPO with positive GDD and CQN 

  

108 

 

Fig. 5.6. A) Dependence of signal pulse duration, soliton order N=1 pulse duration and 

experimental SHG BBO and OPO LBO angle detunings on resonator GDD. ΔGDD indicate 

the +/- 1000 fs2 range which is compensated by SHG crystal Δθ.  Crystal angles are tuned in 

three modes – no negative CQN (blue), negative CQN from SHG BBO (red), negative CQN 

from OPO LBO (black). B) Experimentally measured and calculated (dotted curves) output 

beam spatial walk off dependence on signal wavelength in three modes - SHG BBO is rotated 

(red), OPO LBO is rotated (black), both SHG BBO and OPO LBO are rotated simultaneously 

(blue). In both panes signal wavelength is fixed at 860 nm. 

 

 

One of the practical considerations of the OPO design is the misalignment 

of the optical resonator while a birefringent OPO crystal is rotated. This is especially 

true for a broadly wavelength tunable source where crystal offsets become larger. In 

our experimental parts A) and B), while the crystals were rotated, the resonator had 

to be realigned to keep the output beam in the same position. Fig. 5.6B shows the 

spatial beam walk-offs when the crystals are independently or mutually rotated while 

the wavelength is changed. The second SHG BBO crystal was inserted with an 

oppositely orientated crystal axis, so that the rotation would lead to opposite shift of 

the beam position at the output coupler. In this manner, the simultaneous rotation of 

both of the crystals leads to the near-compensation of the output beam position. As 

the compensation is not exact, the beam deviates slightly through the tuning range 

(given by blue curve) and the pump direction has to be slightly aligned for a 

maximum output power. By using ABCDEF matrix formalism the beam offsets are 

calculated with experimental crystal lengths, detunings, and resonator parameters. 

These are shown in Fig. 5.6B with dotted curves. Empirical position offset ratio 
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equation of two foci, two crystal resonator can be derived: 

1 2 1 1 2 2 2 1~ ( ) ( )y y L R L R     , where LN, ΔθN, RN are N crystal length, crystal 

detuning angle and mirror radius which forms the focus in crystal N. The resonator 

stability is excluded as its contribution to misalignment sensitivity is equal for both 

crystal detunings. This equation shows that careful choice of resonator mirror radii 

and crystal lengths would exactly compensate the output beam position shift (

1 2 1y y  = − ) if detuning angle functions are linear. For the experimentally used 

crystal rotation ranges, the slopes of the LBO and BBO were similar through the 

wavelength tuning range. As shown in Fig. 5.6A,  the compensation of +/- 1000 fs2 

intracavity group delay dispersion around resonator GDD of 2000 fs2 would require 

only -/+ 0.17o SHG BBO crystal detuning and would induce only +/- 10 μm beam 

output position shift. From Fig. 5.3B, the SHG BBO crystal offset of -/+ 0.17o would 

induce additional average power losses of +/- 5 %. For comparison, using only OPO 

LBO to compensate +/- 1000 fs2 at 2000 fs2 intracavity GDD requires angle detuning 

of +/- 0.08o, which leads to additional average power losses of +/- 10%. On the other 

hand, misalignment issue could as well be solved by generating the OPO with 

temperature tunable periodically poled nonlinear crystals as OPO and SHG pair, 

which may provide collinear interaction without resonator misalignment [89]. 

Both these approaches lead to an efficient way to optimize negative nonlinearity, 

for instance, to the GDD ripples of broad reflection bandwidth intracavity mirror if 

operating the device with a broad tuning range. For the spectral widths used in our 

experiment, the impact of the third order dispersion (TOD) on the spectral phase is 

weak, and the uncompensated TOD could be ignored. It is important to emphasize 

that suitable choice of crystal lengths would allow to compensate both the GDD and 

the spatial beam offsets in a much broader wavelength range. Operating the BBO 

crystal as a SHG crystal in a wavelength range of 690-1020 nm would require the 

crystal internal angle rotation range of ~ 10.7o. Simultaneous rotation of LBO 

crystal as an OPO crystal would require rotation of ~ 4o, with the rotation angle 

ratio being similar to the one in our experiment. The same approach can be 

transferred to different wavelength ranges as long as the OPO and SHG crystal 

rotation ranges are quasi-linear through the wavelength range.  
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5.3 Summary 

The tuning characteristics were investigated of high average power 

femtosecond optical parametric oscillator with an additional intracavity focus where 

a nonlinear crystal cut for frequency doubling the signal wave is placed. Either OPO, 

or second intracavity SHG crystal mismatching leads to negative CQN which can be 

exploited for soliton generation in a positive GDD resonator to generate pulses with 

minimum time-bandwidth product. The mode of OPO crystal mismatching leads to 

a simple approach, with a cost of higher power losses, coupled amplification / 

nonlinearity, and a spatial beam position walk-off when crystal is tuned. Decoupling 

of optical parametric amplification part and negative nonlinearity with an additional 

SHG crystal allows independent control of both of these parameters to operate in a 

solitonic regime with varying wavelength. Throughout the wavelength tuning range, 

the time bandwidth product <0.6 and pulse durations <200 fs were demonstrated 

while the CQN induced average power losses were less than 20 % with peak power 

conserved. Two-crystal approach leads to a two-fold improvement: quasi passive 

output beam stabilization while both crystals are rotated in opposite directions as 

wavelength is changed; a way to compensate  for varying levels of the resonator 

intracavity group delay dispersion (GDD offsets of +/- 1000 fs2  with +/- 5 % SHG 

power losses) with negligible beam position drift.  
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6 Soliton formation effects with GDD compensated CQN 

As shown in chapters 4 and 5, evidence of the CQN impact on femtosecond 

optical parametric oscillators pulse characteristics was observed while operating 

with negative and positive group delay dispersion in a soliton regime [23, 82]. If 

intracavity intensity is high enough, higher order solitons can be supported by the 

cavity. OPOs operating in a multi-soliton regime exhibit multi-pulsing and time and 

frequency domain oscillations as reported in [74, 77, 90 – 92]. Recently, a number 

of works have investigated the generation of solitons and solitonic behaviour in 

synchronously pumped femtosecond OPOs. In a work by Ning et al. [91], degenerate 

OPO was investigated with negligible cavity GDD, multiple solitons were generated 

by matching nonlinear group delay to linear group delay. The finite pump gain time 

domain window allowed the formation of the solitons. In a work by O’Donnel et al. 

[92], solitons were generated in a single-mode fiber-feedback cavity in the spectral 

range of anomalous dispersion. In normal dispersion regime, solitons were generated 

by finite pump gain window and dispersive wave side-bands were demonstrated. In 

a work by Tamuliene et al. [93], chaotic and stable oscillations were numerically 

simulated, with threshold / period of oscillations depending on pulse energy, 

intracavity dispersion and cavity nonlinearity. In this dissertation chapter 5, the 

wavelength tuning characteristics were investigated of an OPO with positive 

resonator dispersion and intracavity negative CQN adjustable up to 2nd soliton 

threshold. In this chapter, we demonstrate the exploitation of CQN in a femtosecond 

optical parametric oscillator while operating with a positive group delay dispersion 

and its impact to higher order soliton regimes. The resonator was designed to include 

a second intracavity focus where another nonlinear crystal could be placed. The 

second nonlinear crystal was chosen to frequency double the signal wave, and the 

phase matching was detuned to low conversion efficiency. Experimentally, the 

crystal was rotated or the central wavelength was changed, in both cases resulting in 

a phase mismatch. Higher order soliton formation was evident near the zero of phase 

mismatch. Further investigation has revealed that decreasing second harmonic 

crystal phase mismatch to zero leads to CQN large enough to reach 3rd order soliton 

formation threshold. The soliton dynamics leads to output power increase, pulse 

splitting under perturbations of higher orders of nonlinear phase, self-phase 

modulation phase matched dispersive wave formation, time and spectral domain 

oscillations with soliton period. These results provide a deeper understanding of the 
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effects observable in a high power all positive dispersion femtosecond optical 

parametric oscillator with a tunable negative nonlinearity. 

Parts of the material covered in this chapter have been published in publications 

P3 and P6. 
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6.1 Experimental procedures 

The used optical setup is identical to the one shown in Fig. 5.1 with 

differences described below. Fused silica windows GP1 - GP2 (14 mm thickness, 

AR coated for 650-1000 nm, R<0.5%) allowed to coarsely vary positive group 

velocity dispersion of the resonator. In the crystal rotation experiments, two fused 

silica glass plates were used, and the total calculated group delay dispersion of the 

cavity was ~1900 fs2 at 860 nm. In the wavelength tuning experiment, the resonator 

group delay dispersion was varied by using one (~1200 fs2), two (~2000 fs2) and four 

(~3700 fs2) windows.  

OPO crystal was 2.5 mm thick LBO (type I, θ=140 , Eksma Optics). The 

crystal was AR coated at 1030+515 nm. BBO crystal was used in the second focus 

(type I, θ=240, Eksma Optics), two different thicknesses were investigated – 0.7 mm 

and 2 mm. The crystals were AR coated at 1030+515 nm. The reflection coefficient 

at the signal wavelength range 770-970 nm was experimentally measured to vary 

from 2.5% (770 nm) to 1% (970 nm) for BBO and from 5% (770 nm) to 2% (970 

nm) for LBO. Both crystals were mounted on precision rotation stages allowing the 

precise control of the phase matching angle, which was later recalculated to internal 

angle. The thicker crystal length (2 mm BBO) was chosen based on group velocity 

walk-off between fundamental and second harmonic length ( )1 12 /gv walkoff FM SHL v v − −= −  

~1.9 mm for pulse length of 150 fs. The calculated spatial walk-off length 

~ 1.5 ~ 1.5 mmsp walkoff radius walkoffL    should limit the effective crystal length while 

operating with the thicker SHG crystal, and was accounted for in numerical 

simulations. The length of the thinner crystal (0.7 mm) was chosen to limit the 

negative CQN and prevent the formation of higher order solitons. 
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6.2 Results and discussion 

The experimental results are divided into three sections: A) CQN tuning by 

the SHG BBO crystal rotation with fixed cavity GDD. B) CQN tuning by wavelength 

change with varying amounts of cavity GDD. C) CQN tuning spectral and time-

domain behaviour. In section A), an unexpected output power increase was observed 

when negative nonlinearity was induced by tuning the crystal angle towards exact 

SHG. In section B), wavelength was finely tuned around the exact SHG phase 

matching to investigate if an increase of output power correlates with calculated 

power thresholds of the higher order solitons. The GDD was varied to test if an 

increasing GDD leads to a shift of soliton formation thresholds. In section C), time 

and pulse domain behaviour of higher order solitons was investigated, with observed 

effects of pulse splitting under perturbations of higher orders of nonlinear phase and 

stable time / spectral domain oscillations with soliton period. 

 

 

 

6.2.1 CQN tuning by crystal rotation with fixed cavity GDD 

In the first section of the results, the LBO crystal angle was fixed at 

12.7o

OPO LBO = for the optimal conversion efficiency and 0OPOk L = for the 

wavelength of 860 nm. The BBO crystal was rotated to change internal angle +/- 5o 

around the optimal SHG angle 27.3o

SHG BBO = for 860 nm to 430 nm wavelength 

generation. The central wavelength was fixed at 860 nm by changing the resonator 

length as SHG BBO crystal was adjusted. The measured signal output power and 

pulse duration for both of the SHG BBO crystal lengths are shown in Fig. 6.1. The 

pulse durations follow the classical CQN induced nonlinear refractive index 

behaviour 
2 ~ 1effn k , switching from negative to positive and compensating / adding 

up to the positive cavity SPM. The positive material’s nonlinearity is exactly 

compensated by the CQN induced negative one at the two SHG BBO crystal rotation 

points – near the exact phase matching and at the negative angle offsets, denoted by 

the start of zone 0 in both panels Fig. 6.1B, D. At these two points the total cavity 

nonlinearity is 0 and the pulse characteristics are determined solely by the linear 

dispersion and OPA gain.  The pulse duration increases at the exact phase matching 
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because of the increased SHG efficiency and the distortion of the signal spectrum. 

In the negative crystal angle offset range, the CQN exceeds material nonlinearity and 

the total cavity nonlinearity becomes negative. It compensates the positive cavity 

GDD and allows soliton formation. In order to explain the observed characteristics 

of the pulses, the nonlinear phase is computed using the numerical model (2.59) to 

(2.61)) with the equations written for the signal SHG generation, as shown in [87],  

by simulating a single pass through the SHG crystal with varying SHG BBO crystals’ 

angles. An input signal pulse is injected with approximate experimentally observed 

steady state OPO signal pulse parameters near the soliton formation threshold: pulse 

duration  =  200 fs and intracavity average power P = 8 W. Even though the 

experimental pulse duration and intracavity power vary with changing SHG BBO 

crystal angles, an approximate fixed values are used to more intuitively interpret the 

nonlinear phase and soliton power / duration dependence on the crystal angle. The 

nonlinear phase is used for the N-th order soliton power and N-th order soliton 

duration calculation given by the equations (2.101) and (2.100). In order to operate 

at a positive resonator GDD, two glass plates are inserted intracavity, and the 

calculated GDD is ~2000 fs2 at 860 nm. The comparison of the 0.7 mm vs 2 mm 

SHG BBO crystal lengths (Fig. 6.1A,B vs. Fig. 6.1C,D) reveals these features of the 

thinner crystal: decreased SHG efficiency at the exact phase matching,  pronounced 

numerically simulated SHG efficiency oscillations further away from the exact phase 

matching, narrower crystal angle rotation range inducing negative CQN, and smaller 

number of the soliton orders which are supported by a cavity. The optimal operating 

point for the 0.7 mm BBO crystal is attributed to be up to 2nd order soliton formation 

threshold (end of zone I)  at 0.6o

SHG BBO = −  ( 8SHGk L  = ). At that point the SHG 

induced power losses are 15%, pulse duration is compressed from 210 fs to 180 fs, 

time-bandwidth product decreases from ~0.98 to ~0.58. The optimal point of the 2 

mm BBO crystal (end of zone I) is attributed to be at 1o

SHG BBO = −  ( )13SHGk L  = .  

The SHG induced power losses are 10%, pulse duration is compressed from 240 fs 

to 200 fs, time-bandwidth product decreases from 0.95 to 0.55. The thinner crystal 

compresses the pulses to shorter durations with near optimum time-bandwidth 

product, but induces larger SHG losses. The thicker crystal induces negative CQN 

large enough to investigate higher-order soliton effects. 
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Fig. 6.1. A), C) – experimental and simulated signal output power dependence on SHG BBO 

crystal angle with two SHG crystal lengths. B), D) – experimental and simulated signal pulse 

duration dependence on SHG BBO crystal angle with two different crystal lengths. In both 

panels negative CQN areas (0, I, II, III) with red color tones indicate output powers / pulse 

durations large enough to support soliton of corresponding order N = 0, 1, 2, 3. In both panels 

signal central wavelength is fixed at 860 nm and OPO LBO angle is fixed at 12.7o for optimal 

conversion efficiency to 860 nm. 

 

For both crystal thicknesses, the main dip at the center of power tuning curve 

is induced by the SHG losses. Unexpectedly, the output power for the thicker crystal 

abruptly increases at the end of soliton zone II angle 0.6o

SHG BBO = −  ( 8SHGk L  = ) 

and the pulse durations increase just before this point at 0.8o

SHG BBO = − (

10.5SHGk L  = ), at the middle of zone II. The thin crystal experiment shows only a 

small power increase (Fig. 6.1C, black dots), whereas the simulation indicates sharp 

increase (Fig. 6.1C, solid red curve). This mismatch could be caused by an 
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overestimated intracavity intensity in numerical modelling. The power increase 

correlates with soliton formation threshold (as will be shown in chapter 6.2.2) and 

further investigation was needed to clarify this peculiar effect. 

 

 

6.2.2 CQN tuning by central wavelength change with varying 

intracavity GDD 

In order to understand the observed power increase near the exact SHG 

phase matching, further experiments were carried out with finely tuned CQN by 

varying central wavelength. Moving the output coupler placed on a translation stage, 

enables the synchronous pumping condition for different signal wavelengths if the 

gain bandwidth is large enough. Under small resonator length changes, the 

generation shifts to signal wavelengths with larger or smaller group velocities, 

determined by the cavity GDD. The gain bandwidth of the OPO crystal is inversely 

proportional to the crystal length and difference of inverse group velocities of signal 

and idler waves. Calculating the LBO crystal gain bandwidth at the signal 

wavelength of 860 nm results in a bandwidth of ~100 nm. If this tunable 810-910 

nm signal range is used for the second harmonic generation with a fixed SHG BBO 

crystal angle, the covered SHG BBO phase mismatch  range is 20SHGk L  =   at 

wavelengths of 860 50 nm . One important advantage of wavelength tuning by 

changing cavity length instead of crystal angle is an ability to probe the impact of 

nonlinearity without the realignment of the cavity. 

During wavelength tuning experiment, the LBO crystal angle was fixed for 

the optimal conversion efficiency ( 0OPOk L = ) for the wavelength of 860 nm and 

BBO crystal was fixed at 0.6o

SHG BBO = −  ( 8SHGk L  = ) which resulted in 0SHGk L =

for the wavelength of 881 nm. Changing the signal wavelength around 860 nm with 

small steps from 830 nm up to the SHG wavelength allowed probing the pulse and 

spectrum formation characteristics under increasing amount of negative cascaded 

nonlinearity. As negative nonlinearity was induced together with positive cavity 

group delay dispersion, soliton generation could be presumed whenever soliton 

condition was satisfied. The soliton order was calculated from equation (2.99) with 

a fixed dispersive length (with ~2000 fs2 resonator GDD and  =  180 fs) and 

nonlinear length estimated from the nonlinear phase. The nonlinear phase was 

computed using the numerical model (2.59) to (2.61)) with the equations written for 
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the signal SHG generation, as shown in [87],   by simulating a single pass through 

the OPA  and  SHG crystal with varying signal wavelengths. An input signal pulse 

is injected with approximate experimentally observed steady state OPO signal pulse 

parameters near the higher-order soliton formation threshold: pulse duration  =  180 

fs and intracavity average power P = 5.5 W. The nonlinear phase and the resultant 

soliton order is shown in Fig. 6.2A. The same nonlinear phase calculation procedure 

was carried out for a thin BBO crystal, shown in Fig. 6.2B. As a thinner crystal has 

larger coherence length, the oscillatory nonlinear phase structure is more evident. 

The value of nonlinear phase is lower in the thinner crystal and the roundtrip phase 

is just sufficient to reach 1st order soliton threshold. The results also show that for a 

thin BBO crystal the SHG CQN single pass peak phase shift is ~8 times larger than 

phase shift induced by the intrinsic cubic nonlinearity of the material. The maximum 

LBO DFG-induced CQN single-pass phase shift is ~4 times larger than intrinsic 

material nonlinearity’s phase shift. If crystal length ratio is taken into account, the 

BBO has ~5.6 larger than LBO cascaded nonlinearity to material’s nonlinearity ratio. 

Inserting the effective nonlinearity deff of LBO (0.78 pm/V) and of BBO (2 pm/V) 

into an approximate CQN nonlinear refractive index scaling relationship 2 /effd k  

produces a ratio of ~6.5. This result is consistent with the simulation values. 

Changing wavelength leads not only to the BBO SHG cascaded nonlinearity 

but also to the LBO DFG-induced cascaded nonlinearity as 0OPOk L = is only for a 

wavelength 860 nm. It is interesting to note that for a thick crystal the mutual effect 

of SHG and DFG induced nonlinearities leads to the plateau of negative nonlinearity 

in the range of 800 nm to 850 nm, while at longer wavelengths, SHG nonlinearity 

starts to dominate as shown in Fig. 6.2A.   
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Fig. 6.2. A), B): OPO LBO and SHG BBO nonlinear phase and soliton number dependence 

on the signal wavelength with intracavity GDD ~ 2000 fs2 and with two different SHG BBO 

crystal lengths. Negative CQN areas (0, I, II, III) colored with different red shades indicate 

wavelengths with negative CQN high enough to support soliton of corresponding order N = 

0, 1, 2, 3. In both panels, OPO crystal angle is fixed at 12.7o for optimal conversion efficiency 

to 860 nm and SHG crystal angle is fixed at 26.6o for optimal conversion efficiency to 881 

nm. 

The experimentally measured output power and pulse duration dependence 

on the wavelength with differing amounts of intracavity GDD is shown in Fig. 6.3 

for both crystal lengths. The cavity GDD was varied by inserting different numbers 

of fused silica plates: a) one plate (~1200 fs2), b) two plates (~2000 fs2) and c) four 

plates (~3700 fs2). The nonlinear phase was computed using the numerical model (1) 

to (3) and (2.59) to (2.61)) with the equations written for the signal SHG generation, 

as shown in [87], by simulating a single pass through the OPA  and  SHG crystal 

with varying signal wavelengths. An input signal pulse is injected with approximate 

experimentally observed steady state OPO signal pulse parameters near the higher-

order soliton formation threshold with different amounts of intracavity GDD. The 

output powers at fixed pulse durations a) = 140 fs , b) = 180 fs , c) = 240 fs) and 

pulse durations at fixed intracavity power values a) P =  5 W, b) P =  5.5 W, c) P =  6 

W were investigated. Equations (2.101) and (2.100) provided estimates of the 

parameters left unfixed. The estimated nonlinear phase was used for calculating the 

output power and duration of the N-th order soliton with different amounts of 

intracavity GDD. The N-th order soliton extra-cavity powers and durations are 

depicted as N zones and are colored in different shades of red in Fig. 6.3. 
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Results of thin and thick crystal show the impact of the soliton formation on the 

output power and pulse duration. It is evident, that the thin crystal output power 

results in Fig. 6.3A, C, E show no abrupt power changes while the wavelength is 

tuned towards the exact SHG wavelength. The output power decreases as the exact 

SHG phase matching wavelength is approached and the SHG losses increase. In 

other words, the negative CQN of the thin crystal is too low to support higher order 

solitons with their correspondingly higher output powers. 

Changing the cavity GDD enables probing the soliton threshold powers’ and 

durations’ dependence on cavity dispersion. Experimental results of Fig. 6.3A, C, E 

show that with increasing GDD, the threshold of the abrupt power change shifts to 

the longer wavelengths and correspondingly higher cascaded negative nonlinearities. 

With varying values of intracavity GDD the abrupt changes of the output power 

correlates well with multiple order soliton energy calculations, especially in the low 

GDD range (Fig. 6.3A through D). The abrupt changes of the output power match 

the thresholds of the transitions from 1st (zone I) to the 2nd (zone II) order soliton and 

from the 2nd (zone II) to 3rd (zone II) order soliton. This indicates that the soliton 

formation mechanism should be responsible for the measured power and pulse 

duration peculiarities.  
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Fig. 6.3. A), C), E): experimental and simulated signal output power dependence on signal 

wavelength with varying levels of intracavity GDD. B), D), F): experimental and simulated 

signal pulse duration dependence on signal wavelength with varying levels of intracavity 

GDD. In all panels negative CQN areas (0, I, II, III) with red color tones indicate output 

powers / pulse durations large enough to support soliton of corresponding order N = 0, 1, 2, 

3. In all panels OPO LBO angle is fixed at 12.7o for optimal conversion efficiency to 860 nm 

and SHG BBO angle is fixed at 26.6o for optimal conversion efficiency to 881 nm. In all 

panels, experimental results of SHG BBO crystal lengths 0.7 mm and 2 mm are shown with 

numerical simulation of SHG BBO crystal length of 2 mm. 
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The calculated soliton output power transition from zone II to zone III with the 

largest GDD of ~3700 fs2 in Fig. 6.3E is shifted to the longer wavelengths compared 

to the experimental results. According to the equation (2.101), to match the 

calculated and measured soliton power, one needs to increase the pulse duration or 

decrease of the intracavity GDD. The increase of the pulse duration alone does not 

match the calculated soliton power to the experimental results. This observation 

motivated seeking for an additional nonlinear phase-induced GDD term, which 

would explain the experimental results. 

The 2 mm length SHG BBO nonlinear phase dependence on wavelength with 

varying intracavity GDD is shown in Fig. 6.4A. Calculating the first derivative of 

the frequency-dependent nonlinear phase of the SHG BBO crystal provides the 

nonlinear phase-induced group delay, shown in Fig. 6.4B. The second derivative of 

the nonlinear phase results in the nonlinear phase-induced GDD, shown in Fig. 6.4C 

as the sum of the nonlinear GDD term and linear resonator GDD.  The oscillation 

frequency is related to the SHG crystal acceptance bandwidth and the peaks of the 

oscillations in frequency domain are separated by ( )/ /crystal SHG SIGL k k    = − , 

where 
SHGk and 

SIGk  are the first frequency derivatives of the wavevector at the 

second harmonic and fundamental wavelength. In wavelength domain, the equation 

results in ~  5 nm oscillation period at 860 nm for a thick 2 mm BBO crystal. 

From Fig. 6.4C, it is evident that the increase of the resonator GDD leads to the 

increase in the oscillations of the nonlinear term. As the resonator GDD increases, 

the pulse bandwidth is reduced, and the oscillatory structure of the nonlinear phase 

is no longer averaged out by the different frequencies contained in the pulse 

spectrum. Additional moving average filter (with spectrum bandwidth) is applied to 

the nonlinear GDD to recover average nonlinear GDD “seen” by the pulse. The 

average nonlinear GDD term is negative, so the total resonator GDD (sum of linear 

positive and nonlinear negative GDD) is decreasing rapidly with increasing 

wavelength. At the wavelength of 865 nm, the averaged nonlinear negative GDD 

term is of the order of 1000 fs2, so the total GDD is decreased by 25%. This value, 

together with the increase of the output power, would shift the calculated soliton 

powers (Fig. 6.3E) to the shorter wavelengths and better match the experimental 

results.  

 

 

 

 



 Soliton formation effects with GDD compensated CQN 

  

123 

 

 

Fig. 6.4. A) Calculated 2 mm thickness SHG BBO crystal nonlinear phase dependence on 

wavelength with varying amounts of intracavity GDD. B): linear (dashed lines) and nonlinear 

(solid lines) group delay dependence on signal wavelength, nonlinear delay is calculated as 

the first frequency derivative of the nonlinear phase. C): linear (dashed lines), nonlinear + 

linear (solid lines) and moving filter average of nonlinear + linear (dotted lines) GDD as a 

function of signal wavelength, nonlinear GDD is calculated as the second frequency 

derivative of the nonlinear phase. D): experimental and calculated dispersive wave 

wavelength dependence on the signal central wavelength.  In all panels vertical lines indicate 

wavelengths of experimentally observed shift of 2nd to 3rd order soliton, all  line colors are 

plotted corresponding to varying levels of intracavity GDD. In all panels, OPO crystal angle 

is fixed at 12.7o for optimal conversion efficiency to 860 nm and SHG crystal angle is fixed 

at 26.6o for optimal conversion efficiency to 881 nm. 

 

When soliton energy is increased above the soliton threshold, higher order 

soliton sheds part of its energy to a dispersive wave at a specific frequency 

determined by the higher orders of dispersion as shown in [47, 94].  The energy of 

the dispersive wave remains negligible until an appropriate phase-matching 

condition is satisfied [95]: 
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where 
s is a soliton frequency, k is a first derivative of a wave vector. The phase 

matching condition states that in a perturbing medium, wave vectors of a linear 

dispersive wave and a soliton with a nonlinear phase term should be equal. When 

soliton wavelength is in positive group delay dispersion range, dispersive wave is 

emitted in negative group velocity range. In our experiment, the used soliton 

wavelength range of 770-970 nm in BBO crystal should emit a corresponding range 

of 2940-1800 nm some of which falls in an absorption band of the crystal (>2600 

nm), as shown in [95]. On the other hand, negative nonlinearity allows phase 

matching in positive group delay dispersion range, albeit with much smaller 

wavelength offsets proportional to the magnitude of the nonlinear phase. This effect 

has been shown equivalent to self-phase modulation phase matched degenerate four-

wave mixing with Stokes and anti-Stokes components emerging as signal and idler 

beams [96]. Naming these generated sidebands “dispersive waves” is questionable 

as they are partially dispersive because of their low energy content, but we used the 

“dispersive wave” terminology throughout the paper.  

Fig. 6.4D shows calculated dispersive wave wavelengths as Stokes and anti-

Stokes branches and experimental wavelength shifts for a thick 2 mm BBO crystal. 

Different colors correspond to different amounts of positive cavity GDD. The 

dispersive wave solutions are obtained from the equation (6.1) with SHG BBO 

crystal wavevector and nonlinear phase from single pass SHG BBO crystal shown 

in Fig. 6.4A. Only SHG BBO crystal was included as it is the main contributor to 

the negative nonlinearity, which allows dispersive wave generation phase matched 

by the self-phase modulation. It is interesting to note that even though dispersive 

wave phase matching supports both Stokes and anti-Stokes branches, experimentally 

only one of them is observed at any one time. The anti-Stokes shifts to Stokes after 

soliton transitions from 2nd to 3rd order soliton with higher intracavity pulse energy. 

The shift could be explained by recalling that both Stokes and anti-Stokes waves fall 

under the amplification bandwidth of the LBO crystal (  ~100 nm at 860 nm), and 

they may get amplified by the pump in LBO crystal if their group velocity is matched 

to the signal synchronous to pump. As shown in [97 - 99], the nonlinear phase of the 

CQN induces an intensity dependent group velocity which may even lead to positive 

or negative self-steepening, hence delaying or accelerating the peak of the pulse.  

Fig. 6.4B shows nonlinear phase-induced group delay, while the linear group delay 

is shown by dashed lines with much higher slope. It is evident that nonlinear group 

delay increases with increasing wavelength and has a sign opposite to the linear 
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group delay. Even though the induced nonlinear delay is small compared to the linear 

one, this could be the reason why red shifted Stokes pulse could be better group 

velocity matched to the signal. Furthermore, as shown in [100], in the presence of 

large group velocity mismatch, the CQN induce non-instantaneous nonlinear phase 

shifts which mimic the Raman response and act as a controllable red- or blue-shift 

of the spectrum. Further investigation is needed to confirm if these effects are 

contributing to the experimentally observed red- or blue- shifted Stokes and anti-

Stokes dispersive waves in OPO.  

It is interesting to compare the Fig. 6.4C and Fig. 6.4D: with varying cavity 

GDD, the transitions from 2nd to 3rd order soliton happens at the nodes of nonlinear 

GDD, the vertical red, blue and black lines indicate these points and correspond to 

increasing values of linear GDD. The nonlinear third order dispersion is maximum 

at these points, so this could be an indicative feature of soliton fission induced by 

nonlinear third order dispersion, as suggested in [47]. 

 As shown in this section, soliton dynamics lead to a wide range of physical 

effects which are observed with slow averaging detectors (spectrometer, 

autocorrelator, power meter). Pulse to pulse measurement with oscilloscope should 

be done for completeness and this was investigated in the last experimental results’ 

section. 

 

 

6.2.3 CQN tuning spectral and time-domain behaviour 

To investigate the higher order soliton transitions further, pulse spectra and 

oscilloscope traces were recorded at the transition points indicated by green circles 

in Fig. 6.3C and Fig. 6.3D. The cavity was configured to include 2 glass plates 

(~2000 fs2 resonator GDD). A SHG BBO crystal with a thickness of 2 mm was used, 

the same measurement routine as in section 6.2.2 was used with fixed OPO and SHG 

BBO crystal angles and varying central wavelength. The measurement data are 

presented in Fig. 6.5, where the wavelength is increased towards exact SHG 

matching wavelength and spectra / oscilloscope traces are measured. The 2000 ns 

oscilloscope measurement window consists of ~152 resonator roundtrips as the pulse 

period is 13.2 ns. The numbers’ panel next to the spectra of Fig. 6.5B indicate the 

measured characteristics of the pulse – output average power, pulse duration and 

time-bandwidth product.  
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Fig. 6.5. A): oscilloscope traces while signal wavelength is increased top to bottom. B): 

corresponding experimental spectra while signal wavelength is increased top to bottom. In 

both panels the traces and spectra correspond to the green designated power and pulse 

duration measurements of Fig. 6.3C and Fig. 6.3D. The number boxes on the left indicate the 

soliton order of a pulse with corresponding oscilloscope trace and spectrum. In both panels 

OPO LBO angle is fixed at 12.7o for optimal conversion efficiency to 860 nm and SHG BBO 

angle is fixed at 26.6o for optimal conversion efficiency to 881 nm. 

 

The complementary numerical simulations were also carried out, steady 

state pulse time domain intensity and spectra dependence on the number of resonator 

round trips are shown in Fig. 6.6.The panels on the right show time domain intensity 

and spectra averaged through the 200 roundtrips, which should correspond to the 

experimentally measured spectra and autocorrelation traces. The panels cover zones 

/ soliton orders in which the output power change peculiarities were measured. Zone 

I (1st order soliton) show well behaved Gaussian-like spectrum and pulse train. 

Transition to zone II (2nd order soliton) leads to blue shifted dispersive wave emitted 

by higher order soliton, an increase of the output power and increase of the pulse 

duration. The Fig. 6.6 zone II shows blue shifted dispersive wave and stable time 

domain pulse splitting effect as an indicative feature of soliton fission to individual 

solitons [47]. An increase of the soliton order allows higher intracavity soliton power 

as given by equation (2.101). This leads to more efficient energy extraction from the 
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pump pulse and increases output power / overall conversion. Similar high order 

soliton generation process supported by cavity is discussed in [91]. 

 

 

 

Fig. 6.6. A): simulated steady-state spectra of the OPO at different signal wavelengths 

(increasing from top to bottom); corresponding average spectrum is shown on the right. B): 

simulated time domain pulse evolution in a steady state of the OPO while signal wavelength 

is increased top to bottom with corresponding time domain average intensity to the right. In 

both panels, the spectra and time domain intensity correspond to the green designated power 

and pulse duration simulations of Fig. 6.3C and Fig. 6.3D. The number boxes on the left 

indicate the soliton order of a pulse with corresponding spectrum and time domain intensity 

evolution. In both panels OPO LBO angle is fixed at 12.7o for optimal conversion efficiency 

to 860 nm and SHG BBO angle is fixed at 26.6o for optimal conversion efficiency to 881 nm. 

 

The transition between 2nd (zone II) and 3rd (zone III) order solitons lead to 

time and spectral domain oscillations as shown measured in Fig. 6.5 and numerically 

simulated in Fig. 6.6. The period of these oscillations decreases rapidly when the 

central wavelength is slightly increased by 5 nm and corresponding negative 

nonlinearity is increased. The measured periods vary from 18 to 11 resonator 

roundtrips. Higher order solitons have a feature of periodic temporal and spectral 

shape evolution when they are not perturbed by higher orders of dispersion. The 
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number of rounds trips after which the pulse shape is restored can be calculated 

according to the equation [101]: 

 
2

2
soliton periodN

GDD


= ,    (6.2) 

 

where τ is pulse duration, GDD is the total resonator round trip group delay 

dispersion. Inserting numbers in to the equation (6.2) we get soliton period value at 

the transition point of 2nd to 3rd soliton of 15 periods. Rapid decrease of the oscillation 

period with the growing output power could be explained by the rapid decrease of 

resonator GDD when an additional negative nonlinear GDD term is included as 

shown in Fig. 6.4C. 5 nm wavelength shift of the transition wavelength corresponds 

to ~ -500 fs2 additional GDD (25% decrease of the total resonator’s GDD). Inserting 

the numbers into equation (6.2) provides a period change from 15 to 11, which is 

close to the experimentally observed value. Disappearance of the oscillations could 

mean that the nonlinear phase higher orders are large enough to perturb soliton and 

break it into constituent low order solitons. The wavelength range at which the 

oscillations are observed is also consistent with nonlinear GDD oscillations period 

~  5 nm as shown in Fig. 6.4C.  

The 3th order solitons (zone III) show red shifted dispersive waves and 

increased pulse durations, and the OPO output power is increased. The oscillations 

are no longer observed – this could be a feature of a soliton fission to individual 

solitons. As shown in Fig. 6.7, the experimental autocorrelation measurements of 

zone II show distinct wings, a feature of pulse splitting behavior. Zone III 

measurements show overall longer pulse durations, presumably as time offsets 

between individual pulses are too small to differentiate. 
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From the practical point of view, the experimental data demonstrates that 

operating in 2nd or 3rd soliton regime lead to deteriorated pulse and spectrum 

characteristics, along with an increased output power of the device. In order to avoid 

these effects, the cascaded nonlinearity and intracavity intensity should be limited 

up to 2rd order soliton threshold.  

 

Fig. 6.7. Experimental autocorrelation traces measured in zone I, zone II and zone III with 

2 mm BBO and 2000 fs2 intracavity GDD.  
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6.3 Summary 

The soliton formation mechanisms were investigated in high average power 

femtosecond optical parametric oscillator pumped by the second harmonic of Yb: 

KGW solid state oscillator. The negative cascaded nonlinearity was used to 

compensate positive intracavity GDD. Two different SHG crystal lengths were 

experimentally investigated, with thick crystal leading to the negative nonlinearity 

large enough to reach the threshold of higher order solitons.  The observed soliton 

related effects include output power increase, pulse splitting under perturbations of 

higher orders of nonlinear phase, self-phase modulation phase matched dispersive 

wave generation, time and spectral domain oscillations with soliton period. The 

numerical modelling was used to confirm the observed experimental results. These 

results provide deeper understanding of the effects observed in a high power all 

positive dispersion femtosecond optical parametric oscillator with adjustable 

negative nonlinearity. 
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7 Spatial domain CQN effects 

High intracavity intensities in femtosecond optical parametric oscillators induce 

not only temporal but also spatial nonlinear effects in the crystals used for 

amplification. The nonlinear spatial domain effects such as self-focusing and de-

focusing remain largely unexplored in optical parametric oscillators, but are well 

analyzed in a number of other single-pass and laser resonator applications. Spatial 

domain modelling of optical parametric amplifiers shows that the nonlinear spatial 

domain effects are too weak to have an impact to a single pass OPA system if the 

peak power is lower than the critical power. If the peak power is larger than the 

critical power, self-refraction distorts beam quality [102, 103]. Intracavity self-

focusing is well analyzed and is a mechanism underlying the ubiquitous Kerr lens 

mode-locking in laser oscillators. The resonator stability is sensitive to minute 

changes of the self-focusing lens, so spatial effects are important even at powers well 

below critical [104, 105]. The self-focusing and defocusing is observed in a single 

pass quadratic medium pulse compressors, where cascaded effect leads to high 

values of effective nonlinearity [21, 22, 106].  In addition to that, the classical Z-

scan setup was used to directly observe CQN induced spatial domain effects [76, 

82].  

In this chapter, impact is demonstrated of CQN induced effective focusing / 

defocusing nonlinear lenses reaching focal lengths of f ~ 30 mm (D ~ 33 m-1) /  f ~ -

110 mm (D ~ -9 m-1). Such large lens dioptric powers inevitably change the stability 

of resonator. Both operation near the stability range and resonator astigmatism lead 

to the deterioration of spatial beam properties. Generation of axially asymmetric or 

pass-to-pass unstable resonator modes were observed. It was shown that operating 

the crystal with phase mismatch changes the physical operation of resonator from 

linear to ring-like with two nonlinear crystals having two different focusing powers. 

Calculations showed that the CQN induced spatial nonlinear phase should lead to 

severe longitudinal chromatic aberrations for broad spectrum pulses. These findings 

lead to a better understanding of how to design a high power femtosecond optical 

parametric oscillator with optimal beam characteristics. 

Parts of the material covered in this chapter have been published in publication 

P7. 
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7.1 Experimental procedures 

The optical setup used for the experiments is shown in Fig. 7.1. The optical 

parametric oscillator is pumped by the second harmonic of Yb: KGW based 

femtosecond oscillator (Flint, Light Conversion). Pump oscillator emits 12W of 

average power with 140 fs pulse duration at 1030 nm central wavelength and 76 

MHz repetition rate. Pump light is frequency doubled in 2.5 mm length LBO crystal 

with AR coatings, where 6 W of average power at 515 nm is generated with 50 % 

conversion efficiency, the pulse duration of the second harmonic is 135 fs. 

Fundamental light is filtered out, and pump light is delivered to pump the optical 

parametric oscillator. Pump light is focused to the spot size of 50 μm, which is the 

size of resonating signal mode’s radius. When operating at maximum output power, 

the calculated signal intensity reaches 20 GW/cm2 in LBO crystal.  Cavity mirrors 

M6, M7, M8, M9 are highly reflective in the range from 770 nm to 970 nm. The 

used mirror design is a simple λ/4 stack with a low group velocity dispersion 

throughout the wavelength range (decreasing from +20 fs2 at 770 nm to -20 fs2 at 

970 nm). The used concave mirrors (R= -200 mm) focus the resonating beam into 

the nonlinear crystal. The angle of incidence to spherical mirrors is 3°. This angle 

determines the astigmatism of the resonator. We will adopt the term ‘tangential 

plane’ or ‘X plane’ further in the paper to denote the plane in which this angle is 

formed. One of the curved mirrors, M5, is highly reflective in 770 to 970 nm range 

and has high transmittance at the pump wavelength of 515 nm. The output coupler 

OC with 10 % of transmission in the wavelength range from 770 to 970 nm was 

used. Nonlinear 2.5 mm long LBO crystal (crystal = 14° , type I, Eksma Optics) was 

used as OPO gain material. The crystal was AR coated at 1030+515 nm. It was 

mounted on precision rotation stage allowing the control of phase matching angle, 

which was later recalculated to internal angle. The pump beam is polarized in sagittal 

plane (Y) and the crystal is rotated in this plane for angular phase matching. Since 

the rotation of the LBO crystal slightly misaligned the resonator cavity, the end 

mirror M9 was adjusted to realign the resonator to the maximum output power after 

each angle change. Beam dump discarded the remaining pump and idler beams. OPO 

cavity length was adjusted by moving the output coupler placed on a translation 

stage, to enable finding synchronous pumping conditions. Fused silica windows GP1 

and GP2 (14 mm thickness, AR coated for 650-1000 nm, R <0.5 %) were inserted 

into the cavity to ensure positive group delay dispersion. The total calculated group 

delay dispersion of the cavity was ~1900 fs2 at 860 nm. The two curved mirrors M5 
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and M6 are put on the translation tables to allow changing the stability of the 

resonator.  

 

 

Fig. 7.1. Experimental setup. L1, L2, L3 – lenses for second harmonic generation, collimation 

and pump light focusing respectively. M1, M2, M3, M4 mirrors for pump light delivery with 

high transmission at fundamental wavelength. M5, M6 – curved resonator mirrors on a 

translation table. M7, M8, M9 – plane resonator mirrors. OC – output coupler, NL – nonlinear 

crystal. BD1, BD2- beam dump. FM – flip mirror, PM – power meter, CM – camera, SM – 

spectrometer. GP1-2 intracavity Fused Silica glass plates. 

 

Average power of output radiation was measured using a power meter 

(Nova-2, Ophir) equipped with a thermopile detector (30(150)A-BB-18, Ophir). 

Radiation spectra were recorded using a spectrometer (STS-NIR, Ocean Optics), 

pulse durations were measured using a scanning autocorrelator (Geco, Light 

Conversion), and the beam profile was measured with FLIR Chameleon camera 

(CMLN-13S2C-CS) at 30 cm distance from the output coupler. 

In order to compare the experimental beam measurements done by a camera to 

the simulated ones for the case of an unstable resonator, the last 20 passes of the 

simulated beam were averaged when steady output power state was reached. In the 

case of stable resonator, the mode radii remain the same pass to pass and no 

averaging was needed. 

The nonlinear phase was extracted from the nonlinear part of the system of 

equations (2.80)-(2.82).  During each step of the split step algorithm, this nonlinear 

part is solved and nonlinear phase shift is extracted independently from linear phase. 

The nonlinear phase dependence on the spatial coordinate results in a spatial 

nonlinear phase shift. Fitting this nonlinear phase shift to a parabola allows 
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approximating the effect of nonlinearity as a nonlinear lens which is accurate for the 

center of the beam. Both coordinates were fit independently and the extracted lens 

powers were later used for ABCD matrix resonator stability calculation.  

To save the computational cost, the coupled equations are solved in spatial 

domain only, with time domain effects, such as dispersion and finite pulse width, 

excluded. This induces calculation error, but the model is accurate enough for the 

calculation of the spatial domain mode parameters. The ratio between simulated and 

experimentally measured output powers provides approximate overestimation of the 

intracavity intensity - around 25 %. The temporal walk-off between the signal (860 

nm) and the second harmonic pump (515 nm) pulse in the 2.5 mm LBO crystal is 

110 fs. The pump pulse width was 135 fs, the generated signal had a pulse width of 

180 fs. If the pulses coincide at the center of the crystal for the most optimal temporal 

overlap (signal delayed by half the walk-off value of 55 fs at the entrance of the 

crystal), the walk-off is 30 - 40 % of the signal and pump pulse durations. Therefore, 

an overestimated 

simulated intensity should stem from the overestimated effective gain which should 

be decreased because of a temporal walk-off. This was not accounted for, because 

of the semi empirical origin of the effective gain damping term and acceptable 

correspondence between simulated and experimental results. Moreover, a quasi-CW 

model that uses the peak gain of the pulsed pump was shown to be quite accurate 

estimate of the simulated gain of the OPO [107].  

 

 The resonator stability was calculated using the ABCD matrix formalism. 

The stable resonator is obtained when the round-trip matrix terms are in the range of 

-1 < ( ) 2A D+ < 1. The ( ) 2A D+  parameter is calculated separately for each of the 

transverse coordinates. The four-mirror folded resonator consists of two stability 

zones with different mode sizes in the output coupler and in the nonlinear crystal. 

Throughout the paper, the terminology of zone I and zone II was used, the transition 

of both zones happens when ( ) 2A D+  reaches -1. The resonator was operated 

around this transition point in the experimental setup, as being close to the stability 

limit makes the resonator more sensitive to the nonlinear focusing / defocusing. 

Operation near the stability limit of ( ) 2A D+ ~ 1 makes the resonator just as 

sensitive to the focusing / defocusing and should produce similar results. On the 

other hand, experimentally probing both stability zones near this stability limit would 

be hard to perform, as both zones would be separated by whole stability zone width, 

as will be further shown in a linear stability map of Fig. 7.2A. 
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  One important observation is that when the OPO is operated at phase mismatch, 

the nonlinear lenses for forward and backward propagations are different. On a 

forward pass, nonlinear focusing / defocusing stems from material plus cascaded 

nonlinearity and on a backward pass only material nonlinearity contributes to the 

nonlinear focusing. This means that in effect the investigated resonator is not a linear 

one, but rather acts as a ring resonator with two nonlinear crystals having two 

different focusing powers, because the resonating beam experiences a different 

nonlinear lens during its return pass. To account for this, the resonator was analyzed 

as a ring resonator with ABCD formalism as shown in [67]. A nonlinear lens was 

included as a simple lens matrix with a known focal length, calculated from the 

parabolic part of simulated nonlinear phase. A further stability analysis needs to be 

done while using the ABCD matrix of a self-focusing nonlinear medium as shown 

in [67], but our approach of using a simple lens matrix was sufficient to allow 

interpretations of the first experiments.  

It is interesting to note, that only with the account of nonlinear focal lengths the 

stability and mode sizes could be matched to the values observed experimentally. 

The ( ) 2Y YA D+  parameter for a resonator without nonlinear focal length was ~ -

0.85. Insertion of the nonlinear focal lengths with zero phase mismatch (fNL~55 mm 

for zone II) shifted the resonator close to the stability limit with a ( ) 2Y YA D+  value 

of ~ -0.98. The calculated nonlinear focal length dependeds on the mode size as seen 

from equation (2.106). The mode sizes in a crystal were 62 µm (zone I) and 50 µm 

(zone II). A return pass nonlinear focal length with zero phase mismatch ~ 0o  

was calculated to be 125 mm in zone I and 55 mm in zone II. A forward pass 

parabolic fit of the cascaded nonlinear phase depends on the crystal detuning. It was 

calculated to be: zone I focal lengths ranged from +125 mm ( ~ 0.25o − ) to infinity 

( ~ 0.4o ) and back to -250 mm ( ~ 0.65o ). Zone II focal lengths ranged from 

+30 mm ( ~ 0.5o − ) to infinity ( ~ 0.25o ) and back to -110 mm  ( ~ 0.9o ).  As 

the nonlinear lenses were inserted in an approximate geometrical focus of the linear 

resonator, the effect of the lenses was not as evident, but nevertheless experimentally 

observable. A major difference in forward and backward propagation nonlinear focal 

lengths clearly indicates that ring resonator formalism is more suitable for a phase 

mismatched optical parametric oscillator description, even though experimentally it 

is assembled as a linear one.  

The parabolic fit of the focal length of this nonlinear lens can also be 

calculated using the equation (2.106). Direct calculation of equation (2.106) while 

inserting zone radii 62 µm (zone I) and 50 µm (zone II), internal peak powers at the 
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peak of the tuning curve ~ 630 kW and nonlinear refractive index of 20

2 ~ 2 10n −  

m2/W results in nonlinear focal lengths of fNL=98 mm (zone I) and fNL= 42 mm (zone 

II), which are close to numerically simulated values for a returning pass with 

material’s contribution only. 
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7.2 Results and discussion 

In order to analyze the nonlinear focal length’s impact to resonator’s mode 

formation, the stability of phase-matched operation was investigated. The signal 

wavelength was fixed at 860 nm and the OPO crystal angle was fixed at ~ 12.6o . 

The phase mismatch was minimized for maximum output power and low cascaded 

nonlinearity influence to the resonator stability.  The distance between resonator’s 

curved mirrors was changed (both of the mirrors were translated simultaneously by 

ΔL) and resonator output mode was measured with a camera. The results are shown 

in Fig. 7.2. Fig. 7.2A shows the measured and numerically simulated second-

moment radii (2σ) in both tangential (X) and sagittal planes (Y). Fig. 7.2B shows 

measured and Fig. 7.2C shows numerically simulated beam profiles. The 

discrepancy between the measured and numerically simulated beam profiles 

(especially at the distance of ΔL= +0.2 mm) could be explained by an error of 

estimating the exact angles of incidence on the curved mirrors. This could lead to 

more astigmatic cavity in the experiment which would lead to higher ellipticity of 

the output beam. When the mirrors are translated, the resonator stability approaches 

a stability limit at ( ) 2A D+ = -1. The non-zero angle of incidence of the resonator 

curved mirrors lead to different stability diagrams for both planes, shown in Fig. 

7.2A. As described in the experimental procedures section, the nonlinear focal 

lengths arising from cubic nonlinearity were included in ABCD matrix calculation 

and the ( ) 2A D+  parameter was calculated.  The -1 value of the stability parameter 

is approached in different ΔL detuning values for both of the tangential (X) and 

sagittal (Y) planes. That leads to strong changes in the ellipticity of the beam as the 

distance ΔL and stability is changed. The red colored zones show the regions of 

experimentally observed highly elliptical X and Y beams, named correspondingly 

zone I and zone II.  

It is interesting to note, that the insertion of the nonlinear lenses shifts the 

calculated stability below values of -1 to a range where resonator is unstable. The 

calculated mode sizes in a crystal are 62 µm (zone I) and 50 µm (zone II) and these 

lead to largely different nonlinear focal lengths because of the 4th power dependence 

as shown in equation (2.106). The calculated nonlinear focal lengths are much 

smaller in zone II (fNL = 125 mm in zone I and 55 mm in zone II), so the stability is 

stronger shifted below -1 in zone II than zone I. This leads to a larger sagittal plane 

(Y) beam ellipticity in zone II.  
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Fig. 7.2. A) The experimentally measured and numerically simulated second-moment radii 

(2σ) dependence on the distance between curved resonator mirrors and resonator stability 

parameter (A+D)/2. The radii and stability are calculated separately for tangential (X) and 

sagittal (Y) planes. Blue and green points indicate the distances ΔL where the resonator was 

aligned for the zone I and zone II cascaded nonlinearity experiments.  B) Experimentally 

measured beam profiles corresponding to different values of ΔL. C) Numerically simulated 

output beam profiles corresponding to different values of ΔL. In all panels signal central 

wavelength is fixed at 860 nm and the crystal angle is fixed at Δθ=12.6o. 

 

In order to probe the influence of cascaded nonlinearity to the mode formation, 

the mirror distance was fixed at two stable resonator points: ΔL=- 0.8 mm (close to 

unstable zone I) and ΔL = 0.6 mm (close to unstable zone II). The points are indicated 

in Fig. 7.2A as blue and green dots. This allowed working with a stable resonator 

but being close enough to the edge of the stability zone to probe the nonlinear 

focusing / defocusing effects. As the nonlinear crystal was rotated, the resonator was 

realigned to maximum output power by the end mirror and resonator length was 
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adjusted to resonate the wavelength of 860 nm. The measured output power 

dependence on crystal rotation angle is given in Fig. 7.3 for both zone I and zone II. 

The measured pulse duration at the peak of the tuning curve is 180 fs, the pulse is 

chirped with a pulse quality of ~ 0.85   . The mode radius at the crystal is 

smaller in zone II, making the effect of pump beam walk-off more evident. The walk-

off decreases the effective crystal length, which, in turn, increases the acceptance 

angle of the crystal. This leads to increase in the width of the power tuning curve. 

On the other hand, shorter effective crystal length leads to the decrease of the output 

power as is evident from the Fig. 7.3. The positive angle offsets of zone II starting 

at ~ 0.5o  lead to an asymmetry of the otherwise symmetric tuning curve. Further 

investigation will reveal that this angle range leads to unstable resonator. 

Surprisingly, the interaction of the unstable signal beam with the pump is sufficient 

to support the generation and even be at higher power levels than those resulting 

from the stable signal beam, at the same crystal detuning.  

 

 

Since the largest effects of the cascaded quadratic nonlinearities on the 

output beam of the OPO occur around the edges of the resonator stability range, we 

investigated the beam properties as a function of angular detuning of the OPO crystal 

near the instability zones I and II.  

 

Fig. 7.3. The experimentally measured and numerically simulated output power 

dependence on the nonlinear crystal detuning when the resonator was aligned for the zone 

I and zone II cascaded nonlinearity experiments. Signal central wavelength is fixed at 860 

nm. 
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Unstable zone I. First, the dependence of the output beam profiles on the phase 

matching angle was measured when the resonator was fixed at ΔL=-0.8 mm curved 

mirror distance (close to unstable zone I).  The resulting dependencies for sagittal 

and tangential beam radii are shown in Fig. 7.4A. The blue points correspond to the 

measured beam profile (Fig. 7.4B), simulated beam profile (Fig. 7.4C) and measured 

spectra (Fig. 7.4D) at these exact angle offsets. The radii change indicate that the 

negative crystal offsets lead to positive / focusing cascaded nonlinearity which shifts 

the stability towards configuration supporting highly elliptical mode in tangential 

(X) direction. The red area indicates the unstable angle offset region when resonator 

is pushed towards the unstable part of zone I shown in Fig. 7.2A. The trends of 

change in the simulated beam profiles closely resemble the experimental ones, albeit 

the simulated second-moment radii show higher deviation from the experiment. The 

reason for the discrepancy may be related to the contribution of dot-like vertical 

mode structure at large negative crystal offsets. The measured spectra in Fig. 7.4D 

indicate the contribution of SPM to spectral broadening. As the crystal is offset to 

negative angles, positive cascaded nonlinearity adds up to the material nonlinearity 

and together with positive cavity group delay dispersion leads to the broadening of 

the output spectrum. On the other hand, as the crystal is offset to positive angles, the 

negative cascaded nonlinearity compensates the material nonlinearity and together 

with positive cavity group delay dispersion lead to the Gaussian output spectrum and 

soliton-like pulse. This effect is investigated in the chapters 5 and 6 of this 

dissertation. 
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Fig. 7.4. A) The experimentally measured and numerically simulated second-moment radii 

(2σ) dependence on the nonlinear crystal angle detuning when resonator is aligned in zone I. 

The radii are calculated separately for tangential (X) and sagittal (Y) planes. Blue points 

indicate the crystal angles where experimental, numerically simulated beam profiles and 

output spectra are shown below. B) Experimentally measured beam profiles corresponding 

to different values of Δθ. C) Numerically simulated output beam profiles corresponding to 

different values of Δθ. D) Experimentally measured pulse spectra corresponding to different 

values of Δθ. The central wavelength is fixed at 860 nm. The red color area indicates the 

experimentally observed unstable or highly asymmetric tangential (X) plane region in zone 

I. 
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Unstable zone II. Since the investigated resonator has two instability zones, we 

also measured the output beam dependence on the phase matching angle with the 

curved mirror distance fixed at ΔL=-0.6 mm (close to unstable zone II). The 

measured sagittal and tangential beam radii are shown in Fig. 7.5A at different values 

of the phase matching angle. The green points correspond to the measured beam 

profile (Fig. 7.5B), simulated beam profile (Fig. 7.5C) and measured spectra (Fig. 

7.5D) at these exact angle offsets. The observed change in the radii indicates that the 

positive crystal offsets leads to negative (defocusing) cascaded nonlinearity which 

shifts the stability towards configuration supporting highly elliptical mode in sagittal 

(Y) direction. The red area indicates the unstable angle offset region, when the 

resonator is pushed towards the unstable part of zone II shown in Fig. 7.2A. The 

simulated beam profiles closely resemble the experimental ones even though the 

entire numerically simulated region is shifted to smaller crystal offset angles. This 

can be explained by noting that the simulated output power is higher than 

experimentally measured, and therefore the impact of simulated cascaded 

nonlinearity is stronger. The positive crystal offsets lead to highly elliptic beams and 

TEM01 like structures. This can be explained by the smaller beam radius at the 

crystal in zone II compared to zone I: tighter beam produces higher intensity and the 

defocusing nonlinearity turns into stronger nonlinear lens. Further investigation of 

the TEM01-like structure shows that this is not a stable mode, but an unstable beam 

which replicates itself every second pass as shown in Fig. 7.6. This clearly indicates 

that the nonlinear lens is strong enough to push the resonator out of the stability. 

Essentially each of the sub-beams in the double beam pattern runs at half of 

fundamental repetition rate with a constant one period offset. The measured spectra 

in Fig. 7.5D indicate even stronger SPM contribution to spectral broadening when 

compared to zone I, as the nonlinearity is higher.  
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Fig. 7.5. A) The experimentally measured and numerically simulated second-moment radii 

(2σ) dependence on the nonlinear crystal angle detuning when resonator is aligned in zone 

II. The radii are calculated separately for tangential (X) and sagittal (Y) planes. Green points 

indicate the crystal angles where experimental, numerically simulated beam profiles and 

output spectra are shown below. B) Experimentally measured beam profiles corresponding 

to different values of Δθ. C) Numerically simulated output beam profiles corresponding to 

different values of Δθ. D) Experimentally measured pulse spectra corresponding to different 

values of Δθ. In all panels signal central wavelength is fixed at 860 nm. The red color area 

indicates the experimentally observed unstable or highly asymmetric sagittal (Y) plane region 

in zone II. 
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To quantify the nonlinear focusing / defocusing induced by CQN, further 

simulations were carried out. The nonlinear phase was extracted from numerical 

model (equations (2.80) - (2.82)). A single pass through the OPO crystal with 

varying crystal angles was simulated with experimentally observed steady state OPO 

parameters at the center of the tuning curve: fixed pulse duration  = 180 fs, fixed 

intracavity average power P =  8 W, signal wavelength of 860 nm. The on-axis 

nonlinear phase was fit with a parabola and from the curvature the nonlinear focal 

length was calculated. The results are shown in Fig. 7.7A with separate calculation 

for zone I and zone II. The blue and green calculation points are of the nonlinear 

focal length values which correspond to the experimentally and numerically 

simulated beam profiles / spectra shown in the previous figures. The zero of 

nonlinear phase corresponds to an infinite radius of the curvature of the nonlinear 

lens, implying that positive material nonlinearity is compensated by negative 

cascaded nonlinearity.  

Fig. 7.7B and Fig. 7.7C shows ABCD matrix stability parameter dependence on 

nonlinear focal length for both zone I and zone II. The nonlinear lens value from Fig. 

7.7A is used as ABCD matrix lens seen by forward propagating beam when optical 

parametric amplification takes place. The backward propagating beam sees only a 

fixed positive lens induced by the material nonlinearity. The blue and green points 

with arrows indicate the shift of nonlinear focal length and corresponding stability 

while crystal is detuned from negative to positive angles. Blue zone I points are 

 

Fig. 7.6. A) The numerically simulated steady state Nth pass output beam profile when 

resonator is operated in zone II. B) The numerically simulated steady state Nth+1 pass 

output beam profile when resonator is operated in zone II. For both panels the crystal 

detuning angle is Δθ=+0.45o and the signal central wavelength is fixed at 860 nm. Steady 

state defines pass to pass stable output power. 
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plotted for the unstable X tangential plane and green zone II points are plotted for 

the unstable Y sagittal plane. The red areas indicate the unstable region when 

resonator is pushed towards the unstable zone I or zone II as shown in a linear 

stability plot of Fig. 7.2A. The stability maps explain the experimental results – in 

zone I, the initial negative crystal offsets ( ~ 0.25o − ) and mildly focusing cascaded 

nonlinearity (fNL =+125 mm) lead to unstable resonator at tangential X plane. When 

the crystal is positively offset ( ~ 0.4o ), nonlinear focal length becomes infinite 

and with further crystal angle increase ( ~ 0.65o ) the resonator is stabilized with 

weakly defocusing cascaded nonlinearity (fNL = -250 mm). In zone II, the initial 

negative crystal offsets ( ~ 0.5o − ) and strongly focusing cascaded nonlinearity (fNL 

= +30 mm) lead to stable resonator at sagittal Y plane. When the crystal is positively 

offset ( ~ 0.25o ), nonlinear focal length becomes infinite and with further increase 

in crystal angle ( ~ 0.9o ) the resonator becomes unstable with mildly defocusing 

cascaded nonlinearity (fNL = -110 mm). 
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Fig. 7.7. A) The calculated peak nonlinear phase and nonlinear focal length dependence on 

the nonlinear crystal angle detuning when resonator is aligned in zone I and zone II. B) The 

calculated tangential (X) and sagittal (Y) resonator stability parameter (A+D)/2 dependence 

on nonlinear lens focal length when resonator is aligned in zone I. C) The calculated 

tangential (X) and sagittal (Y) resonator stability parameter (A+D)/2 dependence on 

nonlinear lens focal length when resonator is aligned in zone II.   In all panels signal central 

wavelength is fixed at 860 nm, the red color areas indicate the experimentally observed 

unstable or highly asymmetric regions in zone I and zone II. In all panels blue and green 

points indicate the experimental and simulated beam profiles, spectra measurements shown 

in Fig. 7.4 and Fig. 7.5. 

 

The tests were also performed to see if the asymmetry of the beam is not induced 

by resonator misalignment due to the rotation of the crystal. To test this, the central 

wavelength was tuned away from the exact phase matching by changing the cavity 

length (i.e. synchronous pumping condition) at fixed crystal angle. This way, the 

equivalent phase mismatch could be induced as by rotating the crystal, but in this 



 Spatial domain CQN effects 

  

147 

 

case the resonator geometry is left intact [76]. In zone I, the wavelength was tuned 

to 820 nm, in zone II to 900 nm with the crystal angle optimized for 860 nm. The 

same asymmetric beam patterns were generated, indicating that the process is purely 

due to focusing / defocusing by cascaded nonlinearity. 

Furthermore, it is instructive to quantify the CQN induced nonlinear lens 

wavelength dependency. Based on the simulations presented in the chapter 6, the 

nonlinear phase dependence on wavelength was extracted for the LBO adjusted for 

optimal conversion efficiency at 860 nm. Relative to 860 nm, there is a -0.05 π 

nonlinear phase shift at 820 nm and a 0.1 π nonlinear phase shift at 900 nm. The 

phase relationship is quasi linear in wavelength range of 820 nm to 900 nm. 

Therefore, in the spatial domain 820 nm is self-defocused, while 900 nm is self-

focused and this acts as a longitudinal chromatic aberration. These phase 

mismatched wavelengths of 820 nm and 900 nm correspond to the equivalent phase 

mismatch induced to 860 nm by the angle offsets ~ -0.5o and ~  0.9o  shown 

in the Fig. 7.7A. The same nonlinear focal lengths could be attributed to the phase 

mismatched wavelengths: λ= 820 nm would focus with f ~ 30 mm (D~ 33 m-1 at 

~ - 0.5o ) and λ= 900 nm would focus with f ~ -110 mm (D~ -9 m-1 at ~  

0.9o). Therefore, the chromatic aberration would be extremely strong for a spectrum 

bandwidth of Δλ = 80 nm (14 fs pulse duration pulses), this bandwidth is supported 

by an amplification bandwidth of a crystal if resonator’s group delay dispersion is 

minimized. Therefore, the CQN induced spatial domain longitudinal chromatic 

aberration should be an effect limiting the beam quality of generated short pulses not 

only in femtosecond OPO, but also in optical parametric amplifiers operating with a 

phase mismatch. On the other hand, the pulse bandwidth generated in our setup was 

much narrower with Δλ = 6 nm. The nonlinear phase difference between the side 

wavelength components is Δφ = 0.015 π, leading to the nonlinear focal lengths of f 

~ 39 mm (D ~ 25.5 m-1 ) at 857 nm and f~ 35 mm (D ~ 28.5 m-1 ) at 863 nm. There 

is 3 m-1 diopters focusing difference across the spectrum bandwidth, which is 

collimated by the spherical mirrors, so the effect is not evident at the output, 

nevertheless, it could be pronounced for a broader spectrum. These considerations 

also hint that full spatial and time domain simulation of the phase mismatched optical 

parametric oscillators or amplifiers should show the interplay between 

aforementioned effects, which could lead to such a peculiar effect as simultaneous 

generation of stable and unstable resonator modes having different wavelengths. 

Further study is needed to confirm this hypothesis. 

It is important to show that the observed effects are not influenced by critical self-

focusing. With the measured pulse duration of the OPO  = 180 fs, the calculated 
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peak power is 400 kW at ~ 0.5o − . Calculation of the maximum nonlinear 

refractive index from the nonlinear phase at the ~ 0.5o − leads to 20

2 ~ 10 10n −  

m2/W. The calculated critical power 2

20.148critP n n= results in ~700 kW [47]. 

The critical power is defined as the peak power at which the diffraction is balanced 

by self-focusing. Therefore, our experimental conditions are below the critical self-

focusing and the observed mode formation patterns should be influenced only by the 

cascaded nonlinearity induced stability change ant not by mode self-diffraction or 

filament formation.  

 

Generally, the nonlinear distortions of the spatial laser mode are regarded as 

harmful and avoided in the design of laser process. However, the success of the now 

ubiquitous Kerr lens modelocking shows that they could also be applied 

productively. If the double beam pattern observed in zone II Fig. 7.5 could be made 

controllable and stable enough, it could lead to some interesting applications. For 

instance, in Stimulated Raman Microscopy using only one beam which has repetition 

rate f/2 as a tunable wavelength laser source together with part of fundamental 

oscillator output with repetitition rate f. The tunable beam could be demodulated 

with lock-in amplifier at f/2 without an additional fast modulator at f/2.  Another 

application would be having one of these beams polarization rotated by 90o and 

recombining them extracavity. This would lead to a tunable wavelength source 

where every second pulse is with orthogonal polarization. Such a laser source could 

be used for polarization sensitive nonlinear imaging techniques where difference 

between the signals from each of the pulse in a pair could be used for background 

subtraction. Naturally, to enable such applications, nonlinear spatial phenomena 

occurring in OPO cavities would have to be investigated in much greater detail, 

finding the ways of their stable generation, control and investigating their 

applications.  

To conclude, design guidelines for high power femtosecond oscillators should be 

drawn. For example, let us consider the same Z-fold OPO resonator as investigated 

in this paper. With low pump power and negligible nonlinear lens, resonator could 

be aligned at the middle of one of the stability zones with the tangential stability of  

(A+ D)/2 = -0.5. As shown in section 7.1, direct insertion of the experimental 

parameters to the equation (2.106) leads to the nonlinear focusing power of D ~ 24 

m-1 under the exact phase matching and this value slightly changes the stability of 

the resonator. The extreme nonlinear lens focusing power of D ~ 120 m-1 would drive 

the tangential stability to a value of (A+ D)/ 2 = -1, leading to an unstable resonator. 

Simple scaling calculation of equation (2.106)  shows that this extreme nonlinear 
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lens power value could be reached by 5-fold  larger intracavity signal power (~ 4 W 

of the output signal power) or effective nonlinearity (n2 ~ 15 x 10-20 m2/W), or 1.5-

fold smaller waist size (~ 33 μm waist size at the crystal) or a combination of all 

these parameters. The critical self-focusing would as well impact the resonator mode 

properties and a further study is needed to investigate and decouple the influence of 

both the linear stability shift and critical self-focusing with increasing intensity or 

nonlinearity. Therefore, in order to scale the output power and prevent the 

aforementioned effects, the OPO should be operated with negligible phase mismatch 

and correspondingly larger mode size at the nonlinear crystal. 
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7.3 Summary 

It was shown that the cascaded nonlinearity induced self-focusing and defocusing 

are strong enough to change resonator’s stability. The mode properties are impacted 

if operating near the resonator’s stability edge. With tuning of a phase mismatch, the 

calculated parabolic part of the cascaded nonlinearity lens focal length changes from 

f~ 30 mm (D~ 33 m-1) to infinity and back to f~ -110 mm (D~ -9 m-1). Such high lens 

dioptric powers, operation near stability range and resonator astigmatism promoted 

generation of axially asymmetric or pass-to-pass unstable resonator modes. It was 

shown that phase mismatched optical parametric oscillation changes the physical 

operation of resonator from linear to ring-like with two nonlinear crystals having two 

different focusing powers. A numerical simulation in XYZ spatial domain and a 

calculation with ABCD matrix approach confirmed the experimental results and 

allowed interpreting the investigated peculiarities. Calculations showed that the 

CQN induced spatial nonlinear phase should lead to severe longitudinal chromatic 

aberrations for broad spectrum pulses. Operating the cascaded nonlinearity crystal 

intra-cavity near the stability limit allowed probing weak nonlinear effects which 

would be hard to investigate in a single pass extra-cavity setup. 

 



 Applications of the assembled OPO 

  

151 

 

8 Applications of the assembled OPO 

Synchronously pumped femtosecond optical parametric oscillators are 

invaluable in several scientific applications because of the unique combination of 

these technical attributes: variable central wavelength, high repetition rate, short 

pulse duration, relatively high output power and good beam quality. Based on the 

previously discussed scientific findings, several transportable setups were assembled 

and delivered to various labs to be tried out in different application areas. 

In this chapter, the applications of the assembled OPO prototype are presented 

in fields of nonlinear microscopy, 2-photon polymerization and 2-photon 

optogenetics all performed in the field leading laboratories in Lithuania, Germany 

and United Kingdom. 

Parts of the material covered in this chapter have been presented in conference 

papers CO1 and CO2. 
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8.1 Nonlinear microscopy 

Two-photon excitation of molecules is a nonlinear process involving the 

absorption of two photons whose combined energy is sufficient to induce a 

molecular transition to an excited electronic state. Excitation occurs when the 

absorbed photon energy matches the energy gap between the ground and excited 

state. The same transition can be excited by a two-photon process where the two less 

energetic photons are simultaneously absorbed. Quantum mechanically, the first 

photon excites the molecule to a virtual intermediate state and the molecule is 

eventually brought to the final excited state by the absorption of a second photon. 

One of the most important attributes of two-photon microscopy is its 

inherent 3D sectioning capability. The sectioning capability of this method 

originates from the quadratic and higher-order dependence of the fluorescence signal 

upon the excitation intensity distribution [108]. 

 Two-photon absorption efficiency can be measured by 𝑛𝑎, the number of 

photons absorbed per fluorophore per pulse [109]: 

 
2 2 4

2 2 4
,ave

a

I f P NA
n

f f

  

 
=    (8.1) 

 

where Pave is average pulse train power, NA is objective numerical aperture, f is the 

repetition rate, σ is two-photon absorption cross section, τ is the pulse duration and  

λ is the wavelength. 

The design of a multiphoton imaging experiment requires not only high-

sensitivity optical instrumentation but also specific and efficient fluorophores. Most 

fluorophores can be excited in two-photon mode at approximately twice their one-

photon absorption wavelength to maximize the two photon absorption coefficient, 

as shown in chapter 2.1.2.  

In this chapter, the nonlinear imaging experiments are presented, which were 

carried out in University of Oxford, Oxford, United Kingdom, prof. Martin Booth 

nonlinear imaging laboratory. The prototype of the portable optical parametric 

oscillator system was assembled at Light Conversion and transported to the 

destination lab to carry out the experiments. 
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8.1.1 Experimental procedures 

The prototype of the optical parametric oscillator (Light Conversion) was 

based on a cavity including prism-pair dispersion compensator. The pump oscillator 

had 4 W of output power with 2 W of the second harmonic. The mirrors were highly 

reflective in the range of 750-1250 nm, output coupler had a reflection of 10% 

through the tuning range. The output power tuning curve is given in Fig. 8.1. The 

pulse duration varied between 100 and 160 fs through the tuning range, the central 

wavelength was changed by rotating the nonlinear crystal. The laser source was 

tested out in two-photon microscopy and harmonic generation applications. 

 

The multi-photon and harmonic generation microscopy experiment was 

carried out using the experimental scheme shown in Fig. 8.2. The laser source was 

integrated to already assembled multiphoton microscope, beam width was adapted 

to overfill the microscope objective aperture. 

 

Fig. 8.1. Signal output power and pulse duration dependence on the signal wavelength. 
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Fig. 8.2. Microscope setup used for two-photon and harmonic generation experiments. OPO 

– femtosecond optical parametric oscillator; F1, F2 – x3.75 beam expander telescope; GS – 

“Thorlabs” galvo-scanner; FM1, FM2 – flip mirrors for LED illumination and sample 

inspection; F8 – Köhler illumination lens; F3, F4 – x0.6 sample imaging telescope; M1 – 

NIR HR mirror; F5, F6 – x2 beam expander telescope; OBJ – Olympus UApo/340 objective, 

water immersion, x40, NA=1,15, WD 200 μm; CON – condendser objective, oil imersion, 

NA=1,4; F7 – fluorescence focusing lens; F - shortpass “Semrock” “Brightline” filter; PMT- 

Hamamatsu H7422 photomultiplier.  

The scanning is done with galvo-scanners, the sample is also translatable in 

XYZ space with micrometer translation stage, Z axis positioning is also done with 

piezo drive translation stage. The field of view is 500 x 500 μm, scanner resolution 

is 4096 x 4096 pixels, pixel dwell time per pixel could be varied from 2 to 2000 μs. 

The used filters after the condenser are low-pass, transmitting the visible range and 

blocking the infrared range. The detection is done with visible range sensitive 

photomultiplier. In order to align the microscope, the sample is imaged in wide field 

mode with dashed lines shown in the experimental scheme. LED illumination is used 

to create a Köhler illumination in the sample plane, the sample is imaged to the CCD 

camera. 

To quantify a quality of the used laser source (with a presumption that 

microscope objective does not induce additional aberrations), the point spread 

function is measured. The nano bead 100 nm size sample is used, the nano beads are 
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imaged with a central wavelength of λ=1060 nm. The point spread function is shown 

in Fig. 8.3, where x is transversal coordinate and z is the axial one. The width of the 

gaussian fit of the measured PSF is 0.7 μm in X plane and 2 μm in Z plane, which 

are close to optimal values for the given NA of 1.15. 

 

 

8.1.2 Results and discussion 

Biological sample under intense femtosecond illumination has an intrinsic 

nonlinear signal - the second and third harmonic generation of incident light. The 

second harmonic signal is generated in the sample which does not have an inversion 

center, hence having a non-vanishing second order nonlinear susceptibility. For 

instance, it is very efficiently generated in periodic structures such as collagen 

molecules. The third harmonic is generated in any sample without symmetry 

constraints. As the second and third harmonic microscopy are intensity dependent to 

second and third order, respectively, the signal is collected from a short region in 

focal plane, hence the method provides intrinsic confocal Z-sectioning [108]. 

 

Fig. 8.3. The point spread function measurement of the used nonlinear microscope. X – 

transversal sample plane coordinate, Z – axial sample plane coordinate. Ellipse indicates 

the gaussian fit FWHM of X and Z as minor and major ellipse axis. Image saturation at 

0.5 maximum signal level aids to visualize PSF distribution and signal decay further away 

from the focal point. 
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The used sample was pollen grain, which is a standard sample for 

microscope and laser system testing in confocal as well as multiphoton microscopy 

[110]. 

Fig. 8.4 shows the 3rd harmonic generation images recorded with 1235 nm 

excitation wavelength and collecting light at 412 nm. The three Z sections of two 

samples are shown in sequences of a) to c) and d) to f). 

The incident power to the sample is about 20 mW, 170 x 170 pixels are 

mapped with 450 µs pixel dwell time resulting in 13 seconds acquisition time. Quite 

long pixel dwell time is needed, because the third harmonic generation process is not 

efficient. The point spread function indicated that Z-sectioning should resolve 2 μm 

steps sections, but the images show features from deeper layers, most probably 

resulting from pollen autofluorescence and image artifacts resulting from long 

integration time. One advantage of third harmonic generation microscopy – long 

 

Fig. 8.4. Third harmonic generation images of the pollen grain sample #1 A) to C) and 

sample #2 D) to F). Sequences of images A) to C) and D) to F)  are captured with a step 

size of 60 μm in the z axis direction. The OPO is tuned to 1235 nm wavelength, the third 

harmonic is generated and detected at 412 nm.  



 Applications of the assembled OPO 

  

157 

 

wavelengths are less scattered deep in the tissue, in this experiment up to 120 μm 

depth was imaged. 

After the harmonic generation microscopy experiments, two-photon 

microscopy experiments were carried out. The optical parametric oscillator 

wavelength was tuned to match the double wavelength of a single photon absorption 

peak wavelength. Each dye was imaged serially with a procedure of: a fluorophore 

absorption matching 2 photon wavelength set to a new value; fluorescence filter 

changed; image raster scanned. In post procession of the images, all dye colour 

channels were stitched to produce a single image. 

In order to test the optical parametric oscillator, standard samples are 

imaged: 

• „FluoCells“ sample slide #2: bovine pulmonary artery endothelial cells. 

Antibody   BODIPY FL (absorption at λ=505 nm, emission at λ=513 nm) is 

labelling microtubules, dye Texas Red-X (absorption λ=591 nm, emission 

λ=608 nm)   stains F-actin, dye DAPI (absorption at λ=358 nm, emission at 

λ=461 nm)    stains cell nuclei. 

• „FluoCells“ sample slide #1: bovine pulmonary artery endothelial cells. 

Dye   MitoTracker Red CMXR (absorption at λ=579 nm, emission at λ=599 nm)  

stains mitochondria, dye Alexa Fluor 488 (absorption at λ=505 nm, emission at 

λ=512 nm)   stains F-actin, dye DAPI (absorption at λ=358 nm, emissin at λ=461 

nm)   stains cell nuclei. 

• „FluoCells“ sample slide #6: muntjac skin fibroblast. Dye Alexa Fluor 488 

(absorption at λ=505 nm, emission at λ=512 nm)    stains F-actin, dye Alexa 

Fluor 555 (absorption at λ=556 nm, emission at λ=573 nm)   stains mitochondria, 

iodide TO-PRO-3 (absorption λ=642 nm, emission λ= 661 nm)    stains cell 

nuclei. 
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Fig. 8.5. A) and B): Two-photon microscopy image of bovine pulmonary artery endothelial 

cells, slide #2. Blue dye stains nuclei (excitation wavelength of 760 nm), green dye stains F-

actin (excitation wavelength of 1182 nm), red dye stains microtubules (excitation wavelength 

of 1010 nm).  

 

In Fig. 8.5A, three sequential imaging steps are made with different 

excitation wavelengths: 760 nm, 1010nm and 1182 nm. The emission filters are 

manually changed for all three color channel measurements. The image consists of 

400 x 400 pixels with 17 μs pixel dwell time and 2.5 s acquisition time for one colour 

channel. Fig. 8.5B shows zoomed out single cell body from the same sample. Each 

color was imaged with 5-10 mW in the sample plane. 

In picture of Fig. 8.6A, 500 x 500 pixels are imaged with 130 μs pixel 

dwell time with a total scan time of 38 seconds, the excitation is done with the 

wavelengths of 760 nm, 1010 nm and 1160 nm. The Fig. 8.6B image is imaged with 

990 nm and 1110 nm wavelengths, the laser system did not have enough output 

power for two photon iodide labelled nuclei imaging at 1280 nm. 340 x 480 pixels 

are imaged with a pixel dwell time of 93 μs, the total acquisition time is 15 seconds. 

Each color was imaged with 5-10 mW in the sample plane. 
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Fig. 8.6. A) Two-photon microscopy image of bovine pulmonary artery endothelial cells, 

slide #1. Blue dye stains nuclei (excitation wavelength of 760 nm), green dye stains F-actin 

(excitation wavelength of 1010 nm), red dye stains mitochondria (excitation wavelength of 

1160 nm). B) Two-photon microscopy image of muntjac skin fibroblast, slide #6. Green dye 

stains F-actin (excitation wavelength of 990 nm), red dye stains mitochondria (excitation 

wavelength of 1110 nm).  

 

8.1.3 Summary 

The assembled prototype of optical parametric oscillator was shown to 

nonlinearly excite fluorophores in dyed biological samples and generate intrinsic 

third harmonic generation signal. The wavelength tunability was exploited for a 

number of serial excitation experiments, enabling imaging of different cell 

organelles. The pulse energy and pulse duration proved to be sufficient for such in 

vitro “slow” imaging conditions. The beam quality at the sample plane was inspected 

and proved to be near diffraction limited. 
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8.2 Two-photon polymerization 

Optical physics background of multiphoton polymerization is similar to the 

two photon microscopy – both depend on multiphoton absorption of the fluorescent 

probe or photoinitiator. However, the material aspect of the technology is different. 

The great majority of work in multiphoton fabrication has involved using light to 

render a material insoluble in the exposed region. A material whose solubility 

decreases on exposure to light is known as a negative-tone photoresist. Negative-

tone photoresists are used widely in photolitography and many of these materials can 

be adapted to multiphoton fabrication. By exposure of light, negative-tone 

photoresists which consist of soluble organic monomers, get cross-linked and 

therefore made insoluble. In two photon fabrication this cross-linking typically 

follows the light-induced generation of either free radicals or cations. A crucial 

component of such materials is therefore the photoactive substance which is known 

as a photoinitiator in radical polymerization. A number of factors affect the 

efficiency with which two-photon excitation can initiate photopolymerization: 

• Cross section of the initiator. 

• Initiator quantum efficiency for creation of radicals. 

• Initiation reaction velocity. 

 

The resolution of voxel created during two-photon polymerization is dependent on 

threshold dose for insolubility. This threshold allows for the creation of features with 

sizes that are smaller than the diffraction limit [111]. 

 

In this chapter the two-photon polymerization (2PP) experiments were 

carried out in Vilnius University Laser Research Center, Vilnius, Lithuania, in the 

lab of prof. Roaldas Gadonas, using the prototype of the portable OPO assembled at 

Light Conversion. 

The results of this chapter were presented in conference paper CO1. 
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8.2.1 Experimental procedures 

Femtosecond light source used in the experiment is a system comprised of 

two separately pumped optical parametric oscillators (OPOs). The pump source has 

10 W of average power and 76 MHz repetition rate, the OPOs are pumped with 

second harmonic of the fundamental, total 5 W of second harmonic power is 

available and its total power is split equally to pump both OPOs simultaneously. The 

output wavelength is tuned in the range of ~700-960 nm for first channel and ~ 950-

1300 nm for the second channel. The output power tuning curve is given in Fig. 8.7. 

The output pulse duration ranges from ~90 to 140 fs with the maximum achievable 

power reaching ~450 mW. Both channels are available for simultaneous use, but 

during the experimental procedure, only one channel was used at a time to cover the 

entire required wavelength range. 

 

During this study, the effects of wavelength dependence on the 2PP treshold 

was investigated. The photo-polymerization and photo-damage threshold 

dependence at the wavelength range of 700-1250 nm was measured by using OPO 

tunable radiation. Thresholds of hybrid organic-inorganic photosensitive SZ2080 

resist sensitized with a commonly used BIS photoinitiator at 0.5%, 2%, 6% ant 

without the photoinitiator were investigated. 

 

Fig. 8.7. Output power dependence on wavelength of two independently tunable OPOs 

system. 
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Energy 
pE  was calculated at the focal spot from directly measured energy 

at the entrance of the objective lens and the known transmission of the objective. The 

cumulative energy irradiation dose 
cD  is calculated by the fluence 

pF  per pulse 

factored by the number of pulses Nf. Fluence is defined as ( )p p pI E A= , where 
pA

is spot area at the focal plane, defined as ( ) ( )
2 2

2 0.66p fA d NA  = = , where 

df is the spot size and NA is a numerical aperture of an objective lens NA~ 1.4. The 

number of pulses accumulated per focal spot diameter is 
f dwN t f= , where f is pulse 

repetition rate and 
dw f sct d v= , where scv = 100 μm/s is the scan speed. The 

cumulative irradiation dose is calculated in a following manner [113],[114]: 

p dw

c

p

E t
D

f A
= .    (8.2) 

A judgement on the polymerization threshold was carried out by the onset of a 

recognizable light scattering of the inscribed linear pattern during optical observation 

under 630 nm LED light illumination. 

 

8.2.2 Results and discussion 

An important factor of 3D polymerization is the 3D localization of light 

occurring via tight focusing. An increase of the skin depth, where much of the energy 

is absorbed via avalanche ionization of electrons, leads to a decrease of the required 

dose for polymerization. Energy density absorbed by free electrons (which are 

seeded by multiphoton absorption) is defined as:  

( )
( )

( )
( ) 2 4~ ~ ~

e

abs e

cr

n
W n

n


   


,   (8.3) 

where ( )en  is the electron density and ( )crn  is the critical plasma density. The 

critical plasma density has a wavelength dependence of 2( ) ~crn   − . The electron 

density is created by the avalanche and multi-photon processes. If only avalanche 

processes are considered, the electron density is proportional to an electron 
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oscillation energy 
oscE in an incident electric field. The electron gains more energy 

if the period of oscillations (or wavelength  ) is increased, therefore, it has a 

dependence of 2~oscE  . This means that the energy absorbed by electrons scales 

as ( ) 4~absW   , as shown in the equation (8.3) [112]. 

 

Fig. 8.8. A) Material damage threshold dependence on wavelength. B) Cumulative dose 

dependence on wavelength. In both panels three different initiator concentrations were 

investigated and pure SZ without initiator. 

 

The assumption that the electron generation effect is dominated by avalanche and 

not by multiphoton ionization is based on the earlier research by Malinauskas et al. 

[113]. They showed that thermal accumulation becomes important when the cooling 

time of the irradiated spot 
2

c f Tt d D=  (where TD is temperature diffusivity 

constant for polymers TD ~ 10-3 cm2/s) is comparable with the time separation 

between consequent pulses 1/f. For NA ~1.4 focusing ~ct 2 μs and the time 

separation between OPO output pulses is 13 ns. Therefore, the thermal effects are 

dominating and these favour avalanche ionization.  Avalanche ionization is favoured 

because in polymers, local increase in temperature narrows an effective bandgap Eg, 

which increases avalanche ionization, proportional to 1/Eg.. The electron 

recombination rate is also faster at elevated temperatures and creates a positive 

feedback for polymerization by transferring energy into heat and a local temperature 

increase [114]. 
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Experimentally, the polymerization threshold is determined by light 

scattering of simultaneously incident LED light, it is the volume of the polymerized 

area which is indirectly observed and evaluated as a polymerization threshold 

volume. Therefore, the evaluation of the dose or threshold required for 

polymerization at different wavelengths is identical to the evaluation of polymerized 

sample volume which scatters the same amount of light. From the absorbed energy 

density equation (8.3): 

4
~ abs

threshold

E
V


,   (8.4) 

where Eabs is the absorbed energy, which is directly related to the experimentally 

measurable cumulative dose. This equation shows that incident dose (absorbed 

energy) should scale as 4~D  in order for the polymerized volume threshold to be 

constant for all the wavelengths. This allows explaining the experimental results of 

cumulative dose and damage threshold shown in Fig. 8.8A and Fig. 8.8B. 

As is evident from Fig. 8.8A and Fig. 8.8B, inclusion of the photoinitiator 

leads to the deviation from the aforementioned law, most probably because of the 

additional effect of multiphoton ionization, as the BIS linear absorption spectrum is 

more red-shifted than the SZ material. Absorption maximum of SZ is centered at 340 

nm, whereas the absorption maximum of BIS is centered at 520 nm [114, 115]. 

. 
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The window of fabrication (shown in Fig. 8.9) is calculated as a ratio of the 

polymerization threshold to the damage threshold. It is evident that the inclusion of 

the photoinitiator leads to a wider fabrication window and correspondingly safer 

regime which is further away from the dielectric breakdown. 

 

8.2.3 Summary 

The wavelength tunability of the femtosecond optical parametric oscillator 

was exploited in the two-photon polymerization experiment. 

The results indicate that polymerization process is governed by electrons 

gaining energy through the avalanche ionization. This result could originate from 

high repetition rate of the pulses leading to strong thermal effects. Further 

investigation with lower repetition rate pulses needs to be carried out to confirm this 

hypothesis. 

 

 

Fig. 8.9. Operational window dependence on wavelength. Three different initiator 

concentrations were investigated and pure SZ without initiator. 
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8.3 Two-photon optogenetics 

Optogenetics is a novel biological technique that involves the use of light to 

control the neurons, genetically modified to express light-sensitive ion channels. 

Therefore, it is named after the combination of two techniques – optics and genetics. 

In all-optical optogenetics, light of different wavelengths is simultaneously used to 

modulate and to readout the activity of neurons. Neuronal control is achieved using 

optogenetic actuators like channelrhodopsin and readout of neural activity is 

achieved with a help of optogenetic sensors for various specific indicators such as 

calcium or membrane voltage. In order to readout whole region of neuronal activity 

and selectively stimulate only the preferred neurons, actuators and sensors should 

have well separated excitation spectra. The most effective sensors are based on the 

fluorophore switching from dark state to fluorescent state, which are triggered by an 

influx of calcium ions as the neuron fires through the neural network [116]. One of 

the most efficient calcium sensitive genetically encoded calcium indicator GCaMP 

absorbs blue light and fluoresces in green, with 2-photon excitation it becomes 

excitable at ~900-1000 nm range [117]. Using the femtosecond lasers and two-

photon excitation lead to various benefits compared to the single photon 

illumination, such as single-cell specificity, improved axial resolution, increased 

penetration depth and less phototoxicity of NIR light. 
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Fig 8.10. A) Genetically encoded calcium indicator GCaMP two-photon absorption rate 

dependence on wavelength when it bounds to calcium ions (Ca2+ saturated) and when the 

calcium ions are absent (Ca2+ free). The ratio of saturated to free states shows relative change 

of fluorescence ΔF/F, shown in right pane. Adapted from [117]. B) C1V1 opsin generated 

photocurrent dependence on wavelength absorbed nonlinearly with two photons. A family of 

genetical modifications of the C1V1 is shown with varying current rise time properties. 

Adapted from [118]. 

 

A two photon absorption spectrum of GCAMP is shown in Fig 8.10A. As is 

evident from the figure, the saturated state fluorescence is ~15 stronger than the dark 

state, leading to a deterministic excitable fluorescence signal whenever neuron is 

firing. 

The most effective actuators for neuronal control are light gated ion 

channels. The most popular being blue light activated channelrhodopsin (ChR1) 

which serves as sensory photoreceptor in green algae. Expressed in cells in other 

organisms, they allow light to modulate the electrical excitability, calcium influx and 

other cellular processes. However, being sensitive to blue light, the ChR1 absorption 

spectrum overlaps with blue light excitable neural activity sensors, such as GCAMP. 

This leads to a crosstalk of excitation and readout and artifacts in the experiment. To 

prevent this, red light activated actuators could be used, such as a newly developed 

C1V1 opsin actuator [118]. The 2 photon light induced current dependence on 

wavelength of the C1V1 opsin actuator is given in Fig 8.10B. Efficiency of 2 photon 
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generated current is quite low, therefore large pixel dwell times or multiple covered 

ion channels are needed to reliably bring the neurons expressing ChR2 to action 

potential threshold [119]. Therefore, higher femtosecond pulse intensity is required 

compared to the two photon excitation of the GCAMP sensor. Having a laser source 

with two spectral outputs would enable selective and independent excitation of both 

sensor and actuator. This could be enabled with GCAMP sensor with one wavelength 

of ~900 nm and a C1V1 actuator with another wavelength of >1040 nm where 

GCAMP remains at its dark state. 

Femtosecond optical parametric oscillators are well suited for such 

application because of their wavelength tuning characteristics and high repetition 

rate which translates to speed with which the neural activity can be monitored [120]. 

Having two separately tunable channels allows one to tune the wavelengths for 

maximum signal and minimum crosstalk compromise. One of the motivations of this 

comparative study was showing that simultaneous cross-talk free optogenetics 

excitation and readout could be achieved with a compact one box double - OPO 

system compared to the bulky state of the art double Ti: Sapphire and single OPO 

setup. 

In this chapter, two-photon optogenetics experiments were carried out in 

University of Mainz, Mainz, Germany, in the lab of prof. Albrecht Stroh, using the 

prototype of optical parametric oscillator system assembled at Light Conversion. 

The results of this chapter were presented in conference paper CO2. 

 

8.3.1 Experimental procedures 

All experiments were carried out in adult female and male C57/BL6 mice. 

Sensor GCAMP6 was co-expressed with opsin C1V1. Adult mice were anesthetized 

and virus injections were made during a craniotomy. Viral constructs were delivered 

through a small durotomy by a glass pipette at a depth of 200 μm targeting brain 

layer II/III and at the 600 um depth targeting brain layer V/VI. The skull was exposed 

to fix the head-holder on the mouse‘s head and close a skull opening with a chronic 

4 mm diameter window. 

Live animal imaging was performed four weeks post injection to ensure 

sufficient co-expression of GCAMP6 and C1V1. The animals were anesthetized 

before imaging and this led to recording of a persistent brain state. The custom made 



 Applications of the assembled OPO 

  

169 

 

2-photon microscope setup was equipped with a resonant scanner for fast full field 

scanning up to 35 Hz for the GCAMP neural activity imaging with 920 nm laser line. 

The imaging plane was 250 µm below the cortical surface and the field of view was 

466 x 466 μm using Zeiss W-Plan-Apochromatic 20x (NA = 1) objective. The 

maximum applied laser power at the image plane was 30 mW at 920 nm. 

C1V1 stimulation was performed using a separate galvo scanner pair for a 

>1040 nm laser line. Regions of interests were stimulated (20 x 20 µm) to cover 

whole neuron cell body. Stimulation was delivered every 10 seconds and was applied 

for a duration of 68 ms with a pixel dwell time of 6 µs. The maximum applied laser 

power at the image plane was 200 mW at 1100 nm. 

All-optical two-photon interrogations can be achieved by using different 

light sources and system configurations. Schemes of a custom made 2-P microscope 

using different configurations and light sources are presented in Fig. 8.11. In all 

configurations, the imaging wavelength is guided to a resonant scanner for full-field 

imaging of GCaMP6f at 920 nm and the stimulation wavelength at longer infrared 

is guided to a temporally uncoupled galvo-scanner for independent optogenetic 

control. The current state of the art solution of wavelength extension is shown in Fig. 

8.11A, it is using Ti: Sapphire output to pump the OPO, which delivers a broader 

wavelength range for the opsin excitation (1100 nm – 1400 nm). The Ti: Sapphire 

could be tuned to 920 nm and part of this light could be used to pump the OPO which 

emits 1100 nm, but the efficiency of the Ti: Sapphire and the OPO drop with this 

wavelength configuration [121]. Fig. 8.11B shows another configuration having two 

separate Ti: Sapphire lasers. Two independent laser lines solve this problem as the 

OPO could be pumped at the peak of the tuning curve of Ti: Sapphire at 760 nm. 

Another Ti: Sapphire laser could be tuned to 920 nm to enable GCAMP imaging. 

The main drawbacks of this configuration are price and complexity. The double OPO 

setup is presented as a third configuration in the Fig. 8.11C, it could be an alternative 

to double Ti: Sapphire + OPO system. 
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Fig. 8.11. A) Microscope set up based on one Ti:Sapphire laser which is tuned to 920 nm for 

GCAMP imaging and part of this light is used for pumping the OPO to extend the wavelength 

for opsin activation. B) Microscope set up based on two independent Ti: Sapphire lasers, one 

is dedicated to GcaMP6f-imaging and the other one is pumping the OPO. C) Microscope 

setup with a dual OPO laser, which is delivering two independently tunable laser beams. 

Imaging wavelengths (680 – 960 nm) are guided to a resonant scanner and stimulation 

wavelengths (950 – 1300 nm) are guided to a separate galvano scanner.  PMT:  

Photomultiplier Tube, BS: Beamsplitter. 

 

In this investigation, both double Ti: Sapphire + OPO (Fig. 8.11B) and 

double OPO (Fig. 8.11C) approaches were used for imaging experiments. 

The Fig. 8.11B setup used Ti: Sapphire laser Chameleon Ultra II pumping 

Compact OPO (Coherent, CA, USA) which delivered 1100-1400 nm range 

wavelengths and a second independent Ti: Sapphire laser Chameleon Ultra II. The 

OPO emitted up to 700 mW at 1100 nm, the second independent Ti: Sa laser emitted 

up to 2 W of output power at 920 nm. The laser sources operated at 80 MHz 

repetition rate and around 140 fs pulse duration. 

Femtosecond light source used in the setup of Fig. 8.11C is a system 

comprised of two separately pumped optical parametric oscillators (OPOs) produced 
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by Light Conversion. The pump source had 16 W of output average power and 76 

MHz repetition rate, the OPOs are pumped with second harmonic of the 

fundamental, total 8 W of second harmonic power is available and its total power is 

split equally to pump both OPOs simultaneously. The output wavelength is tuned in 

the range of ~ 700-960 nm for the first channel and ~950-1300 nm for the second 

channel. The output pulse duration ranges from ~100 fs to 160 fs. Both channels are 

available for simultaneous use. The power tuning curve of the double OPO source is 

given in Fig. 8.12. 

 

 

8.3.2 Results and discussion 

For an all-optical experiment with minimal cross-talk, it is essential to 

spectrally separate imaging and stimulation. Therefore, the spectral window needs 

to be defined allowing for the reliable detection of functional calcium transients. In 

vivo imaging of GCaMP6f-expressing neurons was performed at different 

wavelengths of the same field of view, in layer II/III of visual cortex in lightly 

anesthetized mice (Fig. 8.13). The in vivo results replicate the two photon absorption 

spectrum given in Fig 8.10A, showing that imaging wavelength has to be set at 

approximately 920 nm. Investigation of imaging at the longer wavelengths than 920 

 

Fig. 8.12. Output power dependence on wavelength of two independentely tunable OPOs 

system. 
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nm was limited by the dichroic mirror reflection curve. Despite that, the longer 

imaging wavelengths should not be used in order not to excite the opsin at its short 

wavelength absorption tale as shown in Fig 8.10B. Even though the neurons could 

be visually detected at below 900 nm, spontaneous activity could be hardly observed 

at these wavelengths. One motivation of this study was trying to image GCAMP 

with 860 nm wavelength, as this would lead to high enough Ti: Sapphire output 

power to simultaneously pump the OPO and provide part of the 860 nm light for 

imaging (as shown in Fig. 8.11A). The results show that a wavelength longer than 

~900 nm is needed for GCAMP imaging and a single Ti: Sapphire system is not 

optimal for simultaneous OPO pumping and imaging. 
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Fig. 8.13. Functional calcium transients can only be detected in a rather narrow spectral 

window. A) 2-P imaging of GCaMP6f expressing neurons at four different Ti: Sapphire 

wavelengths (860, 880, 900, 920 nm) in layer II/III of mouse visual cortex. The very same 

three neurons (yellow circles) are depicted at every wavelength. Scale bar 50 µm. B) 

Corresponding calcium traces of depicted neurons (measured by electrophysiology with 

inserted high resistance probe). C) Normalized number of active cells at different 

wavelengths. D) Normalized total number of calcium transients at tested wavelengths. E) 

Average transient frequencies at different wavelengths.  

 

As the lower edge of the spectral range for all-optical experiments was now 

set to 920 nm due to the functional limitations of GCaMP6f discussed before, a light 
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source was to be used, which flexibly delivered longer wavelengths for cross-talk 

free optogenetic modulations. Previous work on all-optical physiology used fixed-

wavelength Ytterbium lasers typically between 1040 and 1080 nm for the 2-P 

excitation of opsins [120 - 123]. Investigation was made to probe whether longer 

wavelength might both reduce cross-talk and improve efficacy. The cross-talk stems 

from the GCaMP absorption tail at longer wavelengths ~1020 nm as shown in Fig 

8.10A. The spectral windows were defined for artifact-free all-optical interrogations 

by testing different wavelengths for stimulation. To ensure that photostimulation 

artifacts were not due to mistakenly attributed calcium transients, a stimulation was 

made on mice which were lacking C1V1 expression and solely expressed GCaMP6f 

(Fig. 8.14A). Notably, significant artifact in the calcium trace was observed when 

applying stimulation wavelength at 1020 nm and the power of 40 mW used 

commonly for all-optical experiments (Fig. 8.14B). Increasing power levels to 80 

mW which increases the efficacy of stimulation led to even more pronounced 

artifacts. 
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Fig. 8.14. Stimulation artifact of 2-P excitation is wavelength-dependent and absent above 

1100 nm. A) In vivo 2-P calcium imaging of GCaMP6f expressing neurons in layer II/III of 

mouse visual cortex and simultaneous raster scan stimulations of selected cells at different 

wavelengths and light intensities. Scale bar 50 µm. B) Average artifact (red line, n = 10 

artifacts, single trials are depicted in grey) in a calcium trace of selected neurons upon 40 and 

80 mW raster scan stimulations at 1020 nm. The amplitude of the artifact is increasing with 

increasing stimulation light power. C) Quantification of artifact amplitude at 40 and 80 mW. 

D) Averaged artifact (red lines, n = 10 artifacts, single trials are depicted in grey) upon 2-P 

raster scan stimulations (80 mW) at varying stimulation wavelengths (1020 nm, 1060 nm and 

1100 nm). E) Quantification of artifact amplitude at different stimulation (80 mW) 

wavelengths. Average artifact amplitudes are decreasing with increasing wavelength. At 

1100 nm no above-noise artifact is observable.  

 

Finally, in vivo experiments were conducted in animals expressing high and 

functional levels of both opsin C1V1 and indicator GCaMP6f in the lightly 

anesthetized mouse. First, only GCaMP6f imaging was performed. The anesthetic 

level was set in a way that persistent, desynchronized population activity could be 

observed. In persistent brain state, cell-specific interventions were made on 
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genetically-defined C1V1-expressing neurons using 2-P based optogenetic 

stimulation. Sequential stimulations were carried out of individual cells at the 

artifact-free wavelength of 1100 nm using aforementioned raster scans while 

simultaneously imaging GCaMP6f-fluorescence at 920 nm (Fig. 8.15A). The task to 

be tackled was, whether increasing stimulation wavelength beyond 1100 nm, not 

being possible with standard Ti: Sapphire or Ytterbium lasers, will lead to an 

increased efficacy. The early studies in the field revealed a linear increase in 

photocurrents (shown in Fig 8.10B), until the technical limit of 1040 nm [118]. 

Surprisingly, it was found that a further increase of the stimulation wavelength from 

1100 up to 1300 nm did not yield a significant increase in the rate of evoked calcium 

transients (Fig. 8.15C) as well as no significant increase in the fraction of responding 

cells (Fig. 8.15D). However, increasing stimulation power from rather low values 

ranging at 40 or 80 mW up to values ranging at 120 or 210 mW significantly 

increased the rate of evoked transient 2-3 fold. 
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Fig. 8.15. 1100 nm represents the optimal wavelength for effective and cross-talk-free 

optogenetic control. A) All-optical control of individual GCaMP6f (green) / C1V1T/T (red) 

co-expressing neurons in layer II/III of mouse visual cortex. A 2-P stimulation at 1100 nm of 

GCaMP6f/C1V1T/T co-expressing neurons in layer II/III of mouse visual cortex. Depiction 

of raster scan patterns as described above. Four individual neurons can be targeted for 

sequential photostimulation. Scale bar 50 µm. B) GCaMP6f calcium transients of four co-

expressing neurons upon ten stimulation trials with 1100 nm stimulation wavelength and 200 

mW of average power (time of stimulation indicated by red marker, the stimulation period is 

10 seconds). C) Average rate of evoked transients (red bars) at varying wavelengths (1100 

nm - 1300 nm) at 80 mW. Grey shadow indicates the fraction of responding cells. n = 9 
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neurons, 5-10 trials each, 1 mouse. D) Same as in C but varying light intensities (40, 80, 120 

and 210 mW) at 1100 nm. Same color coding as in C, n = 23 neurons, 5-10 trials each, 3 

mice.  

8.3.3 Summary 

The wavelength tunability of the femtosecond optical parametric oscillator 

was exploited in the two-photon optogenetics experiment. 

Neuronal activity indicated by GCAMP indicator can only be observed with 

two photon excitation wavelengths larger than ~900 nm. This precludes using 

common Ti: Sapphire pumping OPO systems because of decrease of Ti: Sapphire 

power at this wavelength. 

GCAMP can be excited with two photons at longer wavelengths and the 

opsin stimulation wavelength range of 1020-1080 nm leads to imaging artifacts. 

Wavelengths longer than 1100 nm should be used for such a GCAMP indicator and 

C1V1 opsin pair, excitation of C1V1 in the wavelength range of 1100-1300 nm was 

demonstrated. 

Simultaneous all-optical readout and excitation was demonstrated; the 

experiment was shown to be free from cross-talk between stimulation and recording, 

and did not produce read out artifacts. 
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9 Conclusions 

1. Phase-mismatched optical parametric oscillation crystal leads to effective 

nonlinearity the magnitude and sign of which is adjustable; this can be used to 

compensate or amplify the self-phase modulation effects inherent in high power 

femtosecond optical parametric oscillators with both signs of intracavity 

dispersion. (Chapter 4) 

2. A second SHG signal crystal inserted in OPO cavity can be phase-mismatched 

to induce tunable negative nonlinearity for positive group delay dispersion 

compensation and allow soliton formation, leading to the pulses of high spectro-

temporal quality. (Chapter 5) 

3. Large phase shifts produced by cascaded quadratic nonlinearity lead to 

generation of higher order solitons, exhibiting oscillatory behaviour unless 

perturbed by higher orders of nonlinear dispersion. (Chapter 6) 

4. Optical parametric oscillator crystal cascaded nonlinearity induces nonlinear 

spatial focusing or defocusing which is strong enough to drive the resonator out 

of the stability if operating the device near a linear stability limit. (Chapter 7) 

5. The prototype of double-beam femtosecond optical parametric oscillator 

wavelength tunable in the ranges of 700 – 950 nm and 950 - 1300 nm has been 

successfully applied in nonlinear harmonic generation, two-photon microscopy, 

optogenetics and  two-photon polymerization. Its versatility and feature set stand 

out as a unique in the field of high-repetition rate tunable lasers. (Chapter 8) 
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